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Abstract 

Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has 

the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive 

and translational investigation of algorithmic bias in two separate prediction models--one 

predicting course completion, the second predicting degree completion. We show that if either 

model were used to target additional supports for “at-risk” students, then the algorithmic bias 

would lead to fewer marginal Black students receiving these resources. We also find the magnitude 

of algorithmic bias varies within the distribution of predicted success. With the degree completion 

model, the amount of bias is over five times higher when we define at-risk using the bottom decile 

than when we focus on students in the bottom half of predicted scores; in the course completion 

model, the reverse is true. These divergent patterns emphasize the contextual nature of algorithmic 

bias and attempts to mitigate it. Our results moreover suggest that algorithmic bias is due in part 

to currently-available administrative data being relatively less useful at predicting Black student 

success, particularly for new students; this suggests that additional data collection efforts have the 

potential to mitigate bias.  
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INTRODUCTION 

Predictive analytics are increasingly pervasive in higher education. By one estimate, nearly 40 

percent of higher education institutions now use some form of predictive analytics (Barhsay & 

Aslanian, 2019; Ekowo & Palmer, 2016, Swaak, 2022). Institutions apply predictive analytics 

across a broad array of student services, from directing scholarships to students who are predicted 

to persist at the institution, to allocating additional academic supports or proactive advising to 

students predicted to struggled in individual courses or in college overall (Barhsay & Aslanian, 

2019; Ekowo & Palmer, 2016; Paterson, 2019; Smith, Lange, and Huston, 2012; Treaster, 2017). 

The use of predictive analytics in early-alert systems, which flag potentially struggling students 

within a course, particularly swelled during the COVID-19 pandemic, with over 80 percent of 

public colleges using some form of this technology (Ogundana & Ositelu, 2022). However, 

concerns about potential racial bias in prediction algorithms raise the question as to whether 

predictive analytics could negatively impact colleges’ and universities’ broader efforts to promote 

greater racial equity. 

In recent years, the data science research community has explored algorithmic bias in 

education contexts, and in nearly all instances researchers demonstrate the presence of algorithmic 

bias when predicting student success (for an extensive review, see Baker & Hawn, 2021).1 For 

example, some papers find lower model accuracy for underrepresented minority (URM) groups; 

this lower accuracy leads to more URM students having a mis-classified risk status (Lee & 

 
1Other recent research examines algorithmic bias in other public policy settings. Obermeyer et al. (2019) 

demonstrate that a commercial algorithm used to enroll patients in a high-risk healthcare management program is 

less likely to identify sick Black patients compared with equally sick White patients. Angwin et al (2016) and 

Corbett-Davies et al (2017) find that the COMPAS algorithm, which predicts future crime for court defendants, 

assigns higher risk to Black defendants who have the same actual reoffense rate as similar White defendants, 

resulting in undue harsher pre-trial or sentencing decisions for Black defendants. Arnold, Dobbie, and Hull (2021) 

find similar bias in an algorithm used in New York City courtrooms. 
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Kizilcec, 2020, Riazy, Simbeck, and Schreck, 2020, Sha et al, 2022). Other papers find that 

algorithms are more likely to predict URM students will struggle or fail when they in fact succeed, 

while the reverse is true of White and Asian students (Anderson, Boodhwani, & Baker, 2019, Jiang 

& Pardos, 2021, Jeong et al, 2021, Yu, Lee, & Kizilcec, 2021, Yu et al, 2020). This algorithmic 

bias has important implications for educational policy and practice, since it could result in 

inefficient targeting of resources. To date, however, this line of work has primarily targeted data 

science communities rather than policy makers or education researchers, and has focused more on 

investigating technical aspects of model development (e.g. exploring novel methods for bias 

mitigation or applying post-prediction adjustments to risk scores) than on translating policy- and 

practice-relevant insights.  

In this paper, we build on the existing line of research on algorithmic bias in education by 

providing a comprehensive and translational investigation of two separate prediction algorithms--

the first predicting course-level completion, and the second predicting overall degree completion. 

We developed these models using detailed student-level data from the Virginia Community 

College System (VCCS); as we detail in the next section, our models apply a similar data science 

methodology (random forests) and incorporate similarly rich student-level data as those currently 

used at many colleges and universities.2 We conduct our investigation of algorithmic bias in the 

context of the most common use-case of predictive analytics: To identify students with a lower 

likelihood of completing a course or dropping out; label these students as “at-risk” and to target 

 
2 The codebase for our models is publicly available: https://github.com/nudge4/Bias-In-Predictive-Modeling/. We 

hope that an ancillary benefit of this analysis is that colleges and universities can reference this code to predict 

student success without having to develop their own prediction models from scratch or pay for commercial products, 

which can cost hundreds of thousands of dollars per year (Barshay and Aslanian, 2019). For instance, we are 

currently collaborating with Piedmont Virginia Community College to use the course completion model to guide 

which students the instructors will target for additional support in large “gateway” math and English courses. 
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additional resources (e.g. advising, tutoring) to these students.3 Therefore, we intentionally focus 

our analysis and discussion on the types of algorithmic bias that would lead to fewer resources 

being allocated to students from historically-disadvantaged groups. Specifically, we focus on 

algorithmic bias along two dimensions: calibration and accuracy. Calibration bias occurs when 

different student subgroups have different actual success rates, conditional on predicted risk 

scores. To assess accuracy bias, we compare the models’ c-statistics (also known as AUC) across 

subgroups. We then explore multiple hypotheses regarding why these forms of algorithmic bias 

would be present in our models.  

Our analysis provides four main takeaways. First, and consistent with prior research, we 

find evidence of algorithmic bias (for both calibration and accuracy) in the models we investigate. 

In both the course completion model and degree completion model, we find that among students 

with the same low predicted success rate at the beginning of the term, Black students have lower 

actual success rates than White students. If scarce resources were allocated to students identified 

as “at-risk” based on the biased models, then Black students would receive fewer of these resources 

compared to an allocation that was based on actual (but unobservable) risk. We further show that 

this calibration bias is more pronounced at certain points in the distribution of predicted success. 

Specifically, the degree completion model exhibits substantially higher bias among the population 

of students with the lowest predicted likelihood of success: The amount of bias is over five times 

higher when we set a “risk threshold”  using the bottom decile than when we set a risk threshold 

using the bottom half of predicted scores. However, we also show that this pattern differs quite 

 
3An important nuance to consider is the difference between the latent risk level at the relevant time period when the 

at-risk label is assigned, versus the time of observing the eventual outcome. When colleges label students as at-risk, 

they implicitly assume that students in the historical sample who eventually did not complete a course or program 

were at-risk at the time when the predictors were measures (i.e. at the beginning of a particular term), and 

conversely that students who did complete were not at-risk. We discuss this point, and in particular how it may 

impact the interpretation of algorithmic bias, in the Results section below. 
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meaningfully between the two models.  For the course completion model, we see the reverse 

pattern: The amount of bias is over five times higher for a risk threshold set at the bottom half 

versus the bottom decile.   

 Second, we find that making the course completion model more attuned to race (by either 

including racial predictors or estimating race-specific models) decreases algorithmic bias without 

any meaningful reduction in model performance, while the opposite is true for the degree 

completion model. This result again highlights the highly contextual nature of algorithmic bias: 

Despite the similarities of the two models (i.e. using the same student population, similar predictors 

constructed from the same data source, and developed by the same team of researchers), the 

inclusion or exclusion of race in the model has divergent implications for reducing bias.  

Third, we do not find evidence that data underrepresentation or differential student sorting 

significantly contribute to the algorithmic bias in our models. However, our results do suggest that 

Black students having shorter enrollment histories is a contributing factor to algorithmic bias in 

the models. Specifically, the amount of algorithmic bias within the sample of first-time VCCS 

students is typically more than double that of the bias within the sample of returning students. This 

finding suggests that the additional predictors available for returning students partially mitigates 

algorithmic bias. Finally, because our models consistently have lower levels of accuracy and 

generally lower values of other goodness-of-fit metrics for the Black sample, our results suggest 

that the data currently collected in college administrative systems may be inherently less effective 

at predicting success for Black students.  

 Our paper makes several important contributions. First, our primary focus is on generating 

insights that are relevant for policy makers, practitioners, and researchers who are less engaged 

with the data science community. Our approach is in line with recent perspectives on algorithmic 
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bias in economics, which encourage researchers to focus on the marginal implications of the 

algorithmic “outputs” (i.e. the predicted scores and in what context they are used), instead of 

focusing attention on the technical inputs of the modeling process (Kleinberg et al, 2018; Cowgill 

& Tucker, 2019; Rambachan et al, 2020). In so doing, the implications of our results differ 

meaningfully from existing research among data scientists investigating algorithmic bias in 

education. Prior studies conclude that algorithms are overall more “pessimistic” about Black 

student performance and relatively underestimate their likelihood of success  (Anderson, 

Boodhwani, & Baker, 2019, Jiang & Pardos, 2021, Jeong et al, 2021, Yu, Lee, & Kizilcec, 2021, 

Yu et al, 2020), which would lead to more Black students being targeted for additional resources.4 

However, our focus of quantifying bias on the margin of being labeled at-risk reverses this 

takeaway: We find that conditional on predicted score, our algorithms relatively overestimate 

Black students’ likelihood of success.5 Second, we investigate how algorithmic bias differs across 

the distribution of predicted scores, and in so doing, we show the amount of algorithmic bias can 

differ substantially based on which particular segment of the student population an educational 

institution may choose to focus on for intervention. Third, we reinforce the importance of context-

dependent investigations of and efforts to mitigate bias. Even holding constant the same sample, 

data source, and predictor structure, we find different magnitudes of bias overall and at particular 

points in the distribution of predicted student success depending on which prediction model we 

investigate, as well as differential efficacy of strategies to mitigate bias.  

 
4 Specifically, these related prior studies focus on a different definition of algorithmic bias (also referred to as  

“notions of fairness” in this literature). These studies tend to focus on the “equalized opportunity” notion of fairness, 

in which an algorithm is considered biased if the true or false positive rates are different across groups. We discuss 

in more detail below how choosing how to define algorithmic bias in a specific context can significantly impact the 

interpretation of the practical implications of the bias.  
5 This alternative interpretation is not due to contextual differences between the algorithms we investigate versus the 

algorithms that are the subjects of prior research. As we show below, if we use the same bias metrics as the previous 

papers (namely, the false positive rates), then we would also conclude that the models were underestimating Black 

students’ likelihood of success.  
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Finally, whereas prior work has focused mainly on investigating the technical aspects of 

algorithmic bias in education, we provide an in-depth exploration of the potential sources of 

algorithmic bias in our models. As Obermeyer et al. (2019) demonstrate in a health-care setting, 

understanding the source of algorithmic bias can be paramount to effectively and efficiently 

reducing bias from an existing algorithm, and to inform future data collection and modeling efforts.  

