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Abstract

We use a natural experiment to evaluate sample selection correction methods’ perfor-
mance. In 2007, Michigan began requiring that all students take a college entrance exam,
increasing the exam-taking rate from 64 to 99%. We apply different selection correction
methods, using different sets of predictors, to the pre-policy exam score data. We then
compare the corrected data to the complete post-policy exam score data as a benchmark.
We find that performance is sensitive to the choice of predictors, but not the choice of
selection correction method. Using stronger predictors such as lagged test scores yields
more accurate results, but simple parametric methods and less restrictive semiparametric
methods yield similar results for any set of predictors. We conclude that gains in this
setting from less restrictive econometric methods are small relative to gains from richer
data. This suggests that empirical researchers using selection correction methods should

focus more on the predictive power of covariates than robustness across modeling choices.
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1 Introduction

Researchers routinely use datasets where outcomes of interest are unobserved for some cases.
When latent outcomes are systematically different for observed and unobserved cases, this
creates a sample selection problem. Many canonical economic analyses face this challenge:
wages are unobserved for the non-employed, test scores are unobserved for non-takers, and
all outcomes are unobserved for attriters from panel studies or experiments. Statisticians and
econometricians have proposed many selection correction methods to address this challenge.
However, it is difficult to evaluate these methods’ performance without observing the complete
outcome distribution as a benchmark.

We use a natural experiment to evaluate the performance of different selection correction
methods. In 2007, the state of Michigan began requiring that all students in public high
schools take the ACT college entrance exam, raising the exam-taking rate from 64% to 99%.
We apply different selection correction methods, using different sets of predictors, to the pre-
policy exam score data. We then compare the corrected data to the complete post-policy exam
score data as a benchmark.

We compare the performance of eight selection correction methods: linear regression (i.e.
no correction), a one-stage parametric censored regression model (Tobin, 1958), a two-stage
parametric selection model (Heckman, 1974), and several two-stage semiparametric selection
models (Ahn and Powell, 1993; Newey, 2009; Powell, 1987). These make successively weaker
assumptions about the economic or statistical model generating the latent outcomes and prob-
ability that the outcomes are missing. We evaluate each method using sets of predictors that
range from sparse (student demographics) to rich (lagged student test scores and school charac-
teristics) to mimic the different types of data available to researchers. We examine whether the
performance of these correction methods varies by student race or poverty status and whether
they can match gaps in the benchmark data in achievement by race and income.

We find that performance is not sensitive to the choice of selection correction method but is
sensitive to the choice of predictors. Performance is similar for methods with weak assumptions
(e.g. two-stage semiparametric methods) and methods with very restrictive assumptions (e.g.
linear regression). All methods perform poorly when we use sparse predictors and well when
we use rich predictors. We see the same patterns for subpopulations based on race and poverty,

showing that our findings are not specific to one data generating process.



We consider several explanations for the similar performance across correction methods. This
is not explained by an absence of selection, the assumptions of the parametric models holding, a
weak instrument, or the data being too coarse to use semiparametric estimation. We conclude
that the violations of the parametric models’ assumptions are not quantitatively important in
this setting. In contrast, the importance of detailed school- and student-level predictors is easy
to explain. These characteristics strongly predict both latent test scores and test-taking and
hence improve performance irrespective of the choice of selection method. This echoes ideas in
Imbens (2003) and Oster (2017) that there is more scope for bias from unobserved predictors
when observed predictors explain less outcome variation.

We believe this is the first paper to evaluate the performance of selection correction methods
for missing data against a quasi-experimental benchmark. Other missing data papers comparing
estimates across selection correction methods lack a quasi-experimental or experimental bench-
mark for evaluation (Mroz, 1987; Newey, Powell, and Walker, 1990; Melenberg and Van Soest,
1996). Our approach is similar to the literature comparing different treatment effects methods
against experimental benchmarks (LaLonde, 1986; Heckman, Ichimura, Smith, and Todd, 1998;
Dehejia and Wahba, 1999).1

Our findings are relevant to three audiences. First, our findings can inform methodological
choices by applied researchers using selection correction methods or adapting existing methods
for new applications (e.g. Dahl 2002; Bonhomme, Jolivet, and Leuven 2016). Many applied
researchers establish that their results are robust across different selection correction methods
(Krueger and Whitmore, 2001; Card and Payne, 2002; Angrist, Bettinger, and Kremer, 2006;
Clark, Rothstein, and Whitmore Schanzenbach, 2009). Our findings show that results can be
robust without being correct. This suggests researchers should focus more on the strength of the
relationships between the observed predictors, the missing data indicator, and the non-missing
outcomes than robustness across different methods.

Second, our findings are relevant to econometricians developing selection correction meth-
ods or adapting methods for new problems such as dynamic selection (e.g. Semykina and
Wooldridge 2013). Most econometric work comparing selection correction methods’ perfor-

mance uses either simulated data or real data without a quasi-experimental benchmark (Mroz,

TLaLonde (1986) and Heckman, Ichimura, Smith, and Todd (1998) evaluate selection correction methods
for treatment effects against experimental benchmarks. However, selection into treatment is a substantively
different economic problem from selection due to missing data. Correction methods may work well for missing
outcome data, the problem we consider, but poorly for treatment effects problems or vice versa.



1987; Goldberger, 1983; Paarsch, 1984; Newey, Powell, and Walker, 1990; Vella, 1998). We
advance the comparisons based on real data by providing a quasi-experimental benchmark
that allows us to evaluate rather than compare performance. We complement the comparisons
based on simulations by examining a real-world application, as performance in simulations can
be sensitive to how closely the simulation parameters match real-world data (Busso, DiNardo,
and McCrary, 2014; Frolich, Huber, and Wiesenfarth, 2015).

Third, our findings are relevant to researchers, practitioners, and policymakers who want
to use test scores to infer population achievement when test-takers are selected. Our results
show that US college entrance exam scores predict population achievement if other test scores
are observed. This contributes to the literature on selection into college entrance exam-taking
(Dynarski, 1987; Hanushek and Taylor, 1990; Dynarski and Gleason, 1993). Our findings may
be relevant to other education settings with selection into test-taking. For example, enrollment,
and hence test-taking, is heavily selected in many developing countries, and even assessments
used for accountability in the U.S. miss some students. Our findings can help researchers,
practitioners, and policymakers in these settings learn about cohort-level achievement from
assessments of enrolled, test-taking students.

We describe the sample selection problem in Section 2.1 and selection correction methods
in Section 2.2. In Section 3, we describe our data, our setting, and the extent of selection
into test-taking in the pre-policy period. We report the main findings in Section 4 and discuss
reasons for the similar performance of different selection correction methods in Section 5. In
Section 6, we conclude and discuss the extent to which our findings might generalize.

We extend our main analysis in five appendices. In Appendix A, we describe the dataset
construction and report additional summary statistics. In Appendix B, we elaborate on the
selection correction methods and how we implement them. In Appendix C, we show that our
findings are robust to evaluating selection correction methods using different criteria. In the
main paper we evaluate corrections based on means: we compare the mean selection-corrected
pre-policy test score to the mean score in the complete post-policy data. In the appendix
we also evaluate selection corrections based on regression parameters and the full test score

distribution.? In Appendix D, we show that our findings are robust to changes in regression

2Specifically, we estimate a selection-corrected regression of test scores on covariates using pre-policy data
and compare the coefficients to the same regression estimated using the complete post-policy data. We then
predict the full selection-corrected distribution of pre-policy test scores and compare this to the complete post-
policy test score distribution. We also compare the predicted share of selection-corrected pre-policy ACT scores



specifications and sample definitions. In Appendix E, we replicate our analysis using aggregate
data (e.g. mean test-taking rates and test scores by school), as many researchers observe only
aggregate data. We show that performance improves as we aggregate data at lower levels but
does not vary across selection correction methods, reinforcing the importance of richer data for

selection correction.?

2 Sample Selection, Corrections, Evaluation Criteria

2.1 The Sample Selection Problem

We introduce the sample selection problem with an application common in education research.
We want to analyze student achievement, using ACT scores to proxy for achievement. We
observe scores for a subset of students, and the latent achievement distribution may differ
for ACT-takers and non-takers. This is similar to the canonical selection problem in labor
economics: wages are observed only for employed workers, and the latent wage distribution
may differ by employment status (Gronau, 1974; Heckman, 1974). We focus on the case where
selection into test-taking is determined by unobserved characteristics that are not independent
of latent scores. Selection on only observed characteristics or on only unobserved characteristics
independent of latent scores can be addressed with simpler methods.

All the selection correction models we consider are special cases of this framework:

1 if TAKE; >0

TAKE; = (1c)
0 if TAKE; <0

ACTy if TAKE; >0
ACT; = (1d)
if TAKE! <0

where ACT} is the latent ACT score of student ¢ with observed score ACT;. The objects of

interest are the conditional means of ACT} given X; (i.e. the parameters from the population

meeting a college readiness threshold to the share in the complete post-policy data. These comparisons may be
useful for many applied researchers. But the corrections we evaluate are designed recover conditional outcome
means, not distributions. Hence these comparisons should thus be interpreted with caution.

3Similarly, Clark, Rothstein, and Whitmore Schanzenbach (2009) study selection into ACT-taking in Illinois.
They also find that parametric corrections using group-level data can approximate group-level latent ACT scores
when other group-level test scores are observed.



linear regression of ACT} on X;) and the unconditional mean of ACT;. We draw a distinction
between the sample selection problem due to missing values of ACT;", and the more general
identification problem due to correlation between X; and ¢;. We abstract away from the latter
problem by assuming that the object of interest is the conditional mean of ACT} given X;,
rather than some causal effect of X; on ACT}. The ordinary least squares estimator of
consistently estimates this conditional mean in the absence of sample selection. We therefore
refer to “predictors” of test scores rather than “determinants” or “causes.” In the main paper
we restrict attention to models where the functional form of X;5 is known and where X; and ¢
are additively separable.?

Equation (1b) models the sample selection problem. Selection depends on a vector of observed
characteristics (X;, Z;) and an unobserved scalar term w;, which has an unknown distribution
and may be correlated with €;. There may exist instrumental variables Z; that are independent
of ¢;, influence the probability of taking the ACT, and do not influence latent ACT scores (all
conditional on X;). We do not assume that the functional form of g(.,.) is known. Equations
(1c) and (1d) show the relationships between latent and observed ACT-taking and scores. Note
that we observe the vector X; for students who do not take the ACT.

Selection bias arises because the expectation of the observed ACT score conditional on X;

depends on the conditional expectation of the error term:

If u; and ¢; are not independent, the compound error term is correlated with X, creating an

omitted variable problem.’

2.2 Selection Correction Methods

We evaluate eight selection correction methods. All are discussed in more detail in Appendix B
and summarized in Appendix Table 3. First, we estimate ACT; = X, + ¢; using ordinary least

squares and the sample of ACT-takers. This approach provides a consistent estimator of 3 if

4The additive separability assumption is common in the empirical and theoretical literature on sample
selection. See Altonji, Ichimura, and Otsu (2012) and Arellano and Bonhomme (2017) for exceptions. In
Appendix D we implement an informal test of additive separability and fail to reject this assumption. We also
show in Appendix D that our results are robust to alternative parametric specifications of X;[.

°If ¢; and u; are independent, then we describe the data as missing conditionally at random (Rubin, 1976)
or selected on observed characteristics (Heckman and Robb, 1985). This still poses a sample selection problem
but is straightforward to address.



unobserved predictors of test-taking are independent of latent test scores, because the omitted
variable in equation (2) is zero under this assumption.® Second, we estimate ACT; = X,/ + ¢;
using a Type 1 Tobit maximum likelihood estimator and the sample of ACT-takers (Tobin,
1958). If ¢; is normally distributed and equal to u;, we can estimate equation (2) by maximum
likelihood, allowing consistent estimation of 5. This method assumes that ACT-taking and
ACT scores are jointly determined by the same unobserved student characteristic. If students
with high latent ACT scores do not take the ACT (or vice versa), this assumption fails.

