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Abstract 

Educational researchers often report effect sizes in standard deviation units (SD), but SD effects 

are hard to interpret. Effects are easier to interpret in percentile points, but converting SDs to percentile 

points involves a calculation that is not transparent to educational stakeholders. We show that if the 

outcome variable is normally distributed, simply multiplying the SD effect by 37 usually gives an 

excellent approximation to the percentile-point effect. For students in the middle three-fifths of a normal 

distribution, this rule of thumb is always accurate to within 1.6 percentile points for effect sizes of up to 

0.8 SD. Two examples show that the rule can be just as accurate for empirical effects from real studies. 

Applying the rule to Kraft’s empirical benchmarks, we find that the least effective third of educational 

interventions raise scores by 0 to 2 percentile points; the middle third raise scores by 2 to 7 percentile 

points; and the most effective third raise scores by more than 7 percentile points.  
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Multiply by 37 (Approximately): 
A Surprisingly Accurate Rule of Thumb for Converting Effect Sizes 

from Standard Deviations to Percentile Points 

Educational researchers often report effect sizes in standard deviations (SD). For example, a 

study might report that treatment raised some students’ test scores by 0.2 SD—meaning that those 

students scored 0.2 SD higher, on average, than they would have without treatment.  

Yet effects reported in SD units are unintuitive. When told that a program raised test scores by 

0.2 SD, a nonprofit leader or principal will often ask, “Is that good or bad?” Different researchers 

answer this question differently. Some describe effects of nearly 0.2 SD as “quite large” (e.g., Kane & 

Staiger, 2008), while others describe them as “trivial to small” (e.g., Cheng et al., 2019). 

Not only do researchers disagree on which SD effects are large or small, many researchers also 

have biased and unreliable intuitions about what effects expressed in SD units actually look like. When 

asked to illustrate an effect size of 0.2 SD, most researchers produce a misleading graph that at least 

doubles the requested effect, showing two normal distributions that are separated by 0.4 SD or more 

(Schuetze & Yan, 2023). Conversely, when shown two normal distributions that are actually separated 

by 0.2 SD, most researchers underestimate the illustrated effect, guessing that it is 0.05 SD c. 

Impressions of visually presented effect sizes vary dramatically across researchers, suggesting that we 

do not share a common or realistic understanding of what SD effects really represent (Schuetze & Yan, 

2023).  

One way to describe effects more intuitively is to express them in percentile points. Because 

standardized test scores are commonly reported as percentiles, many students, parents, teachers, and 

administrators understand that scoring at, say, the 50th percentile means scoring higher than half of 

students. They can also appreciate that improving a score by 10 percentile points—say from the 50th to 
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the 60th—means scoring higher than an additional 10 percent of students. So compared to SD effects, 

percentile point effects are relatively clear and accessible, not just to researchers but also to education 

stakeholders at all levels. The What Works Clearinghouse (2022) calls percentile point effects an 

“improvement index” and argues that they can “help readers judge the practical importance of the 

magnitude of intervention effects.”  

It is possible to calculate percentile point effects directly, for example by comparing the median 

percentile rank of treated and control students at the end of a study. But few studies do this, and 

reporting effects in SD units remains the norm. So people who communicate or consume the results of 

education research need a quick and convenient way to translate reported SD effects into equivalent 

percentile point effects.  

In carrying out the translation, it is common to assume that the outcome variable—often a test 

score—is normally distributed. For a student who would score at the median of a normal distribution 

without treatment, an effect of 0.2 SD would raise their score by 8 percentile points—from the 50th 

percentile to the 58th. Translating an effect from 0.2 SD to 8 percentile points can convert a frustrating 

and abstract technical conversation about what an effect of 0.2 SD really means into a concrete policy 

conversation about whether an improvement of 8 percentile points is worth the intervention’s cost in 

time, trouble, or money. 