 

HIGHER EDUCATION INSTITUTIONS’ USE OF PREDICTIVE ANALYTICS  

To contextualize our analysis of algorithmic bias in higher education and to motivate the specific 

models that we investigate, we provide a brief overview of how predictive analytics are used by 

college and universities--both how they develop the prediction models and then how colleges and 

universities typically leverage the resultant predictions in student outreach and support. 

Roughly two-thirds of prediction algorithms used in higher education are “home-grown” 

models developed by individual institutions (Educause, 2018). The balance are offered by 

commercial vendors. Both algorithmic approaches typically follow a similar high-level format, 

while customizing to institution’s available data, preferences, and context: They rely on historical 

student-level data including both predictors (e.g. prior GPA, enrollment intensity) and the ultimate 

outcome; in turn, the algorithms use the same set of predictors for a new sample of students to 

predict their likelihood of achieving the outcome. We highlight two notable applications that 

provide more detailed documentation on the prediction modeling process. First, the University of 

Oregon is currently predicting first-year student retention using XGBoost (Greenstein et al, 2023), 

which is a similar tree-based model to random forest and which yields predictions with similar 

rates of accuracy in the context of predicting college completion (Bird et al, 2021). Recent FOIA 

requests revealed that EAB’s Student Success Predictive Model is “a combination of several 
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penalized logistic regression models applied to different subgroups,” where colleges work with 

EAB to decide what student information can be introduced as model predictors (Feathers, 2021). 

There are several recent case studies that illustrate how dozens of institutions have 

incorporated predictions from these algorithms into practice (APLU, 2016;  Burke et al, 2017; 

Ekowo & Palmer, 2016; Paterson, 2019; Stark, 2015; Treaster, 2017). A common theme across 

these case studies is that institutions are looking to predictive analytics to more efficiently target 

scarce student resources. This incorporation of predictive analytics into resource allocation occurs 

across the student life cycle and across numerous functions. For instance, enrollment managers 

leverage predictions of which students are likely to apply to or choose to matriculate at an 

institution to guide their marketing and recruitment efforts; financial aid offices use predictive 

analytics to guide aid disbursements to students predicted to persist at the institution (Ekowo & 

Palmer, 2016; Treaster, 2017). The most prevalent use of predictive analytics reported in these 

case studies is to guide academic supports to students who might otherwise struggle to succeed, 

either in an individual course or in the overall program of study. One prominent institution using 

predictive analytics is Georgia State University GSU, which partnered with EAB to develop an 

algorithm predicting student academic performance. GSU targeted students predicted to struggle 

with proactive outreach from advisors and additional academic supports (Ekowo & Palmer, 2016). 

Other institutions, such as the University of North Carolina-Greensboro, differentiate the intensity 

of academic intervention based on students’ predicted level of risk (Klempin, Grant, & Ramos, 

2018).  

 

DATA AND METHODS 
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The data for this study come from VCCS system-wide administrative records from the Summer 

2007 through Fall 2019 academic terms. These records include detailed information about each 

term in which a student enrolled, including their program of study, courses taken, grades earned, 

credits accumulated, financial aid received, and degrees earned. The records also include basic 

demographic information, including gender, race, and parental education. Finally, we observe all 

degrees and certificates awarded by VCCS colleges beginning in 2007. In addition to VCCS 

administrative records, we also have access to National Student Clearinghouse graduation and 

enrollment records. National Student Clearinghouse data allow us to observe all enrollment periods 

and postsecondary credentials earned at non-VCCS institutions from 2004 onward. 

We build two separate prediction algorithms using the VCCS administrative data. The first 

predicts course-level completion (“course completion model”) and the second predicts completion 

of a degree or certificate (“degree completion model”). We use random forest for both prediction 

models. Random forest (RF) is a decision-tree based ensemble model commonly used in predictive 

analytics. In similar contexts of predicting degree completion (Bird et al, 2021) and course 

performance (Kung & Yu, 2020), recent studies have found very similar levels of overall model 

performance when comparing RF to other modeling strategies, such as logistic regression, support 

vector machines, or recursive neural networks.6 The output from RF is a raw predicted score 

ranging from 0 to 1, with lower values corresponding to lower predicted likelihood of success.7  

 
6 We also built versions of our base models using logistic regression instead of random forest, and find that random 

forest has slightly higher overall performance: The RF course completion models’ c-statistics are 3 percent higher 

than the logistic version, and the RF degree completion models’ c-statistics are 1 percent higher than the logistic 

version. (see Appendix Table A1). We also find that the amount of calibration bias is typically lower for the RF 

models compared to logistic regression (see Appendix Figure A1).  
7 For the vast majority of our analysis, we convert the raw predicted scores percentiles. There is only one piece of 

our analysis where we need to convert the raw predicted scores to binary predictions: for calculating the True 

Negative Rate. For this analysis, we set a threshold such that the share of students with a “positive” prediction to be 

equal to the overall success rate of the training sample (75.4 percent for course completion, 34.0 percent for degree 

completion).  
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Using standard predictive analytics practices, we split the data into training and validation 

samples. We divide the full data such that the training sample includes observations from earlier 

historical cohorts, and the validation sample includes those from more recent historical cohorts.8 

We use the training sample to build the model and select the optimal parameters (number of 

decision trees, maximum depth, and number of random predictors to include at each node for 

splitting) using five-fold cross-validation. This process functions as feature selection, which 

reduces model overfitting (Ghojogh and Crowley, 2019; Breiman 2002). We provide the optimized 

values of these parameters for our base models in Appendix Table A2. Finally, we compute a 

feature importance (FI) score for each predictor using the mean decrease in impurity method 

(Breiman, 2002). A predictor with a higher FI score makes a larger overall contribution to the 

model generating the predictions. Because FI scores do not provide precise magnitude comparison 

of predictors to each other (i.e. a predictor with an FI score that is double another predictor is not 

necessarily making twice as large a contribution to model accuracy), we instead focus on the 

relative rankings of predictors based on FI scores.  

While both models rely on the same VCCS administrative data, each has a unique outcome, 

sample, and set of predictors, which we describe below. 

Course Completion Model 

The binary outcome for the course completion model is equal to one if the student earned a grade 

of A, B, or C, and equal to zero for grades of D, F, or W.9 Based on this definition, 75.6 percent 

 
8 This division best simulates how these models would be applied in practice, where predictions for current students 

are based on models built from recent historical cohorts. If we instead split the data randomly between the training 

and validation sample, then the evaluation results would be based on a hold-out sample of observations from the 

same time frame as the training sample, making the evaluation results less generalizable to the typical application of 

these models. 
9 While a grade of D earns the student credit for the course and is technically considered a passing grade, students 

cannot satisfy some VCCS program requirements with a D, and other colleges and universities typically do not 

accept transfer credit for D grades. 
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of student x course observations achieved the outcome of course completion. Separating the 

sample by race subgroups, 79.8 percent a White student x course observations achieved the 

outcome, compared to 69.4 percent of Black student x course observations.   

The course completion sample consists of student x course observations from Spring 2014 

to Fall 2019. We restrict the sample to focus on college-level coursework for regularly-enrolled 

students. Specifically, we exclude dual-enrollment observations (i.e. current high school students 

taking courses through an arrangement between their high school and a VCCS college). We also 

exclude observations outside the traditional A-F grading scale.10 The resulting sample size is 

5,168,903 student-by-course observations. We split the sample into training and validation sets 

based on term: The training sample consists of Spring 2014 to Fall 2018 (n = 4,414,694) and the 

validation sample consists of Spring 2019 to Fall 2019 (n = 754,209).  

We construct 186 predictors from the VCCS administrative data. We describe them at high-

level here, and include a full list in Appendix Table A3. The predictors include student 

demographic and socio-economic information (e.g. age during target term, gender, median income 

of households in zip code); student academic history at VCCS, prior to the target term, both 

generally (e.g. prior credits earned, cumulative GPA) and specific to the target course (e.g. the 

GPA in all the target course’s prerequisites); student enrollment characteristics of the target term 

(e.g. program of study currently pursuing, enrollment intensity); characteristics of the target course 

(e.g. course enrollment, average grade from the most recent five years); and instructor 

characteristics (e.g. tenure, full-time versus adjunct). If the observation is for a student’s first term 

at VCCS, we are only able to construct predictors for demographics and socio-economic status, 

student enrollment characteristics of the target term, characteristics of the target course, and 

 
10 The vast majority of these observations correspond to developmental courses, which are graded as pass or fail. 
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instructor characteristics. We handle missing values for predictors related to students’ academic 

history (e.g. prior cumulative GPA is missing for students in their first term of enrollment) by 

replacing with the value of m-1, where m is the minimum value of the predictor in the study 

sample; in this way, the RF model is able to distinguish which observations were missing values 

for each predictor.11 

Degree Completion Model 

The binary outcome for the degree completion model is equal to one if the student completed a 

VCCS degree or credit-bearing certificate within 6 years. Based on this outcome definition, 34 

percent of students in our full sample completed a degree (39.4 for White students, and 22.4 

percent for Black students). Our sample consists of students who enrolled at a VCCS college as a 

degree-seeking (or certificate-seeking), non-dual enrollment student for at least one term, with an 

initial enrollment term between Summer 2007 and Spring 2013. For each student in our sample, 

we observe their information for the entire 6-year window after their initial enrollment term. While 

we use the full 6 years of data to construct the outcome measure, we construct the model predictors 

to resemble the population of students currently enrolled--many of whom have only been enrolled 

in one or two terms. Therefore, we randomly truncate the data in the full sample to resemble the 

distribution of enrollment lengths among Spring 2019, Summer 2019 and Fall 2019 enrollees.12 

We split the sample into training and validation sets based on the term of students’ first enrollment: 

The training sample consists of all students who first enrolled at VCCS from Summer 2007 to 

Spring 2012 (n = 323,182), while the validation sample consists of students who first enrolled at 

VCCS from Summer 2012 to Spring 2013 (n = 62,618). 

 
11 Appendix Figure A2 shows the distribution of predicted scores from the validation sample for the course 

completion model (Panel A) and the degree completion model (Panel B), separately by racial subgroup.  
12 For a full discussion of the choice of outcome and this truncation method, see Bird et al (2021).  

https://journals.sagepub.com/doi/full/10.1177/23328584211037630
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We construct 255 predictors from the VCCS administrative data. We describe them at high-

level here, and include a full list in Appendix Table A4. The predictors include student 

demographic and socio-economic information (e.g. age at initial enrollment, gender, median 

income of households in zip code); student overall VCCS academic history, measured during the 

most recent (truncated) term (e.g. cumulative GPA, trend of term-level GPA); student overall non-

VCCS academic history (e.g. ever enrolled in non-VCCS college before initial VCCS enrollment, 

number of non-VCCS terms enrolled); student financial aid receipt history at VCCS (e.g. average 

student loan borrowing across terms); and term-specific academic information for both VCCS and 

non-VCCS enrollment (e.g. share of credits a student withdrew from in their first Fall term, and 

separately the share of credits a student withdrew from in their second Spring term).13 We handle 

missing values in the same manner as the course completion model described above. 