Third, we jointly estimate the score and test-taking models using a parametric selection
correction method and assuming that ¢ (X;, Z;) = X;0 + Z;y (Heckman, 1974). If (e;, u;) are
jointly normally distributed, the omitted variable in equation (2) can be estimated and included
as a control variable, allowing consistent estimation of 5. This does not impose the Tobit
model’s restrictive assumption that student selection into ACT-taking is based on latent scores.
However, this approach relies on specific distributional assumptions and may perform poorly
if there is no excludeable instrument Z; that predicts ACT-taking but not latent ACT scores
(Puhani, 2002).” As our fourth model, we therefore estimate a Heckman selection correction
model excluding the driving distance from each student’s home to the nearest ACT test center
from the outcome model. This follows Card (1995), among others, and we justify the exclusion
restriction in Section 3.2.

We also estimate four semiparametric models, which relax the assumptions that (e;, u;) are
jointly normally distributed and that the functional form of ¢(.,.) is known. Each model
combines one of two ACT-taking models, estimated for all students, and one of two selection-
corrected ACT score models, estimated for only ACT-takers. The first ACT-taking model is a
series logit: a logit regression of TAK F; on polynomial functions of X; and Z;, with the poly-
nomial order chosen using cross-validation. The second ACT-taking model is a nonparametric
matching estimator that calculates the mean ACT-taking rate among group of students with

similar predictor values. We use the predicted probabilities of ACT-taking from these models

6This OLS approach relates to a broader literature in statistics on imputation. Imputation methods replace
student 4’s missing ACT score with the ACT score for a randomly chosen student with similar values of the
predictors to ¢ or the mean ACT score for a group of students with similar values of the predictors (Rubin,
1987). Like OLS, these methods assume there are no unobserved predictors of ACT-taking that also predict
latent ACT scores. These methods differ from OLS by using different functional forms of equation (1a). Rather
than evaluating a range of imputation methods, we show in Appendix Table 11 that our results are robust to
alternative functional forms of equation (1a).

"Joint normality of (e;,u;) is a sufficient but not necessary condition for this selection correction model to
provide a consistent estimator of 3. There are other assumptions on the joint distribution that are sufficient.



to construct two selection corrections for the ACT score model.

The first selection-corrected ACT score model approximates the bias term in equation (2) with
a polynomial in TAK E?, following Heckman and Robb (1985) and Newey (2009). The second
removes the bias term using pseudo-fixed effects for groups of students with similar values
of TAKE; (Ahn and Powell, 1993; Powell, 1987). These approaches do not rely on specific
distributional assumptions. But they do impose some restrictions on the joint distribution of
(€i,u;) and the function g(.,.) and may have poor statistical performance in even moderately
large samples. We discuss the assumptions and implementation of the semiparametric models
in Appendix B.

We refer to these eight methods as OLS, Tobit, Heckman, Heckman with IV, semiparametric
Newey, nonparametric Newey, semiparametric Powell, and nonparametric Powell. In the body
of the paper we only vary the ACT-taking equation and selection correction term; in the
appendices we also vary the functional form of the latent ACT score model. We summarize the
differences between these methods by describing a hypothetical student’s ACT-taking choice.
Assume that her decision to take the ACT depends on her unobserved (to the econometrician)
interest in attending college. The OLS correction is appropriate if this interest is uncorrelated
with unobserved predictors of her latent ACT score. The Tobit Type I correction is appropriate
if this interest predicts her ACT-taking decision only through her latent test score, so she
will take the ACT if and only if she has a high latent score, conditional on her observed
characteristics. The Heckman corrections are appropriate if this interest is correlated with
unobserved predictors of her latent ACT score but the joint distribution of these unobserved
characteristics satisfies specific parametric conditions. The Newey and Powell corrections are
appropriate if this interest is correlated with unobserved predictors of her latent ACT score
and the joint distribution of these unobserved characteristics satisfies weaker conditions.

All these methods aim to point identify 5. Another set of methods aims to derive bounds
on possible values of 3. These methods assume that non-takers have either very high or very
low latent ACT scores and use these two extreme assumptions to construct bounds on the
distribution of ACT scores (Manski, 1990; Lee, 2009). These methods yield bounds that are

too wide to be informative in our application.®

8Manki’s least restrictive bounding method assumes that all non-takers score either the maximum or mini-
mum ACT score. This approach estimates bounds of [13.40, 26.32] points for the mean ACT score, which only
excludes the top and bottom deciles of the complete post-policy ACT score distribution. Lee’s more restrictive
approach derives bounds for the difference in means between groups with higher and lower test-taking rates,



2.3 Evaluating Alternative Selection Correction Methods

We evaluate each of the eight selection correction methods by how closely they predict the mean
ACT scores in the post-policy period, which we call the reference mean. For each correction
method, we regress the selected pre-policy ACT scores on predictors to estimate B and then
predict ACT; = ﬁ, using the predictors for the full population. We compare this to the mean
of the reference distribution. We construct the reference distribution from the observed post-
policy score distribution in two stages. First, we adjust for small differences in the distribution
of observed student predictors of ACT scores between the two time periods (shown in Table 2)
using inverse probability weights. Second, we account for the fact that 1.5% of students do not
take the ACT in the post-policy period by replacing their missing scores with predicted values
from estimating equation (1a) by OLS on the post-policy data. We show in Appendix Figures
10 and 11 and Appendix Table 11 that our findings are not affected by these adjustments.

In Appendix C, we report results from evaluating selection correction methods on three
additional criteria. First, we compare the estimated parameter vector B to the parameter vector
from regressing the post-policy ACT scores on the same student predictors. Second, we compare
the selection-corrected pre-policy ACT score distribution to post-policy ACT score distribution.
Third, we compare the selection-corrected pre-policy student share passing a minimum ACT
score typically interpreted as “college-ready” to the same share in the post-policy period.® Our
main findings are robust across all these criteria.

For all evaluation criteria, we interpret the difference between the selection-corrected pre-
policy statistic and the post-policy statistic as a measure of the correction method’s bias,
conditional on the predictors. We report this bias and the variance of the selection-corrected

pre-policy statistic, estimated using a nonparametric cluster bootstrap, clustering by school.?

rather than bounds for the population mean. For example, the ACT-taking rate differs by 7.7 percentage points
between black and white students and Lee’s method yields bounds of [3.66, 5.56] points for the black-white
ACT score gap, or roughly 0.4 standard deviations.

9The first additional criterion is similar to our primary comparison of the predicted mean, but does not use
Bo, the constant term in equation (1a). Identification of the constant term in semiparametric correction methods
is a challenge that we discuss in section V. The selection correction methods we evaluate are not designed to
perform well on the second and third additional criteria. However, these criteria are of interest to many applied
researchers and we show how selection correction methods can be informally adapted for this purpose.

10To the best of our knowledge, the literature has not proposed an analytical variance estimator for two-stage
semiparametric selection correction models with clustered data. We follow typical empirical practice by using
the bootstrap, though this is problematic for our nonparametric first stage model (Abadie and Imbens, 2008).



3 Context, Data, and the Extent of Selection

We use student level data for two cohorts (2005 and 2008) of all first-time 11th graders attending
Michigan public high schools.'’ Using the last pre-policy cohort (2006) and first post-policy
cohort (2007) would minimize demographic differences between the samples. However, the
policy was piloted in some schools in 2006, and not all districts implemented the reform in
2007. Given these challenges with the 2006 and 2007 cohorts, our main analysis uses the 2005
and 2008 cohorts. Our results are robust to using the 2006,/2007, 2006/2008, and 2005/2007
cohort combinations (see Appendix Figures 12, 13, and 14).

3.1 Data

We use student-level administrative data from the Michigan Department of Education (MDE)
that cover all first-time 11th grade students in Michigan public schools. The data contain the
time-invariant demographics sex, race, and date of birth, as well as the time-varying charac-
teristics free and reduced-price lunch status, limited-English-proficiency status (LEP), special
education status (SPED), and student home addresses. The data also contain 8th and 11th
grade state assessment results in multiple subjects. We match the MDE data to student-level
ACT and SAT information over the sample period and to the driving distance between stu-
dents’ home during 11th grade and the nearest ACT test center.!? See Appendix A for more
information about our data and sample definition.

Table 1 shows sample means for the combined sample (column 1) and separately for the two
cohorts of interest (columns 2 and 5). Four patterns are visible. First, the fraction of students
taking the ACT jumped discontinuously from 2006 to 2007 when the policy was introduced.
The ACT-taking rate rose from 64.1% in 2005 to 98.5% in 2008.'® Second, mean ACT scores did
not vary across years within each policy period: they are almost identical in 2005 and 2006 and
in 2007 and 2008. This suggests that cohort-level latent achievement was stable through time,
supporting our claim that differences in observed ACT scores reflect changes in ACT-taking

rather than changes in composition.

HThroughout the paper, we refer to academic years using the spring year (e.g., we use 2008 for 2007-08).

12If a student took the ACT multiple times, we use their first score. If a pre-policy student took the SAT but
not the ACT, we convert their score into ACT scale using the standard concordance table.

13Michigan’s policy required 95% of students in each school to take the ACT for accountability purposes but
did not require that individual students took the exam to graduate high school. This explains why 1.5% of
students did not take the ACT exam even after the policy change.

10



Table 1. Sample Means of Michigan 11th Grade Cohorts

2005 and 2005 2006 2007 2008  08-05 Diff P-Value
2008 Cohort ~ Cohort  Cohort  Cohort  (5)-(2) (6)=0

(1) (2 (3 4 (5) (6) (7
Demographics
Female 0.516 0.514 0.515 0.517 0.517 0.003 0.226
White 0.790 0.805 0.792 0.782 0.775 -0.030 0.000
Black 0.145 0.132 0.148 0.154 0.158 0.026 0.000
Hispanic 0.029 0.027 0.027 0.029 0.031 0.004 0.000
Other race 0.035 0.036 0.033 0.034 0.035 0.000 0.600
Free or reduced lunch 0.242 0.204 0.231 0.256 0.279 0.075 0.000
Local unemployment 7.518 7.285 7.064 7.329 7.745 0.460 0.000
Driving miles to nearest
ACT test center 3.71 4.87 4.61 2.59 2.58 -2.29 0.000
Took SAT 0.058 0.076 0.069 0.047 0.039 -0.037 0.000
SAT Score 25.2 24.8 24.6 25.6 259 1.0 0.000
Took SAT & ACT 0.054 0.070 0.064 0.046 0.039 -0.031 0.000
Took ACT or SAT
All 0.815 0.641 0.663 0.971 0.985 0.345 0.000
Male 0.793 0.598 0.621 0.969 0.984 0.387 0.000
Female 0.836 0.681 0.702 0.973 0.986 0.305 0.000
Black 0.780 0.575 0.608 0.905 0.947 0.372 0.000
White 0.822 0.652 0.674 0.985 0.993 0.341 0.000

Free or reduced lunch 0.749 0.434 0.483 0.936 0.970 0.536 0.000
Not free/reduced lunch 0.838 0.693 0.717 0.983 0.991 0.299 0.000

Low grade 8 scores 0.747 0.474 0.513 0.972 0.979 0.505 0.000
High grade 8 scores 0.875 0.778 0.789 0.971 0.991 0.213 0.000
First ACT or SAT Score
All 19.9 20.9 20.8 19.2 19.3 -1.6 0.000
Male 19.9 21.0 20.9 19.1 19.2 -1.8 0.000
Female 19.9 20.7 20.6 19.2 19.3 -1.4 0.000
Black 16.0 16.8 16.6 15.8 15.6 -1.2 0.000
White 20.6 214 21.5 19.8 20.0 -1.5 0.000
Free or reduced lunch 17.1 18.3 18.0 16.7 16.8 -15 0.000
Not free/reduced lunch 20.7 21.3 21.3 20.0 20.2 -1.1 0.000
Low grade 8 scores 16.8 17.8 17.6 16.4 16.3 -1.4 0.000
High grade 8 scores 22.1 22.4 225 21.6 21.8 -0.6 0.000
Number of Students 197,014 97,108 99,441 101,344 99,906

Notes: The sample is first-time 11th graders in Michigan public high schools during 2004-05 through
2007-08 who graduate high school, do not take the SPED 11th grade test, and have a non-missing home
address. Free or reduced-price lunch lunch status is measured as of 11th grade. Low (high) grade 8
scores are below (above) the median score in each sample.
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Third, ACT-taking rates increased more for student groups with lower pre-policy rates: black
students, free lunch-eligible students, and students with low 8th grade test scores. These same
groups saw weakly larger drops in their mean scores. This shows that groups of students pre-
policy positively selected into ACT-taking based on their latent ACT scores, and that the policy
largely eliminated this selection. Fourth, student demographics changed smoothly through time
with no jump at the policy change. The percentage of black and free lunch-eligible students
rose, as did the unemployment rate. Our comparisons account for this shift by reweighting
the post-policy cohort to have the same distribution of observed characteristics as the pre-
policy cohort (DiNardo, Fortin, and Lemieux, 1996).' This adjustment does not account for

cross-cohort differences in unobserved latent ACT score predictors.