There are two concerns that deter researchers from converting effects to percentile points as 

often as we might like. First, the calculation is widely thought to require using the cumulative standard 

normal distribution. The calculation is not difficult for someone with a little statistical training and a 

spreadsheet, but it is not a calculation that many of us can do in our heads, and it is far from transparent 

to an education leader with limited statistical training. In fact, explaining the cumulative normal 

distribution to someone who is unfamiliar with it is every bit as hard as explaining an SD effect. 
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The second concern is that conversion from SDs to percentile points sometimes depends on 

where the student lies in the distribution. For a student who would score at the median without 

treatment, an effect of 0.20 SD will raise their percentile rank by 8 points (from the 50th percentile to the 

58th). But for a student who would score at the 10th percentile without treatment, an effect of 0.20 SD 

will only raise their percentile rank by half as much—by 4 percentile points (from the 10th percentile to 

the 14th).  

While both these concerns are valid, they only apply to unusually large effect sizes and students 

in the tails of the distribution. The following rule of thumb works surprisingly well for most students and 

the vast majority of effects reported in educational research: 

To convert an effect size to approximate percentile points,  
simply multiply the SD effect by 37.  

Unlike calculations involving the cumulative standard normal distribution, multiplying by 37 is a 

transparent calculation that many of us can approximate in our heads while reading a report, giving a 

presentation, or discussing results in a meeting. We do not need to consult a table or spreadsheet, and we 

can explain the calculation to stakeholders who have limited statistical training. Yet for most students 

and the vast majority of effect sizes, multiplying by 37 usually comes within 1 percentile point of the 

result obtained by using the cumulative normal distribution.  

The calculation can also be reversed. For example, suppose you are planning a trial of a novel 

intervention. To clarify stakeholders’ hopes, or calculate the sample size required to detect the effect, 

you would like a practitioner to tell you how large an effect they expect, or how small an effect would 

disappoint them. The practitioner may have trouble expressing their hopes in SD units, but they may 

more readily express themselves in percentile points. To translate their percentile point guess into SD 

units, you can simply divide it by 37. 
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In the rest of this paper, we’ll demonstrate multiplying by 37 and explain its rationale, uses, and 

limitations. 

Using the rule in data from a normal distribution 

To start, let’s assume that the outcome variable has a normal distribution. Then we can convert 

an effect from SD units to percentile points in two different ways:  

1. an exact formula (given later) which uses the cumulative standard normal distribution, vs. 

2. an approximation, which simply multiplies the SD effect by 37. 

The top of Figure 1 compares these approaches for a student who, if untreated, would score at the 

median. For such a student, the two approaches agree closely. For any effect size up to 0.8 SD—that is, 

for over 90 percent of effects reported in educational research (Kraft, 2020)—the approximation of 

multiplying the SD effect by 37 comes within less than 1 percentile point of the exact answer obtained 

by using the cumulative normal distribution. For example, an effect of 0.8 SD translates to 28.8 

percentile point if we use the cumulative normal distribution, or 29.6 percentile point if we multiply by 

37. The approximation error is just 0.8 percentile points. 

Percentile point effects are often reported as though they were only valid for students near the 

50th percentile. But as the bottom of Figure 1 shows, multiplying by 37 works just as well for a student 

who, if untreated, would score at the 25th percentile of a normal distribution. For such a student, an 

effect of 0.80 SD translates to 30.0 percentile point if we use the cumulative normal distribution, or 29.6 

percentile point if we multiply by 37—an approximation error of just 0.4 percentile points. More 

generally, for a student who if untreated would score at the 25th percentile of a normal distribution, 

multiplying by 37 comes within 1 percentile point of the exact answer (obtained using the cumulative 

normal distribution) for any effect size of between 0 and 0.8 SD (and even larger).  
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In general, if the outcome is normally distributed, multiplying by 37 usually comes within 1 

percentile point of the exact answer—and always comes within 1.6 percentile points—for any student 

whose score stays approximately in the middle three-fifths of the distribution. 