Measuring Algorithmic Bias 

The data science research community has a burgeoning line of work describing different types of 

algorithmic bias (see, for example, Chouldechova & Roth, 2018).14 However, there is no consensus 

on which type of algorithmic bias is most important to address, and in fact, attempts to reduce a 

particular type of bias often comes at the expense of increasing a different form of bias (Kleinberg, 

Mullainathan, & Raghavan, 2016). Combining the need to assess algorithmic bias based on 

specific contextual factors (Paulus & Kent, 2020) and recent perspectives from the field of 

economics suggesting that examining bias based on the algorithm’s outcomes instead of inputs or 

functional form is the most relevant and actionable (Cowgill & Tucker, 2019), we focus our 

 
13 Note that we do not include non-VCCS or financial aid predictors in the course completion model because during 

early model development phases, we found that these predictors did not contribute to the performance of the course 

completion model.  
14 Algorithmic bias is a term often used interchangeably with algorithmic fairness; this literature also often refers to 

“notions of fairness” when describing different types of algorithmic bias.  
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investigation on algorithmic biases that would result in less resource allocation to students from 

historically-disadvantaged groups who would otherwise not succeed.  

Specifically, we focus on two related but distinct forms of algorithmic bias. First, holding 

constant the algorithm’s predictions, do we observe the same actual success rates for Black 

students versus White students? This is referred to as “calibration bias.” For an illustrative example 

of the consequences of calibration bias, suppose there is a group of students who were all assigned 

the same low predicted score of 0.2, indicating the students are at-risk for not completing the course 

or degree. Now suppose that among this group of students, the actual observed success rate of 

Black students is 10 percent while the actual observed success rate of White students is 30 percent. 

This pattern would indicate that conditional on predicted score, Black students are actually less 

likely to succeed academically than White students. This calibration bias would result in some 

Black students not receiving the additional resources, even though they are actually less likely to 

succeed than some White students who did receive the resources. Following Obermeyer et al. 

(2019), we quantify the amount of calibration bias following these steps: (1) Select all White and 

Black students whose predicted scores are below the “risk threshold” (e.g. a student whose 

predicted score is below the 30th percentile of the predicted scores); (2) if the actual success rate 

of the labeled at-risk Black students is lower than that of the labeled at-risk White students, change 

the label of the Black student whose predicted score is lowest among the Black students not labeled 

at-risk , and simultaneously drop the White student whose predicted score is highest among the 

White students labeled at-risk; (3) repeat step two until the actual success rates of the two selected 

groups become equal. We then compare the numbers of Black to White students who would be 
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labeled at-risk by the algorithm both before and after the simulated removal of the calibration 

bias.15  

The second form of algorithmic bias we consider is whether algorithms are equally accurate 

at predicting success for Black students as they are for White students. To assess this “accuracy 

bias,” we compare subgroup-specific c-statistics.16 Lower levels of model accuracy imply that 

more students would be mis-labeled as at-risk or not.  

The base versions of our models are built using the full training and validation sets, and do 

not include racial predictors.17 In order to test how incorporating more information about race in 

the models impacts algorithmic bias, we also estimate versions of the model that include race as 

predictors, and separately we estimate race-specific models (i.e. we build a random forest model 

for the White subgroup, and a separate random forest model for the Black subgroup) to allow the 

determinants of success to differ between White and Black students.18 For calculating the amount 

 
15 While this simulation exercise allows us to quantify the amount of calibration bias for a particular threshold of 

predicted scores, it is important to note that this technique cannot be used to mitigate bias in real-time, because it relies 

on knowing both the students’ predicted scores and their eventual outcomes. 
16 C-statistic, also referred to as the area under the curve (AUC), is a “goodness of fit” measure that is equal to the 

probability that a randomly selected positive observation (i.e. a student who passed a particular course) has a higher 

predicted score than a randomly selected negative observation. A c-statistic of 0.5 corresponds to a model being no 

better than choosing at random, while a c-statistic of 1 corresponds to a model perfectly predicted the outcome. A c-

statistic of 0.8 or higher is considered strong performance; and a c-statistic of 0.9 or higher is considered outstanding 

(Hosmer, Lemeshow, and Sturdivant, 2013). We compute the standard errors of the c-statistic based on the fact that 

the c-statistic in this case is equivalent to the statistic used in Wilcoxon rank-sum test based on predicted scores 

(Hanley and McNeal, 1982).  
17 One line of reasoning is that simply removing race as information the model can draw on should eliminate any 

potential biases. However, as we demonstrate below and as has been previously demonstrated in the data science 

literature, “race-blind” models may still contain relevant algorithmic bias (e.g. Yu, Lee, & Kizilcec, 2020). This often 

occurs because there are other predictors in the model which are highly correlated with race. Appendix Table A5 

shows the differences between the White and Black subgroups for the top 10 predictors of each model; all of these 

differences are statistically significant with p < 0.01. For a specific example, Black students have 12-21 percent lower 

cumulative GPAs, compared to White students. As a result, even absent including race indicators in our model, we 

would still expect significant differences in the distribution of predicted scores between Black and White students. In 

Appendix Table A6, we provide further race-specific summary statistics separately for the training and validation sets. 

Overall, Black students are older, more female, have lower values on the socio-economic measures, and have worse 

academic outcomes. The differences between the training and validation samples reflect the temporal division of the 

sample on this line.   
18 When fitting RF models on the full training sample of students, the tree-growing procedure seeks to identify the 

optimal predictor and the corresponding threshold to make each node splitting in order to separate the observations 

with success from nonsuccess. Because a larger share of the sample are White students, then these node-splitting 
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of calibration bias in the race-specific models, we first combine the raw predicted scores from the 

race-specific models to set a common distribution of predicted scores. In other words, the 10th 

percentile in the Black-specific model corresponds to the same raw predicted score as the 10th 

percentile in the White-specific model. 

Comparing Complex and Simple Algorithms 

We recognize that many colleges may be interested in the data-driven approaches to targeting 

resources, but do not have the means to employ advanced prediction models. These colleges may 

choose a very simple algorithm instead, such as labeling students as at-risk if they have a 

cumulative GPA below a certain threshold (e.g. 2.0, which often is used to determine whether 

students are making Satisfactory Academic Progress to maintain financial aid eligibility). To 

supplement our results for the random forest models, we also show the potential racial inequities 

that could result from using a simple targeting strategy.  

 For predicting both course and degree completion, we focus on two separate predictors: 

cumulative GPA and enrollment intensity. As we show in Appendix Table A5, cumulative GPA 

is the most important predictor in the degree completion model, and the second most important 

predictor in the course completion model. However, this predictor is only available for students 

with prior VCCS enrollment history. Enrollment intensity is the most important student-specific 

academic predictor in both models that is populated for first-time students--it is the overall most 

important predictor for the course completion model (as seen in Appendix Table A5), and the 

 
decisions might be more reflective of the determinants of success of White students, which could be different from 

the patterns that are specific to Black students. When we estimate race-specific versions of the RF models, we allow 

the node-splitting decisions to differ across racial lines. Furthermore, we explore whether the determinants of success 

differ between Black and White students by comparing the top 10 predictors from the race-specific models, as 

determined by the FI score. Appendix Table A7 shows that two race-specific course completion models share 9 of the 

top 10 predictors; similarly, the two race-specific degree completion models share 8 of the top 10 predictors. However, 

the ordering of the predictors differs slightly across race-specific models indicating that there are subtle differences in 

the best way to predict success between the subgroups.  
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eleventh most important predictor for the degree completion model. We compute the calibration 

and accuracy biases for the simple versions of the algorithms where targeting is based solely on 

one predictor.  

 

RESULTS 

Demonstrating Calibration Bias in Random Forest Models 

We first illustrate the presence of calibration bias in Figure 1. The small “x” points correspond to 

bins of two percentiles of the predicted score distribution (e.g. the leftmost “x” corresponds to the 

average actual success rate for students in the first and second percentiles of predicted scores), 

whereas the larger dots correspond to deciles of predicted scores.19  In both plots, we observe clear 

evidence of calibration bias (as seen by the gaps between the blue and green lines), although the 

pattern of bias differs between our two models. Panel A shows that in the course completion model, 

White students have significantly higher actual success rates compared to Black students at nearly 

all points in the distribution of predicted scores.  

For example, suppose that a college used a risk threshold equal to the 30th percentile. In 

this case, the actual success rate among selected White students would be 50.3 percent, while the 

actual success rate among selected Black students would be 45.8 percent; this difference is 

statistically significant with a p-value of less than 0.01. The imbalance between the White and 

Black success rate around the risk threshold means that the course completion model is 

overestimating the success of Black students and underestimating the success of White students. 

If resources were allocated to students based on this model’s predictions, then Black students 

 
19 The decile points also include vertical 95 percent confidence interval bars, although in many instances the 

confidence intervals are so tight that the bars are difficult to see due to the large size of our sample. 
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would receive relatively fewer additional supports (and in turn White students would receive more) 

than if the allocation was based on students’ actual risk levels.  

In Panel B of Figure 1, we observe a different pattern for the degree completion model. 

The predicted scores appear better calibrated between the White and Black students for the lower 

and middle portions of the predicted score distribution. At a risk threshold at the 30th percentile, 

the observed success rates are quite similar: 3.4 percent for White students, and 3.3 percent for 

Black students; this difference is not statistically significant (p-value of 0.682). We do observe 

gaps between the White and Black success rates for higher points in the distribution of predicted 

success (i.e. above the 60th percentile), although these are less relevant to the use case we are 

considering.20  

Next, we quantify the amount of calibration bias by simulating an unbiased distribution of 

students around a given risk threshold (see above for details). Figure 2 shows the percentage 

change in the number of Black students labeled as at-risk students after we simulate the removal 

of the calibration bias, for a variety of risk thresholds.21 Figure 2 further illustrates the different 

patterns of calibration bias across our two models. For the course completion model (blue line), 

the amount of bias is five times greater when labeling students in the bottom half as at-risk 

compared to labeling the students in the bottom decile as at-risk. In the degree completion model 

(green line), the reverse is true such that the amount of bias is five times higher when using the 

bottom decile as the risk threshold versus the bottom half.22 

 
20 If instead the degree completion model was used to target the most promising students with some form of positive 

outcome (e.g. admission into an honors program, additional financial aid), then the calibration bias would also be 

relevant to consider, particularly given the large visible gaps in the higher points of the predicted score distribution. 