3.2 Modeling ACT-Taking

The two-stage selection correction methods are identified either by functional form assumptions,
which are seldom viewed as credible in empirical work, or by an exclusion restriction, a variable
that predicts ACT-taking but not latent test scores. We use the driving distance from each
student’s home to the nearest ACT test center to provide an exclusion restriction. We assume
that students with easier access to a test center have a lower cost and hence higher probability
of taking the test but do not have systematically different latent test scores, conditional on the
other test score predictors.’®> We show below that driving distance strongly predicts test-taking
and does not predict scores on non-ACT tests, supporting the exclusion restriction. Appendix
Table 1 shows percentiles of the distance distribution by period and by urban/rural status.
This exclusion restriction follows closely from prior research on education participation (Card,
1995; Kane and Rouse, 1995). We do not claim that the exclusion restriction is perfect, but
rather that it is consistent with common empirical practice. This is the appropriate benchmark
if we aim to inform empirical researchers’ choice of selection correction methods, conditional
on the type of instruments typically available.

We test if distance robustly predicts ACT-taking. Using pre-policy data, we estimate a probit

regression of ACT-taking on a quadratic in distance. A quadratic allows the marginal cost of

4Qur reweighting model includes indicators for individual race, gender, special education status, limited
English proficiency, and all interactions; school means for the same four variables, urban/suburban/rural location
and all interactions; and district enrollment, pupil-teacher ratio, local unemployment rate and all interactions.
Results are robust to alternative reweighting models or not reweighting.

15Bulman (2015) finds SAT-taking rises when schools offer the SAT, supporting the first assumption.
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ACT-taking to vary with distance, accounting for fixed costs of travel or increasing marginal
cost of time. We report the results in Table 2. Without controlling for any other predictors,
the distance variables are jointly but not individually significant (x* = 12.54, p = 0.002). The
relationship grows stronger as we control for student demographics, school- and district-level
characteristics, and student scores on other tests (x* = 25.15, p < 0.001). The controls account
for low test-taking by disadvantaged students who live in dense urban areas where distances
to test centers are small. The probability of ACT-taking falls with distance, dropping by 4
percentage points with a move from the 5 to the 95" percentile of driving distance to the
nearest ACT test center (14.1 miles). The instrument passes standard tests for instrument
strength, though these tests are developed for linear two-stage least squares models (Stock
and Yogo, 2005). We return to the interpretation of the instrument in Section 5, including a
discussion of identification at infinity.

We also use a placebo test to assess whether distance predicts latent achievement. We
regress the average of students’ 11th grade math and English test scores on the quadratic in
distance, reporting results in columns 5-8 of Table 2. Distance to a test center is associated with
higher scores but this relationship disappears when we control for other student characteristics
(x*=1.30, p=0.480). This shows that distance predicts ACT-taking but not latent academic

performance, providing reassurance about the exclusion restriction’s validity.

3.3 Describing Selection by Comparing Pre- & Post-Policy Score Distributions

In this subsection, we compare the observed pre- and post-policy ACT score distributions to
describe pre-policy selection into ACT-taking. Positive/Negative selection occurs if pre-policy
scores are systematically higher/lower than post-policy scores. Researchers using selected test
scores often assume that all non-takers would score below some percentile in the observed
distribution (Angrist, Bettinger, and Kremer, 2006) or below all takers (Krueger and Whitmore,
2001). We assess the plausbility of these assumptions in our setting.

We estimate the latent ACT score distribution for non-takers by subtracting the number
of test-takers with each ACT score in the pre-period from the number with each score in the
post-period. We reweight the post-policy cohort to have the same number of students and
distribution of observed characteristics. If the reweighting accounts for all latent test score

predictors that differ between periods, then the difference in the number of students at each

13
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Figure L. Frequency Distribution of Observed and Latent ACT Scores by Period
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Notes: Figure shows the number of students attaining each ACT score in the pre-policy period (dashed line with blue circles) and the
number of students attaining each ACT score in the post-policy period (solid line with red squares) after reweighting the post-policy
data to have the same distribution of observed covariates as the pre-policy data (DiNardo et al., 1996). The difference between the two
numbers (dotted line with green triangles) is a possible measure of how many pre-policy non-takers would attain each ACT score. We
display frequencies rather than densities to demonstrate the change in the number of ACT takers from the pre- to post-policy period.

ACT score equals the number of non-takers with that latent score.'6

Figure 1 plots the frequency distribution of ACT scores pre-policy, the reweighted post-policy
distribution of scores, and the difference, which proxies for the latent scores of non-takers pre-
policy.!” The observed test score distribution is approximately normal, reflecting the test’s
design. The non-takers’ test score distribution is shifted to the left. The mean pre-policy ACT
score is 1.3 points or 0.27 standard deviations higher than the mean post-policy ACT score.
Almost 60% of takers achieve the ACT’s “college-readiness” score, while less than 30% of the
non-takers would do so. However, some non-takers have high latent scores: 68% and 24% of
the latent scores exceed the 10th and 50th percentiles of the observed score distribution.

There is clear positive selection into ACT-taking, but less than that assumed in prior stud-

16Hyman (2017) conducts a more extensive version of this analysis, measuring the number of students in the
pre-policy cohort who have college-ready latent scores but do not take a college entrance test. He also examines
the effect of the mandatory ACT policy on postsecondary outcomes.

17 Appendix Table 2 reports moments and percentiles of the three distributions.
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ies. Angrist, Bettinger, and Kremer (2006) and Krueger and Whitmore (2001) use Tobit and
bounding analyses by assuming that all non-takers would score below specific quantiles of the
observed distribution. In our data, this type of assumption would hold only at very high
quantiles, generating uninformative bounds. We conclude that selection corrections relying on
strong assumptions about negative selection are not justifiable in this setting.

The substantial number of individuals with high latent outcomes selecting out of participation
is not unique to our setting. For example, Bertrand, Goldin, and Katz (2010) show that women
who temporarily leave the labor market are not negatively selected on predictors of latent wages.
Similarly, high-income respondents routinely decline to report incomes on surveys, generating
positive selection. We do not believe that the pattern of selection shown in Figure 1 weakens

the generalizability of our results.

4 Results

4.1 Comparing Sample Selection Corrections

In this section, we evaluate the performance of multiple selection correction methods. We
estimate the selection-corrected means from the pre-policy ACT score distribution using the
methods described in Section 2.2 and Appendix B. We construct the benchmark distribution
from the post-policy ACT score distribution using the methods described in Section 2.3. We
report all results in Table 3 and summarize these results in Figure 2.

In Table 3, we report the mean for the raw post-policy ACT score distribution (column 1),
the reweighted post-policy distribution (column 2), and the reweighted post-policy distribution
with missing scores replaced by predicted scores (column 3). These provide three measures, as
discussed in Section 2.3, of the benchmark latent ACT distribution to which we compare the
selection-corrected pre-policy ACT distribution. For example, the mean ACT score is 19.25 in
the raw post-policy data, 19.73 after reweighting, and 19.56 after predicting missing values.!®
We report the mean from the observed distribution in column 4 and from the selection-corrected
distributions in columns 5-12. Readers can directly compare these selection-corrected statistics
to their preferred benchmark in columns 1-3.

Our first selection correction method uses a simple linear regression adjustment: we regress

18Reweighting raises the mean because the fraction of students eligible for free and reduced-price lunch is
higher post-policy. The predicted mean is slightly lower than the reweighted mean because the 1.5% of students
who do not take the ACT post-policy period are negatively selected on observed characteristics.
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observed test scores on a vector of student demographics and use the coefficients to predict
test scores. The mean of the predicted values using OLS is 20.67 (standard error 0.10), shown
in column 5. So OLS closes only 11% of the gap between the observed mean of 20.86 and
the reference mean of 19.56. The poor predictive fit is unsurprising, as there is substantial
heterogeneity within each conditional mean cell (e.g., within race groups) that we do not yet
model.!?

Our second selection correction is a Type 1 Tobit model, censoring at the 36th percentile of the
post-policy ACT score distribution, as the test-taking rate in the pre-policy period is 64%. The
predicted mean is similar to that from OLS. We next show results from the Heckman two-stage
correction procedure in columns 7 and 8. When the test-taking model does not use an exclusion
restriction, the mean predicted score is essentially identical to that predicted by OLS. Adding
driving distance from students’ home to the nearest ACT test center as a predictor of test-
taking does not change the predicted mean ACT score. Finally, we implement the two-stage
semiparametric sample selection corrections: the Newey and Powell models, each estimated
using both the semiparametric and nonparametric first stages, including the driving distance
instrument in all cases. See Appendix B for details on how we implement these estimators,
including the data-driven choice of predictors in the series logit and functional form of the Newey
correction term. We report the results using the Newey correction in columns 9 (semiparametric
first stage) and 10 (nonparametric first stage). These results are almost identical to those from
the Heckman correction, very similar to those from the OLS and Tobit corrections, and robust
across different orders of polynomial selection correction terms. The Powell model yields similar
results (with semiparametric first stage in column 11 and nonparametric first stage in column

12) and is marginally more biased with the nonparametric than the semiparametric first stage.

4.2 Comparing Selection Corrections’ Performance with Different Predictors

We now examine whether a researcher who has access to school- and district-level covariates
(such as demographics, urbanicity, and average 8th and 11th grade test scores) can do a better
job at correcting for selection in ACT scores. We report these results in the second row of
Table 3. Adding these controls moves the predicted mean closer to the reference mean for all

methods. However, the predicted means still exceed the reference mean by at least 0.6 ACT

19 Appendix Figure 1 shows the complete, selected, and latent test score distributions for subsamples by race
and poverty, using the same approach as Figure 1. The latent score distributions for all subsamples span a
similar range to the full sample, and remain quite skewed.

18



Figure II. MSE Comparison Across Correction Methods and Covariate Sets
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Notes: Figure shows the mean squared error of each combination of correction method and covariate set from Table 3. Black (top):
basic student demographics; Red (middle): plus school- and district-level covariates; Blue (bottom): plus student 8th and 11th grade
test scores. Bias is the difference between the statistic predicted by a) the correction method applied to the pre-policy data and b) the
post-policy, DFL-weighted, fitted distribution.

points (equal to 0.27 standard deviations). There is again no evidence that the semiparametric
models outperform the parametric or single-equation models.

Finally, we include student-level 8th and 11th grade test scores in the prediction model.
These data are often available to state education administrators, though researchers seldom
have them matched to students’ college entrance test scores. We report these results in the third
row of Table 3. All the corrections perform much better using the student-level scores in the
prediction. This reflects the strong relationship between students’ past and contemporaneous
achievement, ACT-taking, and ACT scores. The predicted means are mostly within 0.2 ACT
points of the reference mean, though the Tobit and semiparametric Powell correction perform
worse. Although the skewness of the latent test score distribution visible in Figure 1 caused
serious problems for models with few predictors, this problem is much less serious with richer

predictors.?? The predicted mean is closest to the reference value for the nonparametric Powell

20We also implement this exercise using 8th grade test scores as predictors but omitting 11th grade test scores.
The relative predictive accuracy of different models, reported in Appendix Table 11, is unchanged.
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model. The more flexible models do not robustly outperform the parametric models, single-
equation models, or even simple OLS.?!