Can the rule work in real data? 

Figure 2 shows that multiplying by 37 can also work well for effects from real empirical studies. 

To check this, we used results from two studies that reported effects in both SDs and percentile points.  

 One study was a randomized controlled trial of a “personalized learning” intervention. 

The trial report estimated 24 effects of personalized learning—one effect for each of two 

subjects (reading, math) in each of 12 grades (kindergarten through 11th) (Baird & Pane, 

2019; Pane et al., 2017).  

 The other study was a regression discontinuity evaluation of the federally funded Reading 

First program (Gamse et al., 2008). The study report estimated 11 effects of Reading 

First; each estimate represented the program’s effect on some skill (reading 

comprehension or the ability to decode letters into sound) at some grade level (1st, 2nd, or 

3rd). Effects were also broken out by years of exposure (1, 2, 3, or all exposures together) 

and by when schools received Reading First funding (early, late, or all schools together). 

Among 35 effects ranging from -0.20 SD to +0.43 SD (or -8 to +16 percentile points), multiplying the 

reported SD effect by 37 came within 1 point of the reported percentile point effect in every case but 

one.  

This example shows that multiplying by 37 can be useful even if the outcome variable does not 

have a perfectly normal distribution. In the personalized learning study, the outcomes were math and 

reading scores from the Measures of Academic Progress (MAP) test published by NWEA. The 
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distribution of MAP scores can deviate noticeably from normality in the left tail.1 In the Reading First 

Impact Study, one outcome was reading comprehension scores from the Stanford Achievement Test, 

10th edition (SAT10), whose distribution can be bimodal, platykurtic, skewed left or skewed right 

(Shanley et al., 2019). Another outcome was decoding scores from the Test of Silent Word Reading 

Fluency, which counts the words that a student can read in 3 minutes; note that counts are often skewed 

to the right.  

The empirical accuracy of multiplying these study estimates by 37 is also encouraging because 

each study calculated the percentile point effect somewhat differently. Neither study assumed that scores 

were normally distributed. Instead, in the Reading First Impact Study, the mean test scores of the 

treatment and control groups were converted to corresponding percentiles in a national reference 

distribution, and then the control percentile was subtracted from the treatment percentile. Mean scores in 

the control condition were between the 33rd and 46th percentiles, showing again that percentile gains 

(and the multiply-by-37 approximation) are not valid only at the median. Both the treatment and control 

percentiles were rounded to the nearest whole number before subtracting, so the estimated difference 

suffers from rounding error and may differ by 1 percentile point from the true difference; this may 

explain some slight discrepancies between the reported percentile effects and the approximation of 

multiplying by 37.  

The personalized learning study estimated percentile point effects in a more complicated way—

estimating the distribution of the control group’s scores and then calculating the percentile that would be 

achieved if they added the treatment effect to the control median. The investigators noted that they 

estimated the control distribution in a nonparametric fashion that did not assume normality but 

 

1 Since neither the personalized learning study nor the Reading First Impact Study reported the distribution of 
scores, this paragraph reports the score distributions observed in other sources. We thank Megan Kuhfeld, Senior Research 
Scientist at NWEA, for sharing density plots of MAP scores. 



Multiply by Thirty-Seven—8 

“allow[ed] the distribution of scores to take any shape, such as skewed, bimodal, or highly kurtotic” 

(Baird & Pane, 2019, p. 223).  

Despite these encouraging results, we would not claim that multiplying by 37 works well for 

every educational outcome. Surely, someone could find a highly non-normal distribution where it 

worked poorly—but then the usual cumulative normal calculation would work poorly as well! Our point 

is not that multiplying by 37 is always accurate, but that when the cumulative normal calculation is 

accurate, multiplying by 37 usually works practically as well. 

Why does it work? 