In this instance, the calibration bias could actually be beneficial to Black students, since they would be more likely to 

receive the positive treatment despite having lower success rates. 
21 Appendix Figure A3 shows the corresponding percentage change in the number of White students labeled as at-risk 

at the different risk thresholds shown in Figure 2.  
22 There are established procedures for achieving better overall calibration in prediction models. We test whether 

applying two separate procedures (sigmoid and isotonic) mitigate the calibration bias we observe in Figure 2. In these 
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To further contextualize the bias metric depicted in Figure 2, consider the 30th percentile 

risk threshold for the course completion model. As shown in the plot, the “unbiased simulation” 

would label 14.2 percent more Black students than the actual model. This translates to the share 

of all Black students who are targeted as at-risk being 25 percent in the actual model and 28.5 

percent in the unbiased simulation. In other words, the calibration bias present in this model would 

cause Black students to receive fewer resources than they would receive if there was no bias 

present.23 

Demonstrating Accuracy Bias in Random Forest Models 

Table 1 describes model accuracy separately for the White and Black samples. In both the course 

completion and degree completion models, the Black c-statistic is slightly but statistically 

significantly lower than the White c-statistic (3 percent and 1.2 percent lower, respectively). These 

racial differences in c-statistics are statistically significant at the p < 0.01 level.  

Other data science papers investigating algorithmic bias in education contexts consider 

alternative notions of fairness. Among the most popular are equalized opportunity and equalized 

odds, which require equality across groups of one or both the true and false positive rates, which 

are also considered accuracy metrics.24 In our context, the most relevant corollary is the true 

negative rate (among students who do not succeed, what share is labeled as at-risk?). Consistent 

 
approaches, the training sample is split into two parts: the first to fit the model, and the second to generate a calibration 

correction (Menon et al, 2012; Niculescu-Mizil and Caruana, 2005; Platt, 1999). However, as we show in Appendix 

Figure A4, these approaches do not meaningfully change the amount of calibration bias present in the models.  
23 We do not display distributional points above the 70th percentile for two reasons. First, we do not view these as 

relevant points for labeling at-risk students. Second, above a certain threshold (due to the intrinsic gap between Black 

and White students in terms of actual success rate), it is not possible to perform the calibration bias simulation because 

there is an insufficient number of Black students who are not flagged as at-risk by the model to make up for the gap 

in success rate, despite the fact that most of them achieved the outcome of interest.. For the course completion model, 

this occurs by the 75th percentile. For the degree completion model, this occurs by the 90th percentile.  
24 Similarly, while there is a growing strand of data science literature for developing and testing approaches to mitigate 

bias in models, these papers focus on improving equalized opportunity, equalized odds, which requires that the TPR 

and TNR are the same across subgroups, or demographic parity, which requires the predicted score distribution be the 

same across subgroups (see, for examples, Pleiss et al, 2017; Wadsworth, Vera, and Piech, 2018; Zhang, Lemoine, 

and Mitchell, 2018). 
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with prior studies, we find higher true negative rates for Black students than White students, as 

shown in Table 1 (Anderson, Boodhwani, & Baker, 2019, Jiang & Pardos, 2021, Jeong et al, 2021, 

Yu, Lee, & Kizilcec, 2021, Yu et al, 2020). Based on this metric alone, one may conclude that 

algorithms are underestimating Black student success, and therefore Black students would be more 

likely to be targeted for additional resources--which is the opposite of what we conclude from the 

calibration bias results we present above. While TNR measures overall accuracy and efficiency of 

labeling at-risk students, the calibration bias measures the marginal accuracy and efficiency of 

labeling at-risk students. Based on our interpretation of which is most important to consider in the 

context of labeling at-risk college students, and following the example of Obermeyer et al (2019), 

we choose to focus our bias investigation on the calibration bias. Our results highlight the fact that 

focusing on a single metric of algorithmic bias may misrepresent the equity implications of using 

a prediction model.25 

Bias in Simple Algorithms 

We now compare the results from our two random forest models to the “simple” algorithms: using 

only GPA to predict student success, and separately, using only enrollment intensity (specifically, 

number of credits currently attempting) to predict student success. Table 2 compares the c-statistics 

of the simple models across subgroups. As expected, these simple models have substantially lower 

accuracy than the more complex random forest model (as shown in Table 1). The accuracy is 

typically lower for the Black subgroup, with the exception of using cumulative GPA to predict 

degree completion.   

 
25 Indeed, prior research has shown that there are inherent tensions between different metrics of algorithmic bias, and 

that often mitigating one form of bias requires increasing another (Lee & Kizilcec, 2020; Mitchell et al, 2021; Quy et 

al, 2022). 

https://arxiv.org/abs/2007.00088
https://www.annualreviews.org/doi/10.1146/annurev-statistics-042720-125902
https://arxiv.org/abs/2208.10625
https://arxiv.org/abs/2208.10625


 

 20 

Figure 3 presents the calibration plots for the simple models. We find the same directional 

but now exaggerated pattern from Figure 1: In Figure 3, we see that within percentile of prior 

cumulative GPA or enrollment intensity, the White student success rate is significantly higher than 

the Black student success rate. This is particularly true when using enrollment intensity, where 

conditional on credits attempted, the White student course or degree completion rate is typically 

at least 10 percentage points higher compared to Black students. Figure 4 (analogous to Figure 2) 

confirms that there is substantial calibration bias for these simple models at most points in the 

distribution of cumulative GPA and enrollment intensity. This analysis shows that the same 

concerns about calibration bias exist even if colleges were to use these very simple targeting 

mechanisms.  

Making Models More Attuned to Race Impacts Algorithmic Bias 

Next, we compare algorithmic bias from the base models (Figure 2, Table 1) to models including 

racial predictors and race-specific models. Figure 5 plots the amount of calibration bias across 

these three specifications. Again, we find meaningfully different patterns in bias between the 

course completion model (Panel A) and the degree completion model (Panel B). For course 

completion, we see that making the base model more attuned to race significantly reduces the 

amount of calibration bias; this is especially true for risk thresholds focused on the students with 

the lowest predicted likelihood of success. This finding indicates that, for the course completion 

model, there is some useful information contained in race to allow for better calibration.26 This 

finding aligns with other recent research that finds reduction in bias when race predictors are 

included (e.g. Yu, Lee, & Kizilcec, 2020). The reduction in calibration bias we see in Figure 5 for 

 
26 For instance, if there are unobserved factors that are highly predictive of student success and also highly correlated 

with race, then excluding the race predictors could result in underestimation of White student’s predicted scores, and 

overestimation of Black student’s predicted scores. 
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the course completion model does not come at the expense of overall model accuracy: Table 3, 

Panel A shows that the c-statistics for both the course and degree completion models including 

race information are nearly identical to the c-statistics of the base model.  

However, including race information does not reduce calibration bias in the degree 

completion model (Figure 5, Panel B). With the exception of the bottom decile risk threshold for 

the model including racial predictors, the bias metric is the same or higher for the models more 

attuned to race. The overall pattern of results we observe in Figure 5 is noteworthy for two reasons. 

First, it further emphasizes the highly contextual nature of algorithmic bias. While the course 

completion and degree completion models predict separate measures of success, the models are 

overall quite similar in that they draw from the same administrative data set; include the same 

population of students in the samples; include similar types of predictors; and were built by the 

same team of researchers. The fact that introducing race into the models produced nearly opposite 

effects on the level of calibration bias demonstrates just how idiosyncratic algorithmic bias can be 

across models.27 Second, most prior research shows that including race in the model (either 

through including race predictors or estimating race-specific models) does not increase algorithmic 

bias (e.g. Yu, Lee, & Kizilcec, 2020); our results for the degree completion model go against this 

general finding.28  

 
27 One explanation as to why we observe these divergent patterns is that including race may proxy for other 

unobservable factors that are related to both race and the outcome. We find that this is more likely to be the case when 

predicting course versus degree completion: The feature importance of the Black indicator is significantly higher in 

the course completion model (ranked 37th out of 191) compared to the degree completion model (ranked 116th out of 

260). So, including race significantly improves the course completion model’s ability to provide better marginal 

estimation across racial groups (even though the overall model performance measured by the c-statistic remains the 

same). A separate explanation is that the sample size of the course completion model is ten times as large as that of 

the degree completion model. It's possible that the increase in calibration bias in the race-specific degree completion 

models is due (at least in part) to the meaningful reduction in sample size. With a smaller sample, machine learning 

algorithms can be less stable and more prone to the idiosyncrasies of the training sample.  
28 We also test how excluding socio-economic information from the model impacts the calibration bias in the 

models. In Figure A5, we compare the base models (which excludes race but includes other demographic and socio-

economic characteristics) with versions that exclude all demographic and socio-economic characteristics (except for 



 

 22 

Exploring Why Algorithmic Bias Exists 

One potential reason algorithmic bias may arise is if the outcome used within the model does not 

translate to the same true outcome across different subgroups. Obermeyer et al. (2019) provide an 

example: The algorithm they analyze uses health care expenditures as a proxy for actual health, 

but expenditure behavior differs in meaningful ways across races.29 In our case, however, we are 

able to observe the actual outcome of interest, not just a proxy.  Still, if Black students 

systematically choose to enroll in different courses or degree programs compared to White 

students, then the outcome of “success” could mean something different across racial lines. For 

example, consider two degree programs offered at VCCS: a transfer-oriented associate degree in 

Liberal Arts, and a certificate in welding. These programs differ substantially in the types of 

courses required, the time commitment needed to complete the program, and the types of skills 

necessary to succeed. Because of these programmatic differences, we would expect there to be 

meaningful differences in the types of students who choose to pursue either program, which may 

include differences on the dimension of race.30  

To explore whether the differential sorting of students contributes to the models’ 

calibration bias, we estimate course-specific and degree-specific models for the five most popular 

courses and degree programs offered by VCCS. We also estimate separate models according to 

program level: AA&S (transfer oriented associate degree); AAS (applied associate degree); CERT 

 
student age). We find that including the additional socio-economic information slightly reduces the amount of bias 

in the model at most points in the distribution of predicted scores.  
29 Conditional on health, Black patients have lower health expenditures (due to being less likely to seek out medical 

care when ill), and are more likely to have costs associated with emergency care instead of preventative care. 
30 We test the hypothesis as to whether Black student enrollment choices are meaningfully different by regressing the 

share of Black students enrolled in a particular course or degree program on the success rate among White students in 

that course or program. We find that Black students are relatively more likely to enroll in courses with higher success 

rates. This pattern could result from Black students being more likely to enroll in courses that attract more high-

performing students, or that Black students are more likely to enroll in “easy” courses. Conversely, we find that Black 

students are relatively more likely to enroll in degree programs with lower success rates--either programs that attract 

lower-performing students or more “difficult” programs. See Appendix Table A8 for these results.  
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(certificate program); and CSC (shorter “career studies certificate”). Appendix Figure A6 

compares the amount of calibration bias in the full models versus course-specific models (Panel 