We summarize these results in Figure 2. We show each of the 24 predicted ACT means gener-
ated by the 8 selection correction models and 3 predictor sets in a bias-variance scatterplot. This
allows us to visually compare the bias and variance of the model-predictor combinations. Points
closer to the origin estimate the mean with lower mean squared error. The predictions relying
on only student demographics (black points) or student demographics and school-/district-level
characteristics (red points) are consistently high on the bias axis, reflecting their poor ability to
replicate the benchmark ACT mean. The predictions that include student test scores are less
biased and have similar variance. Within each covariate set, there is little variation in bias or
variance across different selection correction methods, except the semiparametric Powell correc-
tion, which has consistently higher variance. This figure clearly demonstrates that if we seek to
minimize mean-squared error (or any reasonable weighted average of bias and variance), better
data is valuable and more flexible methods are less so. In particular, our results show that
robustness of results to different modeling choices, a common feature of empirical papers, is

not necessarily reassuring.

4.3 Comparing Selection Corrections on Other Criteria

We estimate the parameter vector from a linear regression of the non-missing pre-policy ACT
scores on the predictors for each of the 8 selection correction models and 3 predictor sets.
We compare each of these to the estimated parameter vector using the complete test scores
from the post-policy period and interpret this as a measure of how well each correction model
addresses selection-induced bias in parameter estimates. We discuss these comparisons in detail
in Appendix C. In brief, we find that the mean-squared bias across all parameter estimates is
lower with richer sets of predictors but not for more flexible econometric models. We observe the
lowest mean squared bias with OLS (i.e. without any selection correction). We conclude that
for both prediction and parameter estimation, the gains from using less restrictive econometric

methods are small relative to the gains from seeking richer or more disaggregated data. We

21'We conduct several robustness checks where we further vary the set of predictors. We describe these
checks in Appendix D with results presented in Appendix Table 12. Our main findings are robust to including
squared and interacted predictors in the ACT-taking and ACT score models, using different combinations of the
individual, school-, and district-level predictors, and relaxing the assumption that the predictors and selection
correction terms are additively separable in the ACT score model.
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find a similar result when we compare the full distribution of selection-corrected pre-policy test

scores to the post-policy distribution.

4.4 Comparing Selection Corrections for Different Subgroups

We also evaluate how well individual-level selection correction models predict the mean latent
test score for four subgroups. This is of interest for two reasons. First, researchers, adminis-
trators, and policymakers are interested in latent scores for key student subgroups in addition
to the full population. Second, econometricians, applied and theoretical, are interested in how
well selection correction models perform across different data generating processes. The latent
ACT score distributions, ACT-taking rates, and the distributions of predictors differ substan-
tially for black, white, low-income, and higher-income students (see Appendix Figure 1). If the
main pattern of results that we find for the overall sample holds across these subgroups, this
shows that the results are not specific to a single data generating process and may be more
generalizable. Reassuringly, we find that the main results hold across different subgroups. For
all subgroups, as in the overall sample, we find that the choice of correction method makes
little difference, but that corrections perform substantially better when including richer covari-
ates (see Appendix Figure 7 and Appendix Table 10). This robustness across different data
generating processes addresses some concerns about the generalizability of our findings.

We present results for all eight selection correction models estimated separately by race and
free-lunch status, using the full set of predictors, in Table 4 (summarized in Appendix Figure
2). There are large gaps in mean observed ACT scores between black and white students and
between low-income and higher-income students in the pre-policy period. In the post-policy
period, the test-taking rate rises for all groups. The gap in the test-taking rate between low-
income and higher-income students narrows, but the gap between black and white students
remains approximately constant. The rise in test-taking rates is associated with a fall in mean
test scores for all four subgroups. All selection correction models, applied to all four subgroups,
raise the predicted mean score relative to the observed data. However, many of the models
overestimate the predicted mean, particularly for black and low-income students. The gaps
in performance by race and by income are therefore underestimated; some models actually
estimate gaps that are farther from the truth than the observed gap. This pattern is more
pronounced for the income gap than the race gap.

What might explain this result? Recent research shows that past achievement is less pre-
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Table 4. Race and Poverty Gaps in Mean Latent ACT Scores by Correction Method

Black White Gap Poor Non-Poor Gap
) 2 3 4 5) (6)
Post-Policy

Raw 15.61 19.98 4.38 16.77 20.19 3.42
DFL 15.95 20.28 4.33 16.84 20.46 3.62
oLSs 15.86 20.27 4.41 16.78 20.43 3.65

(0.26) (0.11) (0.28) (0.08) (0.12) (0.12)

Pre-Palicy

Raw 16.76 21.44 4.68 18.29 21.28 3.00
oLS 16.04 20.07 4.03 17.21 20.12 291

(0.19) (0.08) (0.20) (0.08) (0.09) (0.10)
Tobit 15.87 19.79 3.92 16.94 19.90 2.95

(0.19) (0.08) (0.20) (0.09) (0.09) (0.11)
Heckman 16.08 20.18 4.10 17.31 20.22 2.91
(with IV) (0.18) (0.08) (0.19) (0.09) (0.09) (0.11)
Newey - 16.05 20.22 4.17 17.31 20.25 2.93
Series Logit (1.42) (0.08) (1.43) (0.10) (0.09) (0.11)
Newey - 16.00 20.16 4.16 17.15 20.18 3.03
Nonparametric ~ (0.18) (0.08) (0.19) (0.09) (0.09) (0.11)
Powell - 16.27 20.41 4.14 17.39 20.46 3.06
Series Logit (0.20) (0.11) (0.22) (0.11) (0.10) (0.13)
Powell - 16.12 20.17 4.05 17.41 20.22 2.80
Nonparametric ~ (0.19) (0.08) (0.21) (0.09) (0.09) (0.11)

Notes: The sample is as in Table 3. The table reports means of the predicted ACT score
from regressions of ACT scores on the full set of covariates, including student-level 8th and
11th grade test scores. The predicted ACT score is calculated for ACT-takers and non-
takers. Poverty status is proxied for using free or reduced-price lunch receipt measured
during 11th grade. Standard errors calculated using 500 bootstrap replications resampling
schools.
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dictive of college application behavior among disadvantaged groups (Avery and Hoxby, 2013;
Hyman, 2017; Dillon and Smith, 2017). This is consistent with our results. Among white and
higher-income students we find that the corrections perform quite well after conditioning on
student test scores, suggesting that such test scores are strongly predictive of ACT-taking and
ACT scores. The fact that the models perform substantially worse among black and lower-
income students even after conditioning on student test scores, suggests that such scores are
less predictive of ACT-taking, which is a critical piece of the college application process.
Alternatively, the worse prediction among disadvantaged groups may reflect the nature of
the quasi-experiment we study. Students required to take the ACT by a mandatory testing
policy who do not anticipate applying to a four-year college may not exert as much effort as
students who take the test voluntarily. Our selection corrections predict latent scores for these
students using observed characteristics and a distance instrument that shifts the cost of taking
the ACT but not the value of performing well in the ACT. This selection correction strategy
will imperfectly account for heterogeneity in effort on the ACT. We risk predicting incorrectly
high ACT scores for non-takers, particularly non-takers from disadvantaged groups with lower
probabilities of attending college conditional on observed characteristics. This hypothesis would
explain both our overprediction of ACT scores for disadvantaged subgroups (see Table 4) and
our slight overprediction of ACT scores on average (see Table 3). However, we find no difference
between periods in the share of students with the precise score they would obtain by random
guessing. This shows that the students induced to take the ACT by the mandatory testing
policy are not more likely to exert very low effort on the test. Even if this hypothesis holds, it

does not explain why we see similar performance across different selection correction methods.

5 Explaining Similar Results across Different Corrections

Section 4 shows that different selection corrections methods predict similar mean ACT scores
despite their different assumptions. In this section, we explore possible economic and statistical
explanations for the similarities.

We begin by noting that different methods predict similar student-level ACT-taking and
scores as well as similar mean ACT scores. Table 5 reports summary statistics for the predicted
probabilities of taking the ACT for all first stages (probit with and without instruments, series

logit, nonparametric) and the three predictor sets. The student-level predicted probabilities are
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very similar across the series logit and the two probit models, with correlation coefficients > 0.93.
The correlations between the nonparametric model and other models are still > 0.84. These
high correlations help to explain the similarity of the predicted ACT score distributions across
the different corrections. The student-level predicted ACT scores are also very highly correlated
across models (see Appendix Table 5). The different correction models generate predicted ACT
scores with correlations > 0.97 when using only student demographics as predictors. Including
student test scores and school- and district-level characteristics leaves all correlations > 0.95.
Table 5 also shows that the predicted probabilities cover the whole unit interval only if we
use the richest set of predictors. When only student demographics are used as predictors, the
predicted values from all models are coarse and seldom near 0 or 1. This limited variation
in the predicted probabilities of ACT-taking contributes to the poor performance of selection
corrections using weak predictors.

This shows that the similarity in predicted mean ACT scores and coefficients in ACT re-
gressions is explained by similar student-level predicted test-taking probabilities and scores.
But why do the different corrections deliver such similar predictions? We consider and reject
four possible explanations. First, there may be no sample selection problem. If test-taking is
not influenced by unobserved characteristics that also influence test scores, then the selection
corrections are unnecessary. We can reject this explanation. The distributions of observed and
latent scores in Figure 1 show clear evidence of negative selection into test-taking. Further, the
selection correction terms in both the Heckman and Newey models are large and significant
predictors of ACT scores (see Appendix Tables 6, 7, and 8).%

Second, there may be a sample selection problem, but the structure of the problem may satisfy
the parametric assumptions of the Tobit or Heckman models. In particular, the Heckman model
is appropriate if the unobserved factors determining ACT scores and ACT-taking are jointly
normally distributed. The latent test score distribution in Figure 1 is not normal, and we verify
this with parametric (skewness-kurtosis) and nonparametric (Kolmogorov-Smirnov) normality

tests.? The latent distribution is also non-normal conditional on demographic characteristics

22The inverse Mills ratio term in the Heckman model has a zero coefficient if the unobserved determinants
of test-taking and test scores are uncorrelated. We reject the hypothesis of a zero coefficient for models with
all combinations of the predictors and the instrument (p < 0.001). The coefficients are large: moving from the
5th to the 95th percentile of the predicted probability of ACT-taking shifts the ACT score by 10-13 points. We
also test if the coefficients on all of the polynomial correction terms in the Newey model are zero. We reject
this hypothesis for all combinations of predictors (p < 0.005).

Z3The rejection of normality is not explained by our large sample size. We also consistently reject normality
for random 1% subsamples of the data.
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(see Appendix Figure 1) and the threshold censoring assumed by the Tobit model clearly does
not hold, even conditional on demographic characteristics. We also test the assumption that
the unobserved factors that affect latent test scores are normally distributed: we regress post-
policy test scores on each of the three sets of predictors, generate the fitted residuals, and test
whether they are normally distributed. We reject normality of all three sets of residuals using
both Kolmogorov-Smirnov and skewness-kurtosis tests (p < 0.001 in all cases). We conclude
that the structure of the selection problem, given the specification of the predictors, does not
satisfy the joint normality assumption.?*

Third, there may be sample selection that violates the parametric models’ assumptions, but
the test-taking predictors may be too coarse for the semiparametric models to perform well.
Some semiparametric models are identified only if at least one predictor is strictly continuous
(Ichimura, 1993; Klein and Spady, 1993). The series logit and Mahalanobis matching models
we use do not have this requirement but their performance may still be poor if the data are all
discrete or coarse. Coarse data may generate predicted probabilities that do not span the unit
interval, limiting the effective variation in the selection correction terms.?” This can explain
the similarity in the ACT scores predicted by different models using only the discrete student
demographics. But it does not explain the similarity across models using the richer set of
predictors. The 8th and 11th grade student test scores are relatively continuous variables,
which have respectively 1270 and 213 unique values, with no value accounting for more than
respectively 1.3% and 2.5% of all observations.