Figure 3 helps to illustrate why multiplying by 37 works for a normally distributed outcome. We 

will explain it in three different ways, starting with a simple explanation suitable for someone with 

limited exposure to statistics, and finishing with a more sophisticated explanation that uses a little 

calculus and optimization. We are brief in the article but provide more detail in the Appendix. 

Explanation using the bell curve 

The top of Figure 3 shows the standard normal probability density function (PDF)—the familiar 

bell curve taught in practically every introductory statistics course. A familiar fact about the normal 

distribution, also taught in practically every course, 68 percent of the probability lies within 1 SD of the 

mean. So an effect that raises a student’s score from 1 SD below to 1 SD above the mean would raise 

their score by 68 percentile points. In this example, a 2 SD effect is equivalent to 68 percentile points, 

suggesting a rule that multiplies the SD effect by 34—not too far from 37. 

Another fact about the normal distribution, not taught as often, is that 38 percent of the 

probability lies within half a SD of the mean. So an effect that raises a student’s score from 0.5 SD 
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below to 0.5 SD above the mean would raise their score by 38 percentile points. In this example, a 1 SD 

effect is equivalent to 38 percentile points, suggesting a rule that multiplies the SD effect by 38—again 

not too far from 37. 

In general, the best multiplier depends on where a student starts in the distribution and how much 

the intervention increases or decreases their score. But for students who stay in the middle three-fifths of 

the distribution, multipliers between 34 and 40 work reasonably well, and a multiplier of 37 works best 

on average.  

Explanation using the cumulative normal distribution 

The next two sections are more technical and some readers may wish to skip ahead to the section 

titled “When does multiplying by 37 work?”  

Figure 3 shows the standard normal cumulative distribution function (CDF), which represents 

the relationship between a student’s percentile rank P and how many standard deviations Z they are from 

the mean of a normal distribution. The standard normal CDF is often represented by the Greek letter Φ:2  

𝑃 = Φ(𝑍) 

For example, a student who is 0 standard deviations from the mean is at the 50th percentile (Φ(0) = 50), 

a student who is Z=0.8 standard deviations above the mean is at the 79th percentile (Φ(0.8) = 79), and a 

student who is Z=0.8 standard deviations below the mean is at the 21st percentile (Φ(−0.8) = 21). 

Over the full range of the distribution, the CDF has an S shape, but between the P=21st and 79th 

percentiles—that is between Z=0.8 SD above and Z=-0.8 SD below the mean—the CDF is 

approximately linear with an intercept of 50 and a slope not too far from 37.  

 

2 The standard normal CDF is commonly defined as returning a fractile between 0 and 1. Here we want to return a 
percentile between 0 and 100, so our definition multiplies the common definition by 100. 
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𝑃෠ = Φ෡ (𝑍) = 50 + 37 𝑍 

The linear approximation 𝑃෠ comes within 0.8 percentile points of the true value of P for every value of 

Z from -0.8 to 0.8. 

This means that multiplying by 37 translates an SD effect into an approximate percentile point 

effect, provided the student stays between the 21st and 79th percentile. To see that explicitly, notice that 

the SD effect on an individual student (Δ𝑍) is the difference between how many standard deviations 

from the mean they would score under treatment (Zt) vs. how many standard deviations from the mean 

they would score under the control (Zc): 

Δ𝑍 = 𝑍௧ − 𝑍௖ 

Likewise the percentile point effect on an individual student (Δ𝑃) is the difference between the student’s 

percentile rank under treatment (Zt) and their percentile rank under control (Zc): 

Δ𝑃 = 𝑃௧ − 𝑃௖ 

Over the full range of the normal distribution, the exact relationship between Δ𝑃 and Δ𝑍 is not 

linear: 

Δ𝑃 = 𝑃௧ − 𝑃௖  

= Φ(𝑍௧) − Φ(𝑍௖) 

 

(exact formula) 