A, course completion model only); degree-specific models (Panel B, degree completion model 

only); or program level-specific models (Panel C, degree completion model only).31 Overall, while 

we see that the levels of calibration bias tend to be more variable across courses or academic 

programs (e.g. less bias in ENG112 compared to ENG111; less bias in CERT programs compared 

to AA&S programs), we do not observe any meaningful pattern of bias reduction using the 

program-specific models instead of the full model.32 This finding suggests that the calibration bias 

is not due to differential sorting of students across courses or programs of study.33  

 A separate reason why algorithmic bias may arise is due to underrepresentation of the 

minority group in the training data (Jiang & Pardos, 2021; Sha et al, 2022). Prediction models are 

typically trained to maximize overall accuracy; this means that successful prediction of students 

in the majority subgroups is given more weight in determining how predictions are made. We test 

this hypothesis explicitly by downsampling the non-Black subgroup to be the same size as the 

Black subgroup. We compare the amount of calibration bias in the base models to the 

downsampled models in Appendix Figure A8. For both the course completion model (blue lines) 

and degree completion model (green lines), the downsampled versions have very similar levels of 

 
31 To create a relevant comparison of the results, the “Full base model” refers to the model built using the full training 

sample but applied to just the validation sample from the relevant course, program of study, or program level. 
32 We find a similar pattern of results when we estimate college-specific models for the five largest VCCS colleges, 

as shown in Appendix Figure A7: While the amount of bias can vary across colleges, there is no meaningful bias 

reduction when estimating the college-specific models compared to the full model applied to the college-specific 

validation set. Again, this pattern of result supports two of our main conclusions: (1) The calibration bias is not due 

to differential sorting of students; and (2) algorithmic bias is highly contextual, and can differ substantially across 

fairly similar contexts.  
33 This conclusion is further supported by an additional series of test, where we regress the success outcomes on race 

only, and compare the coefficient estimates on the Black student indicator to separate regressions of the success 

outcomes on race and program of study fixed effects (for degree completion outcome) or course fixed effects (for 

course completion outcome). We find that the coefficient estimates are very similar regardless of whether program of 

study or course fixed effects are included in the model. This pattern of results indicates that the differences in success 

rates between Black and White students are not driven by the differential selection into program of study or course.  
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calibration bias at nearly all risk thresholds. These results suggest that data underrepresentation is 

not a meaningful source of calibration bias in our models.34  

 Still, there is another indirect type of data underrepresentation that occurs in our sample. 

Because Black students are less likely to persist in college, Black students in our sample are more 

likely to have only been enrolled for one term35; this lack of enrollment history limits the amount 

of information we can include in the models to predict their success outcomes. We test whether 

this type of data underrepresentation is a source of the algorithmic bias explicitly by separating 

our sample into two subgroups: first-term student observations and returning student observations, 

and estimating subgroup-specific models. We present the amount of calibration bias for the 

subgroup-specific models in Figure 6.36 For both the course and degree completion models, we 

find that the amount of calibration bias is substantially higher for first-term students compared to 

returning students (i.e. comparing the blue lines to the green lines). When we compare the levels 

of bias between the full model and the subgroup-specific models (dashed lines versus solid lines 

of the same color), we find that the levels of bias in the subgroup-specific models are very similar 

for the course completion model (Panel  A). However, we do observe some reduction in bias for 

first-term students at more stringent at-risk thresholds for the degree completion model (Panel B).  

This pattern of results supports the hypothesis that Black students having shorter enrollment 

histories is a contributing factor to some (but not all) of the calibration bias of our models, and 

suggests that the additional predictors available for returning students, such as cumulative GPA 

and credits completed from prior terms, partially mitigates the calibration bias. This finding also 

 
34 We also performed other tests of the data underrepresentation hypothesis, including upsampling and upweighting 

Black observations. We find very similar results to the downsampling tests. 
35 Specifically, within the validation samples, Black students are 17 percent (course completion) and 25 percent 

(degree completion) more likely to have enrolled for only one term compared to White students. 
36 Again, the comparison “full” models in Figure 6 are the models trained on the full training set but applied to the 

subgroup-specific validation set. 
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suggests that in some settings (though not necessarily universally), estimating separate models for 

new and returning students could reduce the level of algorithmic bias.  

One potential confound in interpreting the calibration bias is that, while we observe the 

ultimate outcomes of course and degree completion, we do not observe students’ latent risk level 

for time points prior to when the outcomes are revealed. Specifically, suppose that a Black student 

and a White student begin a term with the same true (but unobservable to the researcher) risk level. 

If, due to implicit biases on the part of faculty and staff, the White student labeled as at-risk by 

faculty/staff receives more positive attention (e.g. offers for additional tutoring resources), or the 

Black student labeled as at-risk receives more negative attention (e.g. discouragement to continue 

on the course of study), then by the end of the term the White student would be more likely to 

succeed than the Black student, even though they began with the same true risk level. This scenario 

could explain the differences in actual completion rates conditional on predicted score that we see 

in Figure 1. We may be particularly concerned about misinterpreting the patterns in Figure 1 as 

algorithmic bias in cases where colleges are actively using predictive analytics to target at-risk 

students. However, to the best of our knowledge and based on conversations with several system 

and college administrators, VCCS was not using predictive analytics or any other systematic risk 

assessment tools during the time spanning our data.37  What’s more, if there were systematic 

differences in the treatment of at-risk students by race, and assuming these differences were true 

during the time periods of the training and validation sample, then including racial predictors or 

 
37 A separate potential issue related to algorithmic bias is the “selective labels problem”, whereby the outcome of 

interest is not observed for all observations in the training sample. This issue is particularly prominent in criminal 

justice applications that inform judges’ bail decisions (i.e. whether to detain the defendant or grant them bail). In these 

instances, data scientists can only observe the relevant outcome (i.e. whether the defendant skipped bail) for those 

defendants who were granted bail. Because historically Black defendants are less likely to be granted bail, this 

selective labels problem can introduce algorithmic bias (Kleinberg et al, 2018). In our context, however, we fully 

observe the outcomes of interest for all observations in our sample. However, if colleges wished to use these 

algorithms to assess the likelihood of course or degree completion for potential students (instead of enrolled students), 

then the selective labels problem would be a relevant issue.  
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estimating race-specific models would account for these differences. Because we still see some 

amount of calibration bias for these model specifications (see Figure 5), we are confident in our 

interpretation of our results as being driven (at least in large part) by algorithmic bias.  

Persistent differential accuracy by race 

Throughout our investigation, we continue to find similar racial differences in overall accuracy as 

measured by the c-statistic, regardless of the amount of calibration bias present in a particular 

model. The c-statistics for the various models represented in Figures 6, A6, A7, and A8 are in 

Appendix Tables A9 through A12. This pattern of results suggests that predicting success for Black 

students may be inherently more difficult compared to White students. We explore this hypothesis 

by comparing two additional goodness of fit metrics from the training sample: Efron’s R-squared 

(Efron, 1978) and McFadden’s Adjusted R-squared (McFadden, 1973). We compute these 

statistics for the race-specific models, so that the determinants of success are allowed to differ 

across groups. Table 4 shows that with the exception of the Efron’s R-squared for the course 

completion model, there are meaningfully higher goodness of fit metrics for White students 

compared to Black students. These results indicate that the information contained in our set of 

predictors is not as related to Black student success. As we tried to be as inclusive as possible in 

constructing our predictors--that is, we tried to incorporate as much information about students as 

we could given what we observe in the administrative data--any additional information to improve 

accuracy of Black student success would need to come from outside the existing VCCS 

administrative data. These new data could come from linked student high school records or student 

intake surveys.  

 

DISCUSSION 
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Given rapid expansion of predictive analytics in higher education and persistent racial gaps in 

student success, algorithmic bias is an important and policy-relevant topic. However, current 

literature investigating algorithmic bias focuses primarily on technical aspects of model 

development; comparatively little work has provided translational insights about the presence and 

implications of algorithmic bias for policy- and practice-oriented audiences. In the two models we 

consider (course completion and degree completion), we find meaningful algorithmic bias on two 

dimensions: (1) Conditional on predicted score, Black students have worse observed outcomes 

than White students, which would lead to some Black students being less likely to receive 

additional resources than White students who are comparatively more likely to succeed; and (2) 

the models have slightly to moderately worse accuracy for Black students, which could lead to 

higher misclassification. The first dimension of bias (calibration) translates to the models relatively 

overestimating Black student performance at the threshold of being labeled as at-risk--this is 

despite alternative metrics (e.g. true negative rate) showing that model underestimates Black 

student performance overall. This finding highlights the importance of choosing how to measure 

algorithmic bias, as overall measures can mask the implications of bias at the margin.  

However, comparing the two models, we find significant differences in both the amount of 

bias (both overall and at different points in the distribution of predicted success) and its practical 

implications (e.g. whether including race information mitigates or exacerbates bias). These 

findings are somewhat surprising given that the two models draw on the same data and were built 

by the same team of researchers, and emphasizes the highly contextual nature of algorithmic bias. 

These differences in algorithmic bias across highly-similar models reinforces the importance of 

researchers and policy-makers investigating and mitigating bias in the specific context in which 

predictive algorithms are being used. 
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Our findings suggest that algorithmic bias in our models is driven (at least in part) by 

available administrative data being less useful at predicting Black student success compared with 

White student success. This is especially true for first-time students, where the amount of 

information that can be used for prediction is extremely limited in the community college context. 

The comparatively lower value of existing administrative data in predicting Black students' 

outcomes may reflect historical inequities in the extent to which colleges and universities have 

focused their data collection efforts on measures relevant to the success of students from diverse 

backgrounds. Incorporating additional data sources--such as high school transcripts, student 

surveys, or engagement on learning management system platforms--may reduce the algorithmic 

bias in models predicting college student success for a more diverse array of students.  

Given that many of the private vendors offering predictive analytics tools in higher 

education treat their models as proprietary, it is important to address what colleges can do to 

address algorithmic bias when they do not have direct access to the models.38 As Ekowo and 

Palmer (2016) also emphasize, choosing a vendor that is willing to be transparent about their 

product and being knowledgeable of the underlying models is the first step to success. Colleges 

can insist that vendors provide documentation of the presence of and mitigation efforts to address 

algorithmic bias within the same (or closely-similar) contexts to where the institution plans to use 

predictive analytics. Colleges could also request raw predicted scores to perform their own 

algorithmic bias investigation--most of the results we present in the paper do not require having 

access to the underlying model, only the students’ observed outcomes and their predicted scores.  