Fourth, there may be a sample selection problem whose structure violates the assumptions of
the parametric models, but the instrument may not be strong enough for the semiparametric
models to perform well. The instrument satisfies conventional instrument strength conditions
and does not predict other 11th grade test scores. However, the instrument does not satisfy

“identification at infinity” (see Appendix B).?® This means we can identify the slope coefficients

24 As joint normality is a sufficient but not necessary condition for identification in the Heckman model, this
test should be viewed as only partial evidence against the validity of the model assumptions.

25We show in Appendix Figure 3 that the predicted probability of ACT-taking has a narrow distribution and
is linear in the predictors when we use only student demographics. This helps explain why two-stage corrections
using only student demographics perform poorly: the correction terms are highly colinear with the predictors
in the ACT regression. This relationship becomes nonlinear when we use richer predictor sets.

26In the probit model with the full set of predictors, moving from the 5th to the 95th percentile of the
instrument (14.1 miles) lowers the probability of test-taking by 4 percentage points. The relationship is similar
for the series logit model. Standard identification arguments for Sy require an instrument that shifts the test-
taking probability from 0 to 100 (Andrews and Schafgans, 1998; Chamberlain, 1986; Heckman, 1990).
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in equation (1a) but cannot separately identify the intercept coefficient Sy from the level of the
selection correction term. This is not necessarily a problem for our analysis, which examines the
mean predicted test score and is not interested in separating the intercept coefficient from the
selection correction term. We view this as a natural feature of semiparametric selection models
in many settings, rather than a feature specific to this application. The relationship between
our instrument and participation measure is at least as strong as in many classic education
applications (Card, 1995; Kane and Rouse, 1995). However, we acknowledge that the relative
performance of different selection models may differ when an extremely strong instrument is
available that permits identification of fy.

We conclude that there is a selection problem whose structure is not consistent with the
assumptions of the parametric models and that the data are continuous enough to use semi-
parametric analysis. The instrument does not support identification of the intercept coefficient
in the ACT model but this does not explain why parametric and semiparametric methods per-
form similarly well at estimating slope coefficients. It appears that the violations of the more

restrictive models’ assumptions are not quantitatively important in this setting.?”

6 Conclusion

Sample selection arises when outcomes of interest are not observed for part of the population and
the latent outcomes differ for the cases with observed and unobserved values. Econometricians
and statisticians have proposed a range of parametric and semiparametric methods to address
sample selection bias, and applied researchers routinely implement these methods, but there
is little evidence on their relative performance. We use a Michigan policy that changed ACT-
taking for 11th graders from voluntary to required to observe partially missing outcomes for
one cohort and complete outcomes for another cohort. We evaluate how well different selection
corrections, applied to the partially missing outcomes, can match the complete outcomes.

We show that none of the sample selection corrections perform well when using only basic
demographic information as predictors. With more information about students, particularly
scores on state-administered standardized tests, simple OLS regressions perform well and there

are few gains from using more flexible selection correction methods. This result holds when

2TVella (1998) also finds that parametric and semiparametric selection models produce similar results even
when the assumptions of the parametric models fail. He uses real data but without a quasi-experimental
benchmark. However, Goldberger (1983), Heckman, Tobias, and Vytlacil (2003), and Paarsch (1984) show that
some parametric models perform poorly in simulations when their assumptions are violated.
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we evaluate selection corrections on their ability to predict the mean outcome, predict the
complete outcome distribution, or match the parameters of regression models estimated with
the complete data. Predictions are more accurate for white and higher-income students than for
black and lower-income students, leading to incorrect predictions of latent achievement gaps.
Finally, group-level correction methods perform poorly across different model specifications.
Aggregating the groups to increasingly refined cells, in particular cells defined by prior test
scores, substantially improves performance.

What, if any, more general implications can be drawn from our findings? Our results may not
generalize to very different settings, such as selection into wage employment (Heckman, 1974),
selection into education levels (Willis and Rosen, 1979), or selection into different occupations or
industries (Roy, 1951). However, two aspects of our results may be useful for other researchers.
First, we find that performance depends heavily on the richness of the predictors. Regressing
pre-policy ACT scores on the three sets of predictors — basic, district/school, and student test
scores — yields R? values of respectively 0.134, 0.198, and 0.614. Regressing ACT-taking on
the instrument and the three sets of predictors yields pseudo-R? values of 0.045, 0.088, and
0.223 respectively. Researchers estimating selection corrections with models that explain only
a small fraction of the variation in the outcome should be very cautious. In a labor economics
context, our results suggest that correcting wage distributions or regressions for selection will
work better when lagged wage data is available as a predictor.?® This reinforces findings in the
treatment effects literature emphasizing the importance of rich data for estimating treatment
effects in non-experimental settings (Heckman, Ichimura, Smith, and Todd, 1998; Heckman and
Smith, 1999).

Second, our findings are not limited to settings where the assumptions of parametric selec-
tion correction models hold. We find strong evidence of quantitatively important selection on
latent test scores, in a form that does not satisfy the assumptions of the parametric models we
implement. The predictors are continuous enough to allow semiparametric estimation, and the
instrument is comparable in strength to other widely-used instruments. This is a setting where
we would expect semiparametric models to outperform parametric models. However, the gains

from using these more flexible methods are minimal. Researchers who believe that parametric

28This echoes results in labor economics that lagged earnings are a particularly important control variable
when matching methods are used for program evaluation (Andersson, Holzer, Lane, Rosenblum, and Smith,
2016; Lechner and Wunsch, 2013). Though see Heckman and Smith (1999) for a cautionary discussion.
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model assumptions do not fit their application should not necessarily conclude that they will

do better by estimating more flexible methods.
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Quasi-Experimental Evaluation of Alternative Sample

Selection Corrections: Online Appendices

Robert Garlick* and Joshua Hyman!
November 25, 2018

A Data Construction and Additional Statistics

This appendix provides more information on how we construct the dataset and shows additional
summary statistics.

Matching data sources: We matched the MDE data with three other sources using a
restricted access computer at the MDE. First, using student name, date of birth, sex, race,
and 11th grade home zip code, we match the student-level Michigan data to microdata from
ACT Inc. and The College Board on every ACT-taker and SAT-taker in Michigan over the
sample period. For the pre-policy cohorts, we use students’ first ACT score, which is typically
from 11th grade, but in some cases is from 12th grade. For students taking the SAT but not
the ACT pre-policy, we convert their first SAT score into the ACT scale following published
concordance tables.

Second, we acquired from ACT Inc. a list of all ACT test centers in Michigan over the sample
period, including their addresses and open and close dates. We geocode student home addresses
during 11th grade and the addresses of these test centers to construct a student-level driving
distance from 11th grade home to the nearest ACT test center. When a student has multiple
addresses during 11th grade, we use the one with the shortest distance to a center. When
11th grade home address is missing, we use home address during the surrounding grades. The
~2% of students with a missing address during every high school grade are dropped from the
pre- and post-policy samples. Appendix Table 1 shows detailed summary statistics for driving

distance.
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Third, we matched unemployment rates at the city (when available) or county level from the
Bureau of Labor Statistics onto the school-level data.

Test scores: For the pre-policy cohorts, we measure students’” ACT scores using their first
attempt. This is typically from 11th grade, but in some cases is from 12th grade. For students
taking the SAT but not the ACT pre-policy, we convert their first SAT score into the ACT scale
following published concordance tables. Appendix Table 2 shows detailed summary statistics
for ACT scores. Appendix Figure 1 shows the distribution of observed pre- and post-policy
test scores and the difference between these, interpreted as a measure of the latent scores of
non-takers. Unlike Figure 1 in the main paper, this figure shows the distributions for subgroups
based on race and free lunch (in)eligibility.

We construct student-level 8th and 11th grade test scores from state-wide assessments. For
the 8th grade test score, we use the average of a student’s standardized math and English
scores. For 11th grade, we use standardized social studies scores because post-policy math and
English scores are in part determined by a student’s ACT score. If a student has missing test
scores, we replace the scores with zeros and include indicator variables for missing test scores
as predictors.

Sample restrictions: Our main analysis excludes the small number of students who do not
complete high school and students who take the special education version of the state-wide 11th
grade test. These students are not suited for our analysis because they are not required to take
the ACT in either period. Our results are robust to including them. The 2006 cohort includes
students in some schools where the mandatory ACT policy was piloted. When we analyze the
2006 cohort in Appendix D, we exclude these schools.

Additional statistics: Appendix Figure 2 graphically displays the test score gaps by race
and free lunch (in)eligibility observed in the reference distribution and estimated from the
selection-corrected pre-policy distributions. This displays the same information as Table 4 in a

more compact form.

B Selection Correction Models

This appendix elaborates on Section 2.2 of the main paper. We discuss each of the selection
correction models in more detail, explaining the different assumptions under which they yield

consistent estimators of 3, and discuss implementation of the semiparametric models. We sum-
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Appendix Table 2. ACT Score Distributions Pre- and Post-Policy

2005 Cohort
Takers Non-Takers 2008 Cohort

@ @ (©)

Moments
Mean 20.85 17.65 19.73
Variance 4.54 5.11 4.98
Skewness 0.31 1.01 0.42
Kurtosis 2.72 3.56 2.65
Percentiles
1st 12 10 11
5th 14 12 12
10th 15 12 14
25th 17 14 16
Median 21 16 19
75th 24 20 23
90th 27 25 27
95th 29 28 29
99th 32 33 32
Fraction Scoring>=20 0.588 0.285 0.482
K-S Test vs Column 1
D-Stat 0.335 0.117
P-Value 0.000 0.000
Number of Students 62,186 33,475 95,661

Notes: The sample is as in Table 1, except only the 2005 and
2008 cohorts. The reported number of students in the 2008 cohort
is adjusted to match the size of the 2005 cohort and also includes
only the 98.5% of the sample who take the ACT. Column (2)
reports the distribution of latent ACT scores of students not taking
the exam calculated using the methodology described in the text.
The K-S Test is a Kolmorogov-Smirnov non-parametric test of the
equality of the distributions.
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marize these models in Appendix Table 3 We do not evaluate imputation methods, bounding
methods, or methods focused on identification at infinity without instruments.!

The variances for all models are estimated using a nonparametric bootstrap that resamples
schools.? The bootstrap is not valid for the nonparametric first stage estimator we use (Abadie
and Imbens, 2008). However, to the best of our knowledge, the econometric literature does
not provide an analytical variance estimator for two-stage semiparametric selection correction
models with clustered data. We follow most applied researchers in using the bootstrap but

acknowledge that our variance estimates should be interpreted with caution.

B.1 Single-Equation Corrections for Sample Selection Bias (“OLS” and “Tobit”)

We begin with a simple single equation adjustment for sample selection bias using ordinary

least squares. Specifically, we estimate the model
ACT, = X6 + ¢ (1)

for the test-takers. This is a special case of system (1) where u; and ¢; are independent and
Pr(TAKE; =1|X;) > 0 for all X;. In this case, the probability of taking the ACT score may
depend on observed and unobserved characteristics, but these are independent of ¢; and so
there is no sample selection problem. Differences between the observed and latent distributions
occur only because the probability of test-taking and test scores jointly vary across observed
characteristics. For example, students from low-income households have both lower rates of
test-taking (in the pre-policy period) and lower test scores (in the post-policy period). The
assumptions for this special case will be violated if test-taking decisions and latent test scores
are jointly influenced by any unobserved characteristics, such as motivation.

We next estimate a single equation adjustment for sample selection bias adapted from Tobin
(1958). This “Type 1 Tobit” adjustment assumes that ¢; is homoskedastic and normally dis-
tributed and that students take the ACT if and only if their latent scores exceed some threshold

value ACT. Under these assumptions, we can assign the threshold score ACT to all students

Lewbel (2007) and D’Haultfoueille and Maurel (2013) propose methods that identify selection models with-
out instruments or parametric assumptions. Intuitively, both approaches rely on identifying a subsample of
students whose probability of taking the ACT is arbitrarily close to one. There is no missing data problem
within this subsample, which facilitates identification of the parameters of the outcome equation. Both ap-
proaches make assumptions that are unlikely to hold in our setting.