But in the range where Φ(𝑍) can be approximated by 50+37 P, the percentile point effect can be 

approximated by: 

Δ𝑃෠ = Φ෡ (𝑍௧) − Φ෡ (𝑍௖) 

≈ (50 + 37𝑍௧) − (50 + 37𝑍௖) 

= 37 Δ𝑍 

 

 

(approximation) 

That is, multiplying the SD effect by 37 can approximate the percentile point effect. 
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Explanation relating the bell curve to the cumulative distribution function 

The previous explanations are compatible, because the probability density function (PDF) in the 

first explanation is related to the cumulative distribution function (CDF) in the second. Specifically, the 

PDF is the derivative or slope of the CDF, as students are taught in every mathematical statistics course 

(e.g., Hogg et al., 2012).3 Knowing this, you can look at the PDF (top of Figure 3) to get the slope of the 

CDF (bottom of Figure 3) at each value of Z (SDs from the mean). 

Specifically, at the mean (Z=0), the slope if the CDF is 40; at 0.4 SD above or below the mean 

(Z=0.4 or -0.4), the slope is 37; and at 0.8 SD above or below the mean (Z=0.8 or -0.8), the slope is 29. 

This is why our discussion of the bell curve found that larger multipliers were appropriate for students 

closer to the mean. Although the optimal slope is not exactly 37 through the whole range from Z=+0.8 

to -0.8, it is close enough for 37 to be a good approximation for students who stay within this range. 

When does multiplying by 37 work? 

We have stated that multiplying by 37 works for students who “stay” between the 21st and 79th 

percentile (or, equivalently, between Z=+0.8 and -0.8 SDs from the mean). We should be explicit about 

what we mean by “stay.” Multiplying the SD effect by 37 works for students who would score between 

the 21st and 79th percentile without treatment, and would still score between the 21st and 79th percentile 

if they were treated.  

If treatment takes a student outside of that range, or if they would score outside that range if they 

were untreated, then multiplying the SD effect by 37 does not work as well, because the student will 

have strayed outside the range where the relationship between percentiles and SDs is approximately 

 

3 Like the CDF, the PDF has been multiplied by 100 here so that values can be interpreted on a percentile point 
scale. 
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linear. More specifically, if the treated or untreated score is in the top or bottom 20 percent of a normal 

distribution, then multiplying the SD effect by 37 will always overestimate the percentile point effect.  

But knowing when we are overestimating an effect is useful, too, because it means that, in the 

tails, we can treat multiplying by 37 as an upper bound. It can be useful to place an upper bound on 

effect size, particularly if the effect is small. For example, if an SD effect is 0.05 SD, we can say that it 

is only 2 percentile points for students in the middle three-fifths of the distribution—and even less for 

students in the tails. 

We tailored the multiply-by-37 rule to work for normally distributed outcomes, but Figure 2 

showed that it can also work reasonably well for real test scores, which do not have a perfectly normal 

distribution. While would not claim that multiplying by 37 works for any data regardless of how it is 

distributed, we should point out that, since the rule is only meant to in the middle three-fifths of the 

distribution, non-normality in tails may not matter as much. For example, histograms shared with us by 

the publisher of the MAP tests (NWEA) suggest that MAP scores depart from normality primarily in the 

bottom 20 percent of the distribution. This may not have affected results from the Reading First Impact 

Study (Figure 2), which estimated the effect of Reading First on the MAP scores of students who would 

score in the 33rd to 50th percentiles if untreated. 

Why 37? 

Multiplying by 37 is just an approximation, and other multipliers are certainly possible. Any 

multiplier between 35 and 40 would give fairly similar estimates. A case can be made for multiplying by 

40 because it is an easier mental calculation and gives very serviceable estimates, especially for small 

effects near the median.  
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That said, multiplying by 37 is optimal in the sense that it ensures the approximation error is 

never larger than 1.6 percentile points (and usually smaller than 1 percentile point) for students who stay 

between the 21st and 79th percentile of a normal distribution.  