Particularly as broad-access colleges and universities continue to grapple with declining 

enrollments and in turn revenues, they are likely to be in the position of even scarcer resources, 

 
38 Numerous reports, including a recent analysis by the Government Accountability Office, raise concerns about this 

lack of transparency and its implications for the accuracy or fairness of commercial prediction models (GAO, 2022).      
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while still serving many students who may need support to earn their credential or degree. 

Predictive analytics have the potential to enhance institutions’ ability to target these resources to 

students most in need of assistance, yet as our analyses show, algorithmic bias may result in at-

risk Black students receiving less support than similar White students. Identifying and mitigating 

algorithmic bias will therefore be an important component of colleges’ and universities’ broader 

efforts to work towards greater racial equity. 
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Figure 1. Calibration of Base Random Forest Models, by Race. 

 

Panel A: Course completion model 

 
Panel B: Degree Completion Model 

 
Notes: Each plot shows the average success rate of observations in the validation sample, conditional on predicted score percentile, separately for 

White and Black students. The small “x” points correspond to bins of two percentiles the predicted score distribution (e.g. the leftmost “x” 

corresponds shows the average actual success rate for students in the first and second percentiles of predicted scores), whereas the larger filled 
circles correspond to deciles of predicted scores. The decile points also include vertical 95 percent confidence interval bars. 



Figure 2. The Percentage Change in Black Students Labeled At-Risk After Simulating Calibration Bias Removal 

from the Random Forest Models. 

 
 
Notes: This plot shows, for a given risk threshold (e.g. < 30th percentile of predicted risk scores), the percentage increase in the number of Black 

students who would be labeled as at-risk after we simulate the calibration bias removal. Specifically, we calculate the amount of calibration by 
following these steps: (1) Select all White and Black students whose predicted scores are below the risk threshold; (2) if the actual success rate of 

the labeled at-risk Black students is lower than that of the labeled at-risk White students, change the label of  the Black student whose predicted 

score is lowest among the Black students not labeled at-risk , and simultaneously drop the White student whose predicted score is highest among 

the White students labeled at-risk; (3) repeat step two until the actual success rates of the two selected groups become equal. See Appendix Figure 

A3 for the corresponding percentage decrease in the number of White students who would be labeled as at-risk. 
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Figure 3. Calibration of “Simple” Models Using Single Predictor of Student Success, by Race. 

 

Panel A: Course completion model, GPA

 
 

Panel B: Course completion model, enrollment intensity 

 
 

 

 

 



 

Panel C: Degree Completion Model, GPA 

 
 

Panel D: Degree Completion Model, enrollment intensity 

 
Notes: Each plot shows the average success rate of observations in the validation sample, conditional on the percentile of the single predictor 
used (cumulative GPA for Panels A and C; current enrollment intensity, measured by number of credits attempted, for Panels B and D), 

separately for White and Black students. The small “x” points correspond to bins of two percentiles the predicted score distribution (e.g. the 

leftmost “x” corresponds shows the average actual success rate for students in the first and second percentiles of predicted scores), whereas the 

larger filled circles correspond to deciles of predicted scores. The decile points also include vertical 95 percent confidence interval bars. 



Figure 4. Quantifying Calibration Bias From “Simple” Cumulative GPA and Enrollment Intensity Models. 

 
 
Notes: we generate these figures using the same methods as described in Figure 2, except in this case we use the percentile of cumulative GPA or 

percentile of enrollment intensity (i.e. number of credits attempted in the current term) from the training sample instead of the percentile of 
predicted score.  
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Figure 7: Comparing Calibration Bias in Base Random Forest Models Versus Making Models More Attuned to 

Race.  

 

Panel A: Course Completion Model 

 
 

Panel B: Degree Completion Model 

 
 
Notes: This figure plots the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, as 

in Figure 2) for the base RF model, the RF model including racial predictors, and race-specific RF models. 
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Figure 6: Comparing Calibration Bias for First Term and Returning Students. 

 

Panel A: Course completion model 

 
 

Panel B: Degree completion model 

 
Notes: This figure plots the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, see 

Figure 2) for the base RF model to the RF models built using a training sample restricted to either first-term or returning student observations. For 
both the base models and the student-type-specific models, the amount of calibration bias is calculated using the validation sample restricted to 

observations of students who are either first-term or returning, accordingly.  
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Table 1. Accuracy of base random forest models. 

Panel A: Course completion model           

  White Black % diff  
C-statistic  0.8286 0.8037 -3.01%  

  (0.0007) (0.0012)   
True Negative Rate  0.4138 0.5006 20.98%  

  (0.0017) (0.0024)   
Panel B: Degree completion model           

  White Black % diff  
C-statistic  0.8981 0.8878 -1.15%  

  (0.0020) (0.0036)   
True Negative Rate  0.849 0.9171 8.02%  

  (0.0026) (0.0024)   
Notes: Standard errors in parentheses. All differences between White and Black 

metrics are statistically significant at p < 0.01. 



Table 2. C-statistics of “simple” models using single predictor of student success. 

Panel A: course completion outcome           

  White Black % diff  

Cumulative GPA  0.7218 0.6993 -3.12%  

  (0.0010) (0.0016)   

Enrollment Intensity  0.6199 0.6022 -2.86%  

  (0.0010) (0.0016)   

Panel B: degree completion outcome           

  White Black % diff  

Cumulative GPA  0.7551 0.7878 4.33%  

  (0.0031) (0.0051)   

Enrollment Intensity  0.5946 0.5693 -4.25%  

  (0.0033) (0.0054)   

      
Notes: Standard errors in parentheses. All differences between White and Black metrics are 

statistically significant at p < 0.01. 



Table 3. C-statistics of models including race information. 

Panel A: course completion model                   

              

  Base model (no race information)  Full model including race predictors  Race-specific models  

  White Black %diff  White Black %diff  White Black %diff  
              

  0.8286 0.8037 -3.01%  0.8297 0.8029 -3.23%  0.8277 0.797 -3.71%  

  (0.0007) (0.0012)   (0.0007) (0.0012)   (0.0007) (0.0012)   

              

Panel B: degree completion model                   

              

  Base model (no race information)  Full model including race predictors  Race-specific models  

  White Black %diff  White Black %diff  White Black %diff  
              

  0.8981 0.8878 -1.15%  0.8982 0.8879 -1.15%  0.8984 0.8834 -1.67%  

  (0.0020) (0.0036)   (0.0020) (0.0036)   (0.0019) (0.0037)   

              

Notes: standard errors in parentheses. All differences between White and Black are significant at the p < 0.01 level 



Table 4. Goodness of fit metrics for race-specific random forest models. 

Panel A: Course completion model  

  White Black  

Efron's R-squared  0.7799 0.7847  

McFadden's Adjusted R-squared  0.6736 0.6675  

     

Panel B: Degree completion model  

  White Black  

Efron's R-squared  0.5248 0.473  

McFadden's Adjusted R-squared   0.4491 0.407  

     

Notes: We calculate each goodness of fit metric using the model fitting from the race-specific 

models, and applied to the race-specific training sets. 



Appendix Figure A1. Calibration Bias from the Logistic Regression Model. 

 

 
Notes: these plots show the amount of calibration bias (see notes from Figure 2) for logistic regression models using the same samples and set of predictors as the base Random Forest model.  
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Figure A2. Distribution of Predicted Scores in Base Model, by Race. 

 

Panel A: Course completion model 

  
 

Panel B: Degree Completion Model 

  
 
Notes: each plot shows the distribution of the raw predicted scores of observations from the relevant validation sample, separately for White and Black students. These predicted scores are generated 

using the Random Forest model built using the full training sample. 



Appendix Figure A3. The Percentage Change in Black Students Labeled At-Risk after Simulating Calibration Bias 

Removal from the Random Forest Models. 

 

 
Notes: this plot shows, for a given risk threshold (e.g. < 30th percentile of predicted risk scores), the percentage decrease in the number of White 

students who would be labeled as at-risk after we simulate the calibration bias removal. Specifically, we calculate the amount of calibration by 
following these steps: (1) Select all White and Black students whose predicted scores are below the risk threshold; (2) if the actual success rate of 

the labeled at-risk Black students is lower than that of the labeled at-risk White students, change the label of  the Black student whose predicted 

score is lowest among the Black students not labeled at-risk , and simultaneously drop the White student whose predicted score is highest among 

the White students labeled at-risk; (3) repeat step two until the actual success rates of the two selected groups become equal. 
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Appendix Figure A4. Calibration Bias after Sigmoid and Isotonic Corrections. 

 

Panel A: Course Completion Model 

 
 

Panel B: Degree Completion Model 

 
Notes: these plots compare the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, 

see Figure 2) for the base RF model and the versions that incorporate a post-processing calibration correction procedure (Sigmoid Correction, and 
separately, Isotonic Correction). 
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Appendix Figure A5. Change in Calibration Bias after Removing All Socio-Economic Status (SES) Predictors. 

 

Panel A: Course Completion Model 

 
 

Panel B: Degree Completion Model 

 
Notes: these plots compare the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, 

see Figure 2) for the base RF model and the RF models that do not include any socio-economic predictors (see Appendix Tables A3 and A4)
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Appendix Figure A6. Calibration Bias in Course-Specific, Degree-Specific, and Program Level-Specific Models 

 

Panel A: Course-specific models (Course Completion) 
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Panel B: Degree-specific models (Degree Completion) 
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Panel C: Program level-specific models (Degree Completion) 

  

  
 
Notes: This figure plots the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, i.e. 

Figure 2) for the base RF model to the RF models built using a training sample restricted to observations from the particular course, degree, or 
program-level. For both the base models and the unit-specific models, the amount of calibration bias is calculated using the validation sample 

restricted to observations from the particular course, degree, or program-level.  
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Appendix Figure A7. Calibration Bias in College-Specific Models. 
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Notes: This figure plots the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, see 

Figure 2) for the base RF model to the RF models built using a training sample restricted to observations from a particular college. We build these 
college-specific models for the five largest VCCS colleges, based on enrollment counts. For both the base models and the unit-specific models, 

the amount of calibration bias is calculated using the validation sample restricted to observations from the particular college.  
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Appendix Figure A8. Calibration Bias in Down-Sampled Models. 

 
 
Notes: This figure plots the amount of calibration bias (measured by the increase in Black students targeted as at-risk in the simulated model, i.e. 

Figure 2) for the base RF model to the down-sampled RF models, in which we down-sample the non-Black subgroup to be the same size as the 
Black subgroup. 
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Appendix Table A1. C-statistic of base logit models. 