2 Analytical variance estimators have been developed for one-stage nonparametric estimators with clustered
data (Hanson and Sunderam, 2012) or two-stage nonparametric estimators with independent data (Mammen,
Rothe, and Schienle, 2016).
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who do not take the ACT, where ACT is the lowest score obtained by any test-taker. In prac-

tice, researchers generally set AC'T higher than the minimum observed value and then assign

the score AC'T to both students with missing scores and students with non-missing scores below

AC'T. This necessarily discards information for some test-takers, and discards more informa-
tion as AC'T is set higher. Under these assumptions, the parameter vector equals the minimizer

of the likelihood function

o 1 (1. (TAKE;, — X;8\\ " xp—act\) "
)~ T (Lo (A 50) ) (g (32T

=1

where the first and second terms of the likelihood reflect the observed ACT scores and the
probability of taking the ACT respectively. ¢(.) and ®(.) are the standard normal density and

distribution functions respectively. Differences between the observed and latent distributions

occur because no students with latent scores below ACT take the test. This set of assumptions
allows test-taking to depend on the unobserved characteristic €; but in a very restrictive way.
These assumptions will be violated if students with low latent scores take the test and/or
students with high latent scores do not take the test, perhaps due to heterogeneity in preferences

for going to college. The assumptions will also be violated if ¢; is not homoskedastic and

normally distributed, or if the threshold ACT is incorrectly specified. We set ACT equal to
the 34th percentile of the post-policy distribution of test scores, as the test-taking rate in the

pre-policy period is 64%. Results reported in Section 4 are robust to substantial changes in

this threshold.

B.2 Parametric Multiple-Equation Corrections for Sample Selection Bias (“Heck-

man” and “Heckman with IV”)

We estimate two variants of the bivariate normal selection model proposed by Gronau (1974)

and Heckman (1974, 1976, 1979). Both consider the system
ACT, = X;B + oupeu (Ziy) + € it TAKE! >0 (3a)
1 if TAKE; >0

TAKE; = (3c)
0 if TAKE <0



where ¢; and u; are jointly normally distributed and homoskedastic, and ¢(.) and ®(.) are the
standard normal density and distribution functions respectively. Under the assumption of joint
normality, the non-zero conditional mean error function E [ACT;|X;] = X;0+E [u; > —X;0 — Z;7]
is a linear function of the inverse Mills ratio. Hence, estimating a probit regression of TAK F;
on (X;, Z;) and equation (3a) by ordinary least squares provides a consistent estimator of 5. We
estimate equation (3b) using only X; as predictors (“Heckman”) and also including a set of in-
struments Z; that are excluded from equation (3a) and assumed not to affect test scores directly
(“Heckman with IV”). The former approach generally performs poorly in Monte Carlo simu-
lations because the inverse Mills ratio is approximately linear for most of its support (Puhani,
2002). We report the coefficient estimates for equation (3b) in Appendix Table 4. In Appendix
Figure 3 we show that the inverse Mills ratio is roughly linear when we use only demographic
predictors but convex in X0+ Z;¥ when we use richer predictors.

This approach allows ACT-taking and ACT scores to depend jointly on both observed and
unobserved characteristics. Unlike the Tobit model, the Heckman model allows the thresh-
old score to vary with X;, u;, and potentially Z;. This imposes few behavioral or economic
assumptions but requires a strong statistical assumption on the joint distribution of ¢; and
u;. The approaches discussed in Appendix B.3 are all attempts to relax these distributional

assumptions.?

B.3 Semiparametric Multiple-Equation Corrections for Sample Selection Bias

(“Newey” and “Powell”)

We now consider models of the form

ACT] = XiB+h(§(Xi, Zi)) + & (4a)
1 if TAK'E;k >0

TAKE;, = (46)
0 it TAKE? <0

where ¢(.,.) and h(.) are potentially unknown functions, and we do not assume a specific

distribution for €; or u;. There are a wide range of semiparametric sample selection correction

3Several authors propose extensions of the bivariate normal selection model that yield consistent estimators
under alternative parametric assumptions: uniform (Olsen, 1980) or Student-t (Lee, 1982, 1983) error distri-
butions, or normal but heteroskedastic error distributions (Donald, 1995). Results for alternative parametric
models, not reported in this version of the paper, are almost identical to those from the Heckman model.
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Appendix Figure I1I: IMRs vs Linear Predictions From Probits

(a) No IV - Student Demographics (b) IV - Student Demographics
7
s 3 Y 1 3 5 5 3 B 1 3 5
Linear prediction Linear prediction
(¢) No IV - Plus School Covariates (d) IV - Plus School Covariates
5 T B i 3 5 5 T B i 3 5
Linear prediction Linear prediction
(e) No IV - Plus Student Scores (f) IV - Plus Student Scores
) ) i
5 3 Y 1 3 s 5 3 1 i 3 5
Linear prediction Linear prediction

Notes: Figures plot the inverse Mills ratio against the linear prediction from the first stage Heckman corrections, with and
without an IV and by predictor set. This demonstrates that the student test scores and school- and district-level predictors
generate substantial nonlinearity in the inverse Mills ratio. This nonlinearity facilitates separate identification of the selection
correction term and the predictors in the ACT score model.

11



Appendix Table 4: First Stage Results

Coef. Std. Err.

Student-Level

Distance (Miles) -0.007 0.001
Distance Squared ( / 10) 0.003 0.001
Free Lunch -0.111 0.005
Female 0.067 0.003
Black 0.106 0.009
Hispanic -0.004 0.012
Other Race 0.084 0.011
8th Grade Test Score 0.114 0.003
11th Grade Test Score 0.147 0.002
School-Level
Average Class Size 0.000 0.000
Percent Free Lunch 0.001 0.034
Percent Black -0.003 0.087
Grade 11 Enrollment 0.000 0.000
Average 8th Grade Score 0.127 0.020
Average 11th Grade Score 0.020 0.016
District-Level
Suburb 0.006 0.011
Town 0.025 0.015
rural 0.034 0.013
Grade 11 Enrollment 0.000 0.000
Average Class Size -0.005 0.002
Percent Free Lunch -0.081 0.041
Percent Black 0.171 0.092
Student-Counselor Ratio 0.000 0.000
Local Unemployment Rate -0.003 0.002

Notes: Table shows marginal effects from the first
stage probit regression of a dummy for whether a
student takes the ACT or SAT on student, school, and
district demographics and test scores.
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models (Pagan and Ullah, 1999), all of which use some “flexible” procedure to estimate the
first stage model Pr(TAKE; = 1|X;, Z;) and to approximate the selection correction function
h(g(X;, Z;)). We consider two approaches to estimating the first stage and two approaches to
dealing with the selection correction function.

Our first ACT-taking model is a series logit model, following Hirano, Imbens, and Ridder
(2003). We assume that we can approximate g (X;, Z;) using polynomial expansions in X; and

Z;, inside a logistic link function:

P K p Q
Pr (TAKEi = 1) =L (Z ( GkXM) + Zszf) (5)

p=1

We observe multiple predictors X 1, ..., X; i, so we include polynomial terms in each element
of X; and interactions between the elements of X;. We observe only a single instrument Z;, so
we include only polynomial terms of the instrument. Higher values of P and Q achieve a closer
fit to the data and hence reduce the bias of the coefficient estimator but at the cost of higher
variance.

We choose the orders P and () of the two series to minimize the mean squared prediction
error of the logistic regression using 10-fold repeated cross-validation.* We first randomly sort
the data and estimate a logit model with a linear specification inside the logit (P = @ = 1) on
deciles 2-10 of the sample and predict the outcomes for decile 1. We then estimate the model
for deciles 1 and 3-10 and predict the outcomes for decile 2 and repeat this process to obtain
predictions for all deciles. We calculate the mean squared difference between the observed binary
values of TAK FE; and the predicted values. We then resort the data and repeat this process
10 times, averaging the mean-squared prediction error over repetitions. This repetition reduces
the sensitivity of the prediction error to the initial ordering of the data and performs well in
simulations (Borra and Di Ciaccio, 2010). We repeat this process for different values of P and
() and select the pairs of values that minimize the mean-squared prediction error. The sparse
set of predictors includes only 1 continuous instrument and 6 binary predictors, so we do not
need to consider values of P greater than 6. The richer sets of predictors include up to 24 binary
and 14 continuous covariates. For these sets of predictors, we consider only P € {1,2,3}. The

fourth order expansion with all 38 covariates generates almost 80,000 predictors and estimation

4There does not appear to be a consensus on how to choose the order of series estimators in nonlinear
regression models, even though series logit models are used in important econometric theory papers such as
Hirano, Imbens, and Ridder (2003). We use repeated 10-fold cross-validation because leave-one-out cross-
validation with a nonlinear model is computationally burdensome in large datasets like ours.
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is infeasible without dimension reduction techniques.

This cross-validation algorithm selects a second-order polynomial in the predictors for the
basic, school /district, and student test score sets of predictors. This polynomial contains linear
terms in all predictors, quadratic terms in all continuous variables, and all pairwise interaction
terms.® This yields 17, 585, and 731 terms when using the basic, school/district, and student
test score sets of predictors. Some pairwise interaction terms are omitted because they are
mutually exclusive (e.g. black and Hispanic). The cross-validation algorithm selects seventh-,
eighth-, and seventh- order polynomials in the instrument when using respectively the basic,
school/district, and student test score sets of predictors.

This semiparametric model therefore differs from the probit model used in the Heckman
selection correction in three ways: the semiparametric model includes quadratic and interaction
terms in the predictors, includes a seventh or eighth order polynomial in the instrument instead
of a second order polynomial, and uses a logit instead of a probit link function. Nonetheless,
we see in Appendix Table 5 that the predicted probabilities of ACT-taking are similar, with
correlations of at least 0.93. The predicted probabilities are robust to all polynomial orders
that we consider (P < 3 and @ < 8).

Our second ACT-taking model uses a K-nearest neighbor matching approach. We directly
estimate the conditional expectation E [X;, Z;| = g (X}, Z;) rather than approximating it with a
regression model. We start by calculating the Mahalanobis distance between every pair of ob-

servations ¢ and j: D;; = \/(I/Vz —W;) (Vi)™ (W; = W;)', where W; = (X, Z;). Mahalanobis

distance generalizes Euclidean distance by weighting the differences between the elements of the
vectors W; and W; by the inverse of the sample covariance matrix V. This takes into account
the different variances of different predictors/instruments and the covariances between predic-
tors/instruments. We then identify the K nearest neighbors of each observation with respect

to the Mahalanobis distance and calculate the weighted average outcome amongst these K
) A K . . K

observations: TAKE; = Y, w; ; TAKE),. The weighting function w;; = ﬁ/ Sy ﬁ

assigns more weight to observations with a lower Mahalanobis distance to 7. This estimator

directly constructs the conditional mean E [IV; = w] at each value w without making assump-

5The series model includes the interaction and polynomial terms in the ACT-taking model but not in the
ACT score model. This effectively treats them as instruments for ACT-taking, though we do not claim they
are excludable from the ACT score model. Our results are robust to including these terms in the ACT score
model as well.