A different multiplier would be optimal if we focused on a different range of the normal 

distribution or tried to minimize a different function of the approximation error (such as the mean 

squared error). But the range between the 21st and 79th percentile seems to be the widest range over 

which any multiplier can work well, and it seemed desirable to minimize the largest error that can occur, 

rather than just ensuring that, say, squared errors are small on average. 

The Appendix gives more detail on the derivation and properties of multiplying by 37. 

Benchmarks for Percentile Point Effects 

Although converting SD effects to percentile points makes them more interpretable, it can still be 

helpful to interpret percentile point effects with respect to some benchmark. 

Table 1 uses the multiply-by-37 rule to convert benchmarks for effect size from SD units to 

percentile points. For example, Kraft (2020) derived empirical benchmarks from an inventory of 

rigorous studies of educational interventions. Converted from SDs to percentile points, Kraft’s 

benchmarks suggest that the least effective third of interventions raise most students’ scores by 0 to 2 

percentile points, the middle third raise scores by 2 to 7 percentile points, and the most effective third 

raise scores by more than 7 percentile points.  

Kraft’s benchmarks contrast with Cohen’s (1970) older benchmarks, which when converted to 

percentile points suggested that “small” effects raised most scores by approximately 7 percentile points, 

“medium” effects raised scores by approximately 19 percentile points, and “large” effects raised scores 

by approximately 30 percentile points. Cohen’s benchmarks were “somewhat arbitrary” (Cohen, 1962) 
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and based on his experience with laboratory experiments in psychology. Cohen (1970) cautioned that 

they should not be generalized to other fields, but they have been widely used in education, where they 

now seem quite optimistic. According to Kraft’s inventory, 70 percent of education effects would be 

“small” by Cohen’s standards, and only about 4 percent of effects (less than 1 percent in large studies) 

would be “large” by Cohen’s standards (Kraft, 2020, tbl. 1) 

It can also be helpful to compare the effect of an intervention to its cost. As several authors have 

pointed out, if two interventions achieve similar effects, we should prefer the intervention with lower 

cost; likewise if two interventions have similar costs, we should prefer the intervention with the larger 

effect (Kraft, 2020; Levin et al., 2017). However, if interventions differ in both cost and effect, then 

comparison is more difficult. For example, suppose one intervention produces an effect of 0.06 SD (2 

percentile points) at a cost of $100 per student, while an alternative can produce an effect 10 times larger 

(0.6 SD, 22 percentile points) at a cost that is 20 times higher ($2,000 per student). Measured in SDs or 

percentile points per dollar, the first intervention appears twice as cost-effective (Harris, 2009), but it 

only raises scores by 2 percentile points. The 22 percentile point improvement of the second intervention 

could be worth paying for, even if the cost per percentile point is twice as high.   

Another popular option is to translate the effect into months or years or learning. This attractive 

metric is easy to apply in longitudinal studies where the benefit to the treatment group can be compared 

to the amount learned by the control group. But it is more problematic to compare the effect of an 

intervention to the amount learned by different students in a different study. The challenge is that 

learning rates are not constant but vary by age, subject, test, and other factors. Age is the most important 

factor; in general, young children gain reading and math skills much faster than older children, so that an 

effect of 0.2 SD is equivalent to about a month of learning in kindergarten but a year of learning in 9 th 

grade (Bloom et al., 2008). When grade is held constant, annual gains still vary across tests; 9 th grade 
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reading gains, for example, can be as large as 0.32 SD or as small as 0.04 SD, depending on what test is 

used to measure them (Bloom et al., 2008). Annual gains can be averaged across different tests , but the 

multi-test average will not necessarily be an appropriate benchmark for an intervention effect obtained 

on one test in particular. Annual gains vary across subjects (Bloom et al., 2008), and vary from one time 

and place to another (Matheny et al., 2023). On some tests, but not others, annual gains are different 

over 12 months than over a 9-month academic year that excludes summer vacation (Workman et al., 

2023). For some topics, such as probability, Latin, or cartography, there may be no benchmarks for 

annual gains at all. In short, while it can be helpful to keep annual gains in mind as a rough comparison, 

all these sources of variation make it difficult to use gains as a stable benchmark for effect size. The 

challenge is fundamental, and switching from SDs to percentile points does not solve it.  