Panel A: course completion model   

 White   Black   % diff  

 0.8015  0.7787  -2.84%  

 (0.0007)  (0.0012)    

       

       

Panel B: degree completion model   

 White   Black   % diff  

 0.8938  0.8805  -1.49%  

 (0.0020)  (0.0037)    

       

       
Notes: standard errors in parentheses; all differences between 

White and Black are significant at the p < 0.01 level 



Appendix Table A2. Optimized values of base Random Forest model parameters. 

      

  Course Completion  Degree Completion  

  (1)  (2)  

      

Maximum Tree Depth  34  16  

      

Number of Trees  260  120  

      

Number of random predictors used in node splitting  15  12  

      
Notes: optimal model parameters chosen using five-fold cross-validation.  



Appendix Table A3. Full list of predictors, course completion model. 

Predictor description Category 

Available 

for 1st 

term 

Average historical grade in the target course Course characteristics X 

Average historical grade in the concurrent courses Course characteristics X 

23 college indicators Course characteristics X 

Course meeting time is in the evening Course characteristics X 

Target course is 200-level Course characteristics X 

Target course section is online Course characteristics X 

Average grade in target course's prerequisites Course characteristics X 

Enrollment in target course section Course characteristics X 

Target course is in a Summer term Course characteristics X 

Student is taking concurrent courses with historic grades available Student's academic, course-specific X 

Student took the target course's prerequisites (if applicable) Student's academic, course-specific X 

Student has previously taken the target course Student's academic, course-specific  

Student's average prior grade in the target course (if repeating the course) Student's academic, course-specific  

Has taken prior Arts courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Arts courses (target course = X subject) Student's academic, course-specific  

Has taken prior Business/Finance courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Business/Finance courses (target course = X subject) Student's academic, course-specific  

Has taken prior Engineering courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Engineering courses (target course = X subject) Student's academic, course-specific  

Has taken prior Foreign Languages courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Foreign Languages courses (target course = X subject) Student's academic, course-specific  

Has taken prior Humanities courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Humanities courses (target course = X subject) Student's academic, course-specific  

Has taken prior Medical Sciences courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Medical Sciences courses (target course = X subject) Student's academic, course-specific  



Has taken prior Mathematics courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Mathematics courses (target course = X subject) Student's academic, course-specific  

Has taken prior Applied Technologies courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Applied Technologies courses (target course = X subject) Student's academic, course-specific  

Has taken prior Natural Sciences courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Natural Sciences courses (target course = X subject) Student's academic, course-specific  

Has taken prior Social Sciences courses (target course = X subject) Student's academic, course-specific  

Average grade in prior Social Sciences courses (target course = X subject) Student's academic, course-specific  

Age at time of target course enrollment Student Demographic and SES X 

Gender Student Demographic and SES X 

Parental education (3 categories: first-gen, not-first gen, missing) Student Demographic and SES X 

Distance from student home to college (miles, based on ZCTA of target term) Student Demographic and SES X 

Median household income of student home ZCTA during target term Student Demographic and SES X 

Percent below poverty line of student home ZCTA during target term Student Demographic and SES X 

Pell status during the target term (received, did not receive, did not apply) Student Demographic and SES X 

Pell status throughout prior VCCS enrollment history Student Demographic and SES  

Instructor works full-time at VCCS Instructor characteristics X 

Instructor has taught the target course in the past Instructor characteristics X 

Average grade assigned by the instructor in the target course Instructor characteristics X 

Instructor has been teaching at VCCS for 6+ years Instructor characteristics X 

15 field of study indicators (2 digit CIPs) Student's academic characteristics, general X 

Enrolled in a transfer-oriented associate degree program Student's academic characteristics, general X 

Enrolled in an occupation-oriented associate degree program Student's academic characteristics, general X 

Enrolled in a certificate program Student's academic characteristics, general X 

Enrolled in any development courses in the target term Student's academic characteristics, general X 

# credits attempted in the target term Student's academic characteristics, general X 

% attempted credits during target term that are evening Student's academic characteristics, general X 

% attempted credits during target term that are the 200-level Student's academic characteristics, general X 

% attempted credits during target term that are online Student's academic characteristics, general X 



Total credits accumulated prior to target term Student's academic characteristics, general  

Cumulative GPA  Student's academic characteristics, general  

Credits attempted in last term (prior to target term) Student's academic characteristics, general  

Slope of credits attempted in prior terms Student's academic characteristics, general  

Ever dually enrolled Student's academic characteristics, general  

Slope of term-level GPA in prior terms Student's academic characteristics, general  

Missing indicator for term GPA of the last term Student's academic characteristics, general  

Missing indicator for term GPA of the second-to-last term Student's academic characteristics, general  

# terms enrolled at VCCS prior to target term Student's academic characteristics, general  

% prior attempted credits completed Student's academic characteristics, general  

% prior attempted credits that were developmental courses Student's academic characteristics, general  

% prior attempted credits "Incomplete"  Student's academic characteristics, general  

# stop-out terms between initial enrollment and target term Student's academic characteristics, general  

% prior attempted credits "Withdrawn" Student's academic characteristics, general  

Stddev of term-level credit completion rate Student's academic characteristics, general  

Term GPA of the last term prior to the target term Student's academic characteristics, general  

Term GPA of second-to-last term prior to the target term Student's academic characteristics, general   



Appendix Table A4. Full list of predictors, degree completion model. 

Predictor description Category 

Available 

for 1st 

term 

Age at initial enrollment Student Demographic and SES X 

Gender Student Demographic and SES X 

Parental education ( first-gen, not-first gen, missing) Student Demographic and SES X 

Distance from student home to college (miles, based on ZCTA of current term) Student Demographic and SES X 

Median household income of student home ZCTA during current term Student Demographic and SES X 

Percent below poverty line of student home ZCTA during current term Student Demographic and SES X 

Pell status during the current term (received, did not receive, did not apply) Student Demographic and SES X 

Pell status during the prior term Student Demographic and SES  

Pell status throughout prior VCCS enrollment history Student Demographic and SES  

Percentage of terms enrolled at VCCS through the last term Non-term specific VCCS academics  

Cumulative GPA Non-term specific VCCS academics  

Share of total credits earned (credits passed / credits attempted) Non-term specific VCCS academics  

Average number of credits attempted during each enrolled term at VCCS Non-term specific VCCS academics  

Standard deviation of term proportion of credits earned Non-term specific VCCS academics  

Share of total credits withdrawn Non-term specific VCCS academics  

Share of developmental credits among total credits attempted Non-term specific VCCS academics  

Share of 200-level credits among total credits attempted Non-term specific VCCS academics  

Trend of term enrollment intensity (term credits attempted) Non-term specific VCCS academics  

Trend of term GPA Non-term specific VCCS academics  

Ever repeated a course Non-term specific VCCS academics  

Ever dually enrolled at VCCS Academics prior to initial VCCS enrollment X 

College-level credit hours accumulated  Academics prior to initial VCCS enrollment X 

Cumulative GPA prior to initial enrollment Academics prior to initial VCCS enrollment X 

Share of total credits earned  Academics prior to initial VCCS enrollment X 

Enrolled in any non-VCCS institutions in the past 3 years Academics prior to initial VCCS enrollment X 



Number of terms enrolled at non-VCCS institutions  Academics prior to initial VCCS enrollment X 

Seamless enrollee indicator (if student enrolled in the same year as HS graduation) Academics prior to initial VCCS enrollment X 

Ever enrolled in non-VCCS colleges since initial enrollment Non-term specific non-VCCS academics  

Total number of enrolled terms at non-VCCS Non-term specific non-VCCS academics  

Total number of non-VCCS colleges attended Non-term specific non-VCCS academics  

Non-VCCS institution type ever attended (sector x level x in-state) Non-term specific non-VCCS academics  

Admission rates of institutions attended (averaged & weighted if multiple) Non-term specific non-VCCS academics  

Graduation rates of institutions attended (averaged & weighted if multiple) Non-term specific non-VCCS academics  

25th and 75th percentiles of SAT scores, by subject (averaged & weighted if multiple) Non-term specific non-VCCS academics  

Average grants received by all enrolled terms at VCCS Non-term specific financial aid X 

Average subsidized loans received by all enrolled terms at VCCS Non-term specific financial aid X 

Average unsubsidized loans received by all enrolled terms at VCCS Non-term specific financial aid X 

Average other aids received by all enrolled terms at VCCS Non-term specific financial aid X 

Indicator for whether the student was actively enrolled in VCCS or not Term-specific VCCS academics X 

Credits attempted Term-specific VCCS academics  

Share of credits earned Term-specific VCCS academics  

Term GPA Term-specific VCCS academics  

Proportion of credits withdrawn Term-specific VCCS academics  

Proportion of development credits among credits attempted Term-specific VCCS academics X 

Proportion of 200-level credits among credits attempted Term-specific VCCS academics X 

Repeating a previously attempted course in the current term or not Term-specific VCCS academics  

Degree-seeking of not Term-specific VCCS academics X 

Attended any non-VCCS institution Term-specific non-VCCS academics X 

Total enrollment intensity in non-VCCS institutions Term-specific non-VCCS academics X 

Amount of grants received Term-specific financial aid X 

Amount of subsidized loans received Term-specific financial aid X 

Amount of unsubsidized loans received  Term-specific financial aid X 

Amount of other aid received Term-specific financial aid X 



Appendix Table A5. Subgroup difference in top 10 predictors. 

Panel A: Course completion 

  White mean Black mean Black - White % diff  

  (1) (2) (3)  

# credits attempted in the target term  10.62 9.99 -5.9%  

Cumulative GPA  2.98 2.61 -12.4%  

Average historical grade in the target course  2.85 2.81 -1.7%  

Term GPA in last term (prior to target term)  2.96 2.53 -14.4%  

Average grade assigned by the instructor in the target course  2.84 2.80 -1.6%  

Average historical grade in the concurrent courses  2.84 2.81 -1.2%  
Median households income corresponding to the zcta 

 $80,034 $74,931 -6.4%  
% below poverty corresponding to the zcta 

 0.11 0.12 16.6%  

% prior attempted credits completed  0.90 0.84 -7.1%  

      

      

Panel B: Degree completion 

  White mean Black mean Black - White diff  

  (1) (2) (3)  

Cumulative GPA  2.60 2.05 -21.3%  

% prior attempted credits completed  0.80 0.66 -16.9%  

Standard deviation of term-level % attempted credits completed  0.16 0.21 26.7%  

Proportion of credits withdrawn, first Spring term  0.82 0.69 -15.7%  

% prior credits withdrawn  0.11 0.15 42.0%  

Term GPA, first Fall term  2.63 2.20 -16.2%  

Term GPA, first Spring term  2.60 2.12 -18.6%  

Standard deviation of % term credits withdrawn  0.12 0.15 17.8%  

Proportion of credits completed, first Fall term  0.82 0.70 -14.3%  

% prior developmental credits  0.11 0.22 101.9%  

      
Notes: This table compares the mean values of the top 10 predictors of the course and degree completion models, as determined by the 

feature importance score. All mean differences between the Black and White samples are statistically significant with a p-value < 0.01 



 

 

 

 

 

 

 

Appendix Table A6. Summary statistics, by race and training/validation split. 