SWe use ﬁ in the weighting function rather than —1-

7. to avoid zero-valued denominators for pairs of
Ch

observations with d; = 0.
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Appendix Table 5. ACT-Hat Correlations, by Selection Correction

Heckman Newey Powell
oLS Tobit No IV With IV SeriesLgt N.P. SeriesLgt N.P.
1) 2 3 4 5) (6) (1) 8
Panel A: X = Student Demographics
oLs 1.000
Tobit 1.000 1.000
Heckman (no 1V) 0.999 0.999 1.000
Heckman (with V) 0.994 0.993 0.994 1.000
Newey - Series Logit 0.989 0.989 0.992 0.994 1.000
Newey - Nonparametric 0.997 0.996 0.997 0.994 0.993 1.000
Powell - Series Logit 0.996 0.995 0.995 0.989 0.985 0.992 1.000
Powell - Nonparametric 0.989 0.990 0.989 0.983 0.979 0.986 0.989 1.000
Panel B: X = ...Plus School-Level Covs
oLs 1.000
Tobit 0.974 1.000
Heckman (no 1V) 0.996 0.963 1.000
Heckman (with 1V) 0.999 0.971 0.998 1.000
Newey - Series Logit 0.997 0.971 0.997 0.998 1.000
Newey - Nonparametric 0.997 0.972 0.996 0.997 0.998 1.000
Powell - Series Logit 0.995 0.969 0.993 0.995 0.993 0.993 1.000
Powell - Nonparametric 0.981 0.996 0.971 0.978 0.978 0.979 0.979 1.000
Panel C: X =...Plus Student Test Scores
oLS 1.000
Tobit 0.995 1.000
Heckman (no 1V) 0.985 0.980 1.000
Heckman (with V) 0.990 0.985 0.999 1.000
Newey - Series Logit 0.984 0.980 0.995 0.995 1.000
Newey - Nonparametric 0.997 0.992 0.989 0.993 0.990 1.000
Powell - Series Logit 0.985 0.988 0.976 0.980 0.975 0.983 1.000
Powell - Nonparametric 0.977 0.991 0.959 0.965 0.963 0.975 0.976 1.000

Notes: Table reports correlations of predicted ACT scores pre-policy by covariate set and selection correction

model.
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tions about the function g(.). We report results in this paper using K = 100, but we find
similar results with K = 10 and K = 1000. Code for implementing this estimator is available
on the authors’ websites.

Our first selection-corrected ACT score model approximates h(.) using a series model in
TAKE;, the predicted probability of test-taking (Newey, 2009).” We select the order of the
series using leave-one-out cross-validation. We then estimate equation (4a) including a polyno-
mial with the selected order as a control. This approach yields a consistent estimator of 8 when
the selection correction term is a sufficiently smooth function of the predicted probabilities of
test-taking. The cross-validation algorithm selects thirteenth, fourth, and ninth order polyno-
mials for the selection term when we use a semiparametric first stage with respectively basic,
school/district, and student test score sets of predictors. The cross-validation algorithm selects
third, sixth, and fourth order polynomials for the selection term when we use a nonparametric
first stage with respectively basic, school/district, and student test score sets of predictors. The
main results are robust to choice of the polynomial orders between one and sixteen.

Second, we remove h(.) from equation (4a) using a differencing approach (Ahn and Powell,
1993; Powell, 1987). We calculate dACT; = ACT; — w5 3., w(i,j)ACT; and dX; = X; —
ST >z w(i, j) X, where w(i, j) is a kernel or weighting function that is decreasing in the
difference between i and j’s predicted probability of ACT-taking. For appropriate choices of
the weighting function, dh; = h; — = > i W(i, j)h; ~ 0. Hence we can rewrite equation (4a)

as

and estimate this using least squares. Intuitively, this approach avoids the need to approxi-
mate the selection correction term and instead differences it out of the test score model. This
approach again yields a consistent estimator of 5 when the selection correction term is a suffi-
ciently smooth function of the predicted probability of test-taking, so that h; ~ h; when ¢ and j
have sufficiently similar predicted probabilities of ACT-taking. In practice, we sort the data by

"Newey (2009) proposes using polynomials in either the predicted probability TAK E; or the latent index
TAKE?. Our nonparametric matching estimator generates only predicted probabilities of test-taking so we use
this in the ACT-taking model. Our series logit estimator generates both predicted index values and predicted
probabilities. We report results in this paper using predicted index values, after censoring the top and bottom
percentiles. Results are almost identical using predicted probabilities. Note that concerns about “forbidden
regression” are not necessarily applicable here, as the series in Newey (2009) is simply an approximating function
and not an exact replacement for the selection bias term E[ACT;|X;] = X;6 + E[u; > g (X, Z;)].
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the predicted probability of test-taking and use a weight function that equals 1/ (1 + |p; — pj|)
for 0 < |i—j| < 5 and zero otherwise. We then estimate the differenced equation using weighted
least squares with weight 1/ Z?_ i=—_a |Pi — Pj)|- These weights mean that observations that have
close matches on the predicted probability of ACT-taking influence the regression coefficients
more than observations without close matches, as Ahn and Powell (1993) recommend. We
obtain similar results (not reported in this draft) using a smaller number of matches in the dif-
ferencing operation, taking an unweighted average in the differencing operation, and estimating
the differenced equation without weights.®

Both the series (“Newey”) and differencing (“Powell”) approaches yield consistent estimators
of 8 without making distributional assumptions on the unobserved determinants of test-taking
or test scores, or functional form assumptions for the probability of test-taking or the selection
correction term. However, this flexibility does have several costs. First, the identification proofs
underlying both approaches assume that there is at least one exclusion restriction: some ob-
served variable Z; affects the probability of test-taking but does not directly affect test scores.
Intuitively, the coefficient vector § and the selection term in (4a) are separately identified only
if there is additional information in the selection correction term (from an exclusion restriction)
or by a nonlinear functional form of the selection correction term. The exclusion restriction is
sufficient for identification of the slope coefficients in # but not the intercept, By. fy is identi-
fied when Z; shifts the probability of test-taking from 0 to 1 as Z; moves from its maximum to
minimum value (or vice versa). This “identification at infinity” argument requires an unusu-
ally strong excluded instrument (Andrews and Schafgans, 1998; Chamberlain, 1986; Heckman,
1990). We exclude driving distance from the student’s home to the nearest ACT center from
the outcome equation. The probability of ACT-taking falls by 4 percentage points with a move
from the 5% to the 95™ percentile of this variable. This does not satisfy the identification
at infinity argument, like most excluded instruments in the empirical literature, (Card, 1995;
Kane and Rouse, 1995; Bulman, 2015). This means we can identify the shape of ACT test
score distribution around the mean, but not necessarily the mean. However, with the richer
sets of predictors, we find that the semiparametric models almost perfectly predict the mean,

suggesting this problem is not quantitatively important in practice.

8The consistency theorems in Ahn and Powell (1993) and Powell (1987) assume that this kernel function
is continuously differentiable, which is not true of the weighted K-nearest neighbor kernels we consider. In
simulations on a dataset with moments matched to our data the results are very robust to choices of different
kernels.

17



Second, the semiparametric models yield consistent estimators only with appropriate choices
of the tuning parameters: respectively the order of the series and the weighting function. The
parameter estimates may in principle be very sensitive to the choice of these parameters. In
our application, results are robust to alternative series orders and weighting functions. Third,
some semiparametric and nonparametric sample selection correction models converge at slower
rates than parametric models, particularly when the number of predictors is large. This means
that the rate at which the estimators approach the true parameters as the sample size grows
is slower, potentially generating estimates far from the truth with even moderate sample sizes.
Ahn and Powell (1993) and Newey (2009) establish sufficient conditions for the estimators of
the slope parameters in § to converge at parametric rates. However, our object of interest
is the ACT test score distribution, and it is not obvious that the empirical distribution of
the predicted ACT scores converges at a parametric rate under Ahn and Powell’s or Newey’s
assumptions.

Both the semiparametric and parametric models assume that the unobserved determinants
of test scores ¢; and test-taking u; are homoskedastic conditional on the predictors. There exist
parametric and semiparametric sample selection models that relax this assumption but they

have seldom been applied in practice (Donald, 1995; Chen and Khan, 2003).

C Alternative Evaluation Criteria

In the body of the paper we evaluate selection correction methods by running selection-corrected
regressions of pre-policy ACT scores on a vector of predictors, predicting the mean ACT score,
and comparing this to the mean ACT score in the reference distribution based on the complete
post-policy ACT scores. In this appendix we consider three more evaluation criteria, all of
which yield similar findings.

First, we evaluate the selection correction methods on how close the parameter estimates
from the pre-policy selection-corrected regression of partly missing ACT scores on predictors
are to the post-policy regression of complete ACT scores on parameters. Most theoretical
papers on selection correction focus on this criterion. They try to correct the estimator of a
specific parameter or vector of parameters for selection bias. Correction methods’ performance
may be very different with respect to prediction and parameter estimation.

In column 1 of Appendix Tables 6, 7, and 8 we show the parameter estimates from regressing

18



post-policy ACT scores on each of the three vectors of predictors (using inverse probability
weights to equate the distribution of pre-policy predictors). In columns 2 to 9 we report
the parameter estimates from regressing pre-policy ACT scores on each of the three vectors
of predictors using our eight different selection correction models.” We evaluate the models’
performance on parameter estimation against two criteria: the percentage of parameters whose
signs are the same across the true and selection-corrected regressions, and the average squared
difference between the parameters in the true and selection-corrected regressions (i.e. the
squared bias of the estimates, averaged across the estimates). The general patterns are similar
across the two criteria and are robust to weighting the squared biases by the variances of the
corresponding predictors.

All methods perform better with richer predictors. The average squared bias is lowest for
the rich set of predictors for seven out of eight models (all except the Heckman-IV model) and
highest for the sparse set of predictors for all eight models. The squared bias averaged across all
parameter estimates and across all eight models is 1.95 for the student demographic predictors,
0.67 when school- and district-level predictors are included, and 0.47 when student test scores
are included. Similarly, adding richer predictors reduces the share of coefficient estimates with
incorrect signs from 0.38 to 0.18. This pattern is entirely consistent with the pattern across
predictions reported in Section 4. The only difference is that bias reduction from school- and
district-level predictors is slightly larger for parameter estimation than for mean prediction.

The semiparametric models do not consistently outperform the more restrictive models. For
the richest set of predictors, the squared bias is lowest for OLS (0.056), followed by the two semi-
parametric models with nonparametric first stages (0.075-0.082), Tobit (0.110), the two semi-
parametric models with series logit first stages (0.198-0.203), the Heckman-IV model (1.207),
and the Heckman model (1.858). The pattern is similar for sign differences, though here Tobit
and OLS both outperform any of the parametric or semiparametric two-stage models. There is
a similar pattern with the two sparser sets of predictors. OLS always yields the lowest squared
bias and fewest sign differences; the Heckman model without an instrument always yields the
highest squared bias and the most sign differences. The semiparametric two-stage models gen-
erally outperform the parametric two-stage models but fail to outperform OLS and the Tobit

model.

9We do not report parameter estimates for the missing data dummies. The general patterns are unaffected
by including these in our analysis.
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Appendix Table 6. The Relationship Between ACT Scores and Student Demographics

Post- Pre-Policy, by Correction Method
Policy Heckman Newey Powell
oLSs oLs Tobit No IV With IV SeriesLgt N.P. SeriesLgt N.P.
(€] @ 3 @ (©) 6) @ (8 9
Student-Level
Free Lunch -2.866 -1.841 -2.361 2.180 0.449 -1.378 -1.367 -1.546 -1.247
(0.105) (0.104) (0.141) (1.825) (0.573) (0.588) (0.162) (0.680) (0.172)
Female 0.298 -0.130 -0.213 -1.710 -1.025 -0.572 -0.331 -0.035 -0.292
(0.036) (0.034) (0.043) (0.702) (0.232) (0.162) (0.050) (0.247) (0.058)
Black -3.414 -4.102 -5.349 -4.087 -4.081 -3.836 -4.019 -3.330 -4.099
(0.232) (0.204) (0.384) (0.245) (0.158) (0.190) (0.207) (0.280) (0.235)
Hispanic -1.967 -1.818 -2.154 -0.443 -1.019 -1.495 -1.603 -1.212 -1.452
(0.127) (0.215) (0.261) (0.779) (0.381) (0.318) (0.222) (0.379) (0.241)
Other 1.032 0.616 0.862 -1.295 -0.474 -0.355 0.412 -0.147 -0.155
(0.307) (0.290) (0.319) (0.978) (0.342) (0.364) (0.264) (0.451) (0.268)
Inverse Mills Ratio 8.807 5.010
(4.025)  (1.256)
Correction Term 1.629 -14.890
(1.709) (6.973)
Correction Term”2 -13.914  26.321
(8.024) (12.913)
Correction Term”3 -33.446  -13.058
(26.510) (7.639)
Correction Term”4 116.523
(70.223)
Correction Term”"5 183.034
(163.238)
Correction Term”6 -434.349
(266.709)
Correction Term”7 -360.897
(468.272)
Correction Term”8 826.494
(495.019)
Correction Term™9 204.032
(670.136)
Correction Term”~10 -744.410
(524.08)
Correction Term"11 104.713
(379.809)
Correction Term~12 234.721
(343.836)
Correction Term"13 -83.986
(96.860)
Summary Measures
% with incorrect signs 0.2 0.2 0.6 0.6 0.4 0.2 0.4 0.4
Mean squared bias 0.380 0.865 7.537 3.270 1.059 0.705 0.764 1.023
Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of

ACT scores on the reported student-level demographics. Standard errors calculated using 500 bootstrap replications

resampling schools.