Another option is to compare an effect to a gap in test scores between advantaged and 

disadvantaged children. This comparison can be appropriate in some settings, for example in a study that 

asked whether certain charter schools shrank the gap in reading and math scores between black children 

in Harlem and white children elsewhere in New York City (Dobbie & Fryer, 2011). But the comparison 

is not always pertinent and, if used habitually, can give the misleading and undesirable impression that 

score gaps are so constant and immutable that they can be engraved on a ruler (Quinn, 2020). In fact, 

score gaps between groups of children vary substantially across places, times, subjects, tests, grade 

levels, and the group characteristics used (e.g., family income, parental education, school-level poverty, 

or race and ethnicity) (Reardon et al., 2019; US Department of Education, 2023). The variable nature of 

score gaps can make it difficult to treat them as a fixed ruler to measure effect size. 
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Conclusion 

Careful education researchers take pains to estimate treatment effects precisely and without bias. 

Yet we then describe those effects in SD units that many practitioners find unintelligible, and even 

trained researchers interpret in biased and inconsistent ways. Translating effects into percentile points 

puts effects on a shared and intelligible scale—and it can usually be accomplished simply by 

multiplying the SD effect by 37. 

Even on an intelligible percentile point scale, educators and scholars may have different ideas 

about whether an effect is large enough to matter. Some may think that any effect smaller than 10 

percentile points (0.27 SD) is negligible, while others may argue that even effects of 2 percentile points 

(0.05 SD) can be important in some settings. Translating effects into percentile points will not end all 

debate. But it is a good start to a conversation. 
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Figures 

 
Figure 1. Theoretical accuracy of the multiply-by-37 rule for translating effect sizes from standard deviations to 
percentile points in a normal distribution. The top panel gives results for a student who, if untreated, would score 
at the 50th percentile; the bottom panel gives results for a student who, if untreated, would score at the 25th 
percentile. 
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Figure 2. Empirical accuracy of the multiply-by-37 rule for converting effects observed in empirical studies from 
standard deviations to percentile points. 
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Figure 3. The slope of the cumulative standard normal distribution (CDF) is given by the standard normal 
probability density function. Between the 20th and 80th percentile the CDF is well approximated by a straight line 
with a slope of 37. (Note. To put both curves on a percentile point scale, the density function has been multiplied 
by 100.) 
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Table 1. Benchmarks for effect size 

  Effect size 

 Units Small Medium Large 
Cohen (1969) Standard deviations 0.2 0.5 0.8 

 Percentile points 7 19 30 
Kraft (2020) Standard deviations 0.05 0.05 to 0.2 0.2 

 Percentile points Less than 2 2 to 7 More than 7 
 



Appendix 

The notion of multiplying the SD effect by a constant is attractive, and a variety of 

plausible values for the constant can be proposed. This Appendix shows how we settled on 

multiplying by 37 and shows when the approximation errors are large or small.  

We simulated data representing students’ potential outcomes under treatment and under 

control. For each student we kept 4 variables: 𝑃௖ and 𝑍௖ represented their percentile and 

standardized outcome under the control condition, and 𝑃௧ and 𝑍௧ = 𝑍௖ represented their 

percentile and standardized outcome under the treatment condition. The control percentiles 𝑃௖ 

took integer values from 1 to 99, and the SD effect Δ𝑍 = 𝑍௧ − 𝑍௖ took values from 0.01 to 0.80 

by 0.01. Note that the treatment outcomes 𝑃௧ and 𝑍௧ represent where a treated student would fall 

in the control distribution, and we simulated the control condition to be standard normal. So 𝑃௖ =

Φ(𝑍௖) and 𝑃௧ = Φ(𝑍௧), where Φ is the standard normal CDF. 