          

Panel A: Course completion model 

  Black  White  

  Training  Validation  Training  Validation  

  (1)  (2)  (3)  (4)  

          

Course completion rate  67.4%  69.4%  78.5%  79.8%  

Age  27.3  25.9  24.5  23.8  

Male  39.5%  39.0%  45.6%  44.9%  

Not first-generation  44.6%  38.0%  62.2%  51.3%  

First-generation  24.5%  18.8%  21.3%  16.1%  

Completed FAFSA, no Pell  17.6%  18.1%  19.6%  21.2%  

Pell recipient  54.8%  51.5%  32.7%  31.7%  

ZCTA median household income   $66,128  $74,950  $72,920  $80,124  

ZCTA percent below poverty  13.7%  12.3%  11.1%  10.5%  

ZCTA distance to college (miles)  23.1  23.4  31.2  31.8  

Cumulative GPA  2.6  2.6  2.9  3.0  

Cumulative credits earned  29.4  29.8  32.7  33.1  

Percent of prior credits withdrawn  7.4%  7.0%  6.1%  5.7%  

% of prior credits from developmental courses  15.2%  12.4%  7.1%  5.5%  

Ever dual enrollment students  12.1%  15.7%  27.2%  31.8%  

Number of prior VCCS terms  4.1  4.1  4.0  4.0  

Credits enrolled  9.9  10.0  10.5  10.6  

AA&S  56.8%  62.3%  56.6%  58.9%  

AAS  28.9%  24.7%  24.2%  23.7%  

CERT  10.2%  8.6%  10.2%  9.1%  

Online course  29.6%  34.2%  30.1%  34.9%  

Evening course  13.6%  11.6%  11.8%  9.3%  

200 level course  30.7%  32.4%  32.0%  34.1%  

Developmental course  18.2%  15.0%  9.9%  8.1%  

Course section enrollment  22.1  21.3  22.7  22.0  

N observations  904,152  139,076  2,392,786  394,447  

          

Panel B: Degree completion model 

Degree completion rate  24.1%  22.4%  37.7%  39.2%  



Age (entry)  25.9  26.3  24.4  23.8  

Male  41.0%  44.7%  45.9%  46.9%  

Not first-generation  29.9%  38.7%  40.6%  58.2%  

First-generation  20.5%  27.5%  18.9%  24.1%  

Completed FAFSA, no Pell (prior term)  49.6%  56.8%  27.3%  33.2%  

Pell recipient (prior term)  13.5%  13.6%  14.4%  16.5%  

ZCTA median household income   $60,321  $60,810  $68,415  $70,221  

ZCTA percent below poverty  14.1%  14.7%  11.1%  11.0%  

ZCTA distance to college (miles)  26.2  34.8  30.6  30.3  

Cumulative GPA  2.3  2.2  2.7  2.7  

Cumulative credits earned  1.0  0.9  2.3  2.3  

Number of terms at VCCS  4.5  4.3  4.7  4.8  

Percent of prior credits completed  72.9%  72.0%  84.0%  84.0%  

GPA trend  -0.20  -0.19  -0.13  -0.14  

Credits attempted 1st Fall  9.2  9.3  10.0  10.1  

Credits attempted 1st Spring  9.0  9.0  9.5  9.6  

Any NSC enrollment  5.5%  5.3%  5.4%  5.6%  

AA&S  49.4%  50.5%  54.2%  57.6%  

AAS  25.3%  27.2%  22.6%  21.9%  

CERT  6.1%  5.0%  6.5%  5.3%  

CSC  11.9%  10.6%  9.7%  8.9%  

N observations  82,784  16,796  179,919  32,288  

          

Notes: all measurements are made at the point of the beginning of the target term, unless otherwise specified.  



Appendix Table A7. Top 10 predictors of race-specific models. 

Panel A: Course completion model 

White  
Black 

Predictor FI Score 
 

Predictor FI Score 

# credits attempted in the target term 0.073 
 

# credits attempted in the target term 0.061 

Cumulative GPA 0.049 
 

Average historical grade in the target course 0.048 

Term GPA in last term (prior to target term) 0.048 
 

Cumulative GPA 0.048 

Average grade assigned by the instructor in the target course 0.045 

 

Average grade assigned by the instructor in the 

target course 

0.047 

Average historical grade in the target course 0.044 
 

Term GPA in last term (prior to target term) 0.040 

Average historical grade in the concurrent courses 

0.037 

 

Average historical grade in the concurrent courses 0.036 

Median households income corresponding to the zcta 0.030 

 

% prior attempted credits completed 0.030 

% below poverty corresponding to the zcta 0.030 

 

Median households income corresponding to the 

zcta 

0.030 

% prior attempted credits completed 
0.028 

 
% below poverty corresponding to the zcta 0.029 

Distance to college 0.028 
 Enrollment in target course section 

0.028 
  

 

  

Panel B: Degree completion model 

White  
Black 

Predictor FI Score 
 

Predictor FI Score 

Cumulative GPA 0.064 
 

Cumulative GPA 0.062 

% prior attempted credits completed 0.061 
 

% prior attempted credits completed 0.058 

Standard deviation of % term attempted credits completed 0.034 

 

Standard deviation of % term attempted credits 

completed 

0.034 



% attempted credits completed in the 1st Spring term 0.028 

 

Share of total credits withdrawn 0.028 

Term GPA in the 1st Spring term 0.027 
 

Term GPA in the 1st Fall term 0.028 

Term GPA in the 1st Fall term 0.026 

 

% attempted credits completed in the 1st Spring 

term 

0.025 

Share of total credits withdrawn 0.026 
 

Term GPA in the 1st Spring term 0.022 

Standard deviation of % term credits withdrawn 0.026 

 

Proportion of development credits among credits 

attempted 

0.021 

Enrollment intensity in the 1st Spring term 0.021 

 

Standard deviation of % term credits withdrawn 0.021 

Trend of term GPA 0.021 
 

Term GPA in the 2nd Fall term 0.019 
  

 

  

Notes: This table shows the top ten predictors, based on the feature importance (FI) score, of the race-specific RF models.  



Appendix Table A8. Relationship between share Black enrollment and success rate.  

      

  Course Completion  Degree completion  

  (1)  (2)  

      

Success rate  0.1633***  -0.273***  

  (0.019)  (0.063)  

      

Level of data  College x course  College x program of study  

R-squared   0.004  0.038  

N  5610  475  
Notes: results from a regression of the share of Black students enrolled in a particular course or degree 

program on the success rate among White students in that course or program.  



Appendix Table A9. C-statistics of course-specific, degree-specific, and program level-specific models (standard errors in parentheses). 

Panel A: Course completion model    

 ENG 111  SDV 100  ENG 112  ITE 115  BIO 101  

 White Black %diff  White Black %diff  White Black %diff  White Black %diff  White Black %diff  

 0.757 0.7449 -1.6%  0.778 0.7563 -4.1%  0.8017 0.7692 -1.7%  0.7672 0.7587 -1.1%  0.7938 0.7805 -1.7%  

 (0.0039) (0.0058)   (0.0043) (0.0063)   (0.0041) (0.0068)   (0.0052) (0.0076)   (0.0051) (0.0085)   

                     

                     

Panel B: Degree Completion model -- Program-specific    

 AS General Studies  AS Business Admin   AA&S General Studies   AS Social Sciences  AS Science  

 White Black %diff  White Black %diff  White Black %diff  White Black %diff  White Black %diff  

 0.8811 0.8884 0.8%  0.8847 0.8848 0.0%  0.9144 0.914 -0.0%  0.8903 0.907 1.9%  0.8751 0.8629 -1.4%  

 (0.0068) (0.0111)   (0.0079) (0.0121)   (0.0058) (0.0149)   (0.0074) (0.0106)   (0.0082) (0.0141)   

                     

                     

Panel C: Degree Completion model -- Program-level-specific    

 AA&S  AAS  CERT  CSC    

 White Black %diff  White Black %diff  White Black %diff  White Black %diff      

 0.9026 0.8941 -0.9%  0.904 0.8956 -0.9%  0.902 0.8855 -1.8%  0.8469 0.8733 3.1%      

 (0.0025) (0.0048)   (0.0042) (0.0072)   (0.0094) (0.0173)   (0.0087) (0.0119)       

                                          

 

  



Appendix Table A10. C-statistics of down-sampled 

model (standard errors in parentheses). 

Panel A: course completion model   

 White Black % diff  

 0.8217 0.8003 -2.60%  

 (0.0007) (0.0012)   

     

     

Panel B: degree completion model   

 White Black % diff  

 0.8944 0.885 -1.05%  

 (0.0020) (0.0037)   

          



Appendix Table A11. C-statistics of first-term and returning subgroup-specific 

models (standard errors in parentheses). 

Panel A: Course completion model 

 First-term specific model  Returning-specific model  

 White Black %diff  White Black %diff  

 0.7547 0.7376 -2.27%  0.8402 0.8161 -2.87%  

 (0.0021) (0.0032)   (0.0007) (0.0012)   

         

         

Panel B: Degree Completion model 

 First-term specific model  Returning-specific model  

 White Black %diff  White Black %diff  

 0.8945 0.8692 -2.83%  0.8885 0.8832 -0.60%  

 (0.0056) (0.0099)   (0.0022) (0.0040)   

                  



Appendix Table A12. College specific models. 

Panel A: Course completion model    

  College 1  College 2  College 3  College 4  College 5  

  White Black %diff  White Black %diff  White Black %diff  White Black %diff  White Black %diff  

  0.8156 0.7978 -2.2%  0.8289 0.7975 -3.8%  0.8134 0.8015 -1.5%  0.8189 0.8074 -1.4%  0.8171 0.8101 -0.9%  

  (0.0015) (0.0022)   (0.0018) (0.0024)   (0.0031) (0.0038)   (0.0032) (0.0040)   (0.0029) (0.0043)   

                      

Panel B: Degree Completion model    

  College 1  College 2  College 3  College 4  College 5  

  White Black %diff  White Black %diff  White Black %diff  White Black %diff  White Black %diff  

  0.8857 0.8819 -0.4%  0.8543 0.884 3.5%  0.8918 0.895 0.4%  0.8638 0.8275 -4.2%  0.8887 0.8907 0.2%  

  (0.0043) (0.0072)   (0.0060) (0.0070)   (0.0086) (0.0119)   (0.0096) (0.0146)   (0.0097) (0.0166)   

                                            

 

 

 

 