From the simulated data we calculated the exact percentile point effect that corresponded 

to a given SD effect: 

Δ𝑃 = 𝑃௧ − 𝑃௖ (exact formula) 

Our goal was to find the best approximation to the percentile point effect that could be achieved 

by simply multiplying the SD effect by a constant c, which is also the slope of the approximating 

line. 

Δ𝑃෠ = 𝑐 Δ𝑍 (approximation) 

The “best” value of the slope c is one that, over some range of SD effects Δ𝑍 and untreated 

percentiles 𝑃௖, minimizes some function of the approximation error e: 

𝑒 = Δ𝑃෠ − Δ𝑃 



The most common error function to minimize is the root mean squared error, ඥ𝐸(𝑒ଶ), but we 

thought it would be better to minimize the maximum of the absolute errors, 𝑚𝑎𝑥 (|𝑒|). 

Minimizing root mean squared error can produce a line that fits well on average but may have 

large errors in some parts of the range; by contrast, minimizing the maximum absolute error 

produces a line that never exceeds a stated absolute error. 

We calculated results for students with untreated percentiles between 21 and 50, subject 

to treatment effects between 0 and 0.8 SD. These are students who stay in the range where a 

linear approximation works best—between the 21st and 79th percentile—whether they are treated 

or not. 

Figure A 1 gives the results. The max absolute error is minimized at a slope of 

approximately c=36.95, which we rounded to 37. At a slope of 37, the error of approximation 

never exceeds 1.6 percentile points in absolute value. By contrast, the root mean squared error is 

minimized at a slope of 38; at a slope of 38, the root mean squared error is 0.65 percentile points, 

but the absolute error can be as large as 2 percentile points under some conditions. While the 

difference between a slope of 37 or 38 is not large, we have a slight preference for minimizing 

the maximum absolute error—and that means choosing a slope of 37. 



 

Figure A 1. The max absolute error is minimized at a slope of 37. The root mean squared error is 
minimized at a slope of 38. The error functions are calculated for students with untreated percentiles 
between 21 and 50, subject to treatment effects between 0 and 0.8 SD. 

 

Now that we have settled on a slope of 37, we should ask under what circumstances the 

approximation works best and worst. Figure A 3 shows that the absolute approximation error is 

smallest if both the treated are untreated percentile are between the 20th and 80th percentile. For 

those students, the absolute approximation error is always below 1.6 percentile points and 

usually below 1 percentile point. The approximation error gets worse rapidly if the treated or 

untreated percentile goes below the 20th or above the 80th—which is why we recommend 

multiplying by 37 only for students who stay within that range. 



Figure A 2. If both the treated and untreated percentile are between approximately 20 and 80, multiplying 
the SD effect by 37 always comes within 1.6 percentile points of the percentile point effect, and usually 
comes within 1 percentile point. 

 

While the limitation to students between the 20th and 80th percentile is clear enough, it is 

not useful in the usual situation where we don’t have the treated and untreated percentiles and 

just have the SD effect. Figure A 3 addresses that situation by showing the approximation error 

of multiplying by 37 as a function of the untreated percentile and the treatment effect in SD 

units. The approximation works well for effect sizes of up to 0.8 SD for students who if 

untreated would score between the 21st and 52nd percentiles. Outside of that range, the 

approximation rapidly gets worse unless the effect size is quite small.  



 

Figure A 3. The max absolute error is minimized at a slope of 37. The root mean squared error is 
minimized at a slope of 38. The error functions are calculated for students with untreated percentiles 
between 21 and 50, subject to treatment effects between 0 and 0.8 SD. 

 