20



Appendix Table 7. The Relationship Between ACT Scores and Student and School Characteristics

Post- Pre-Policy, by Correction Method
Policy Heckman Newey Powell
OoLS OoLS Tobit No IV With IV SeriesLgt N.P. SeriesLgt N.P.
@) 2 3 4 (5) (6) ) (8 )
Student-Level
Free Lunch -1.858 -1.078 -1.408 1.016 -0.405 -1.023 -1.137 -1.124 -1.136
(0.072)  (0.073) (0.100) (0.581) (0.377) (0.118) (0.100) (0.118) (0.090)
Female 0.288 -0.058 -0.124 -1.180 -0.419 -0.154 -0.089 -0.118 -0.055
(0.036) (0.033) (0.042) (0.318) (0.207)  (0.057) (0.042) (0.069) (0.048)
Black -2.998 -3.370 -4.481 -3.592 -3.441 -3.324 -3.306 -3.299 -3.375
(0.121) (0.118) (0.158) (0.165) (0.124) (0.112) (0.115) (0.116) (0.109)
Hispanic -1.781 -1.566 -1.877 -0.876 -1.342 -1.524 -1.519 -1.532 -1.488
(0.114)  (0.146) (0.203) (0.295) (0.199) (0.146) (0.147) (0.149) (0.141)
Other 0.505 0.157 0.268 -0.844 -0.165 -0.084 0.041 -0.320 -0.104
(0.197)  (0.193) (0.209) (0.337) (0.244) (0.180) (0.187) (0.167) (0.139)
Inverse Mills Ratio 5.889 1.894
(1.661) (1.069)
Correction Term -0.019 39.854
(0.157) (30.019)
Correction Term”2 0.041 -252.815
(0.092) (189.779)
Correction Term”3 0.003 752.899
(0.116) (572.647)
Correction Term™4 0.023 -1153.059
(0.053) (890.813)
Correction Term”5 871.799
(690.295)
Correction Term”6 -255.603
(210.965)
School-Level
Pupil Teacher Ratio 0.001 -0.002 -0.005 0.002 -0.001 -0.002 -0.002 -0.002 -0.001
(0.007)  (0.007) (0.012) (0.010) (0.008) (0.007) (0.006) (0.006) (0.006)
Fraction Free Lunch 0.636 -0.582 -1.100 -0.727 -0.634 -0.486 -0.585 -0.365 -0.355
(0.485) (0.272) (0.419) (0.563) (0.331) (0.270) (0.257) (0.283) (0.263)
Fraction Black 1.712 1.017 0.802 -0.140 0.644 0.814 0.892 0.619 0.835
(0.445) (0.771) (1.236) (1.645) (1.007) (0.657) (0.670) (0.577) (0.570)
Number of 11th Graders -0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
(0.000)  (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Average 8th Grade Score 1.938 2.338 2.904 -0.188 1.523 1.836 2.028 1.951 1.965
(0.194) (0.237) (0.291) (0.765) (0.517) (0.263) (0.225) (0.247)  (0.200)
Average 11th Grade Score 2.741 1.224 1.443 -0.624 0.628 1.066 1.141 1.004 1.126
(0.185)  (0.197) (0.237) (0.506) (0.356) (0.193) (0.186) (0.169) (0.145)
District-Level
Pupil Teacher Ratio -0.066 -0.020 -0.017 0.052 0.004 0.002 -0.002 0.012 -0.000
(0.018) (0.019) (0.025) (0.042) (0.025) (0.020) (0.019) (0.020) (0.018)
Fraction Free Lunch -0.554 0.300 0.980 0.906 0.499 0.236 0.370 0.182 0.057
(0.457)  (0.346) (0.537) (0.767) (0.440) (0.347) (0.333) (0.371) (0.338)
Fraction Black 1.510 0.864 1.428 -1.238 0.186 0.591 0.652 0.620 0.675
(0.482) (0.784) (1.243) (1.841) (1.050) (0.658) (0.674) (0.633) (0.604)
Number of 11th Graders -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Suburb -0.169 -0.418 -0.479 -0.488 -0.447 -0.430 -0.415 -0.401 -0.372
(0.106)  (0.149) (0.186) (0.233) (0.169) (0.149) (0.145) (0.134) (0.123)
Town -0.177 0.023 0.038 -0.188 -0.052 0.079 0.080 0.078 0.166
(0.125)  (0.168) (0.206) (0.289) (0.201) (0.169) (0.168) (0.161) (0.145)
Rural -0.210 -0.201 -0.172 -0.498 -0.303 -0.183 -0.157 -0.162 -0.102
(0.114)  (0.156) (0.194) (0.247) (0.180) (0.155) (0.150) (0.150) (0.132)
Pupil / Guidance Counselor ~ -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Ratio (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Local Unemployment Rate -0.009 -0.032 -0.051 0.006 -0.020 -0.030 -0.032 -0.025 -0.021
(0.014) (0.015) (0.020) (0.036) (0.021) (0.017) (0.016) (0.017) (0.015)
Summary Measures
% with incorrect signs 0.3 0.3 0.6 0.35 0.4 0.3 0.4 0.4
Mean squared bias 0.336 0.580 2.221 0.690 0.395 0.375 0.411 0.342
Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of ACT
scores on the reported student-, school- and district-level covariates. Missing value indicators also included but coefficients not

reported. Standard errors calculated using 500 bootstrap replications resampling schools.



Appendix Table 8. The Relationship Between ACT Scores, Demographics, and Achieviement

Post- Pre-Palicy, by Correction Method
Policy Heckman Newey Powell
OoLS OLS Tobit No IV With IV Series Lgt N.P. SeriesLgt N.P.
@) 2) (3) (4) (5) (6) @) (8) )
Student-Level
Free Lunch -0.383 -0.254 -0.317 1.444 1.086 0.141 -0.107 0.138 -0.102
(0.027)  (0.045) (0.062) (0.109) (0.146) (0.070)  (0.064) (0.068)  (0.067)
Female 0.505 0.027 0.076 -1.091 -0.856 -0.288 -0.106 -0.305 -0.117
(0.023)  (0.025) (0.032) (0.078) (0.098)  (0.044) (0.031) (0.046)  (0.031)
Black -0.696 -1.295 -1.766 -3.106 -2.723 -1.569 -1.279 -1.581 -1.238
(0.059)  (0.080) (0.111) (0.188) (0.205) (0.091) (0.080) (0.095)  (0.078)
Hispanic -0.589 -0.727 -0.886 -0.753 -0.741 -0.745 -0.525 -0.744 -0.467
(0.061)  (0.091) (0.139) (0.230) (0.192) (0.106) (0.098) (0.118)  (0.106)
Other 0.394 0.209 0.224 -1.384 -1.048 -0.127 0.081 -0.112 0.048
(0.090) (0.111) (0.108) (0.245) (0.232) (0.131) (0.120) (0.131) (0.114)
8th Grade Score 1.639 1.833 2.155 -0.135 0.276 1.237 1.668 1.267 1.669
(0.037)  (0.031) (0.038) (0.100) (0.159) (0.063)  (0.034) (0.064)  (0.031)
11th Grade Score 3.048 2.616 3.238 0.109 0.634 1.940 2.402 1.952 2.397
(0.024)  (0.035) (0.044) (0.132) (0.203) (0.076)  (0.045) (0.075)  (0.042)
Inverse Mills Ratio 6.513 5.147
(0.333)  (0.521)
Correction Term 0.312 -3.051
(0.098)  (6.903)
Correction Term"2 0.324 12.537
(0.067) (19.153)
Correction Term"3 0.029 -23.072
(0.068) (22.289)
Correction Term™4 -0.012 15.245
(0.028)  (9.257)
Correction Term"5 -0.025
(0.021)
Correction Term”6 0.006
(0.005)
Correction Term"7 0.002
(0.002)
Correction Term"8 -0.001
(0.001)
Correction Term"9 0.000
(0.000)
School-Level
Pupil Teacher Ratio -0.006 -0.003 -0.008 0.002 0.001 -0.002 -0.002 -0.002 -0.002
(0.007)  (0.005) (0.010) (0.010) (0.009) (0.005)  (0.005) (0.005)  (0.004)
Fraction Free Lunch -0.536 -0.449 -0.827 -0.540 -0.535 -0.367 -0.391 -0.503 -0.363
(0.437)  (0.297) (0.429) (0.605) (0.501) (0.297) (0.294) (0.275)  (0.287)
Fraction Black -0.253 -0.273 -0.644 -0.442 -0.413 -0.451 -0.489 -0.578 -0.369
(0.474)  (0.578) (0.916) (1.617) (1.348) (0.504) (0.505) (0.491) (0.463)
Number of 11th Graders 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.001
(0.000)  (0.000) (0.000) (0.001) (0.000) (0.000)  (0.000) (0.000)  (0.000)
Average 8th Grade Score 0.907 1.085 1.198 -1.248 -0.771 0.165 0.595 0.137 0.578
(0.192)  (0.181) (0.214) (0.363) (0.340) (0.178) (0.173) (0.171) (0.166)
Average 11th Grade Score -0.231 -0.206 -0.187 -0.525 -0.462 -0.131 -0.267 -0.094 -0.261

(0.176)  (0.154) (0.180) (0.291) (0.243) (0.142) (0.141) (0.136)  (0.129)
District-Level

Pupil Teacher Ratio 0.044 -0.039  -0.040 0.061 0.044  -0.001  -0.015 -0.001  -0.012
(0.017)  (0.017)  (0.021) (0.037)  (0.032) (0.019) (0.017) (0.018) (0.016)
Fraction Free Lunch 0272 -0.758  -0.534 0.611 0.335  -0.325 -0.344 -0.281  -0.391
(0.448)  (0.336)  (0.464) (0.746)  (0.622) (0.335) (0.321) (0.326)  (0.305)
Fraction Black 1150  1.260 1.605 1737 -1111 0523 0805 0673  0.634
(0.499) (0.629)  (0.973) (1.748)  (1.448) (0.557) (0.549) (0.535) (0.511)
Number of 11th Graders -0.000 -0.000  -0.000 -0.000  -0.000 -0.000 -0.000  -0.000  -0.000
(0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)
Suburb 0165  -0.356  -0.381 0394 0407 0350 -0.351 -0.333  -0.329
0.101)  (0.123)  (0.149) 0.223) (0.192) (0.128) (0.118) (0.117) (0.110)
Town 0174  -0.072  -0.098 0339  -0.310 -0.147 -0.090 -0.146  -0.064
(0.125) (0.142)  (0.176) (0.268)  (0.226) (0.144) (0.133) (0.131)  (0.120)
Rural 0121  -0.224  -0.196 0606  -0.550 -0.338  -0.205 -0.320  -0.202
(0.112)  (0.134)  (0.164) (0.239)  (0.202) (0.140) (0.128) (0.130)  (0.115)
Pupil / Guidance Counselor ~ 0.000  0.000 0.000 0.000 0.000  0.000  0.00  0.000  0.000
Ratio (0.000)  (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)
Local Unemployment Rate -0.008 -0.039  -0.058 0.023 0.009  -0.021  -0.028 -0.021  -0.025

(0.015)  (0.014) (0.018) (0.036) (0.030) (0.016) (0.014) (0.015)  (0.014)
Summary Measures

% with incorrect signs 0.045 0.045 0.455 0.409 0.182 0.091 0.136 0.091
Mean squared bias 0.056 0.110 1.858 1.207 0.203 0.075 0.198 0.082
Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of ACT scores
on the reported student-, school- and district-level covariates. Missing value indicators also included but coefficients not reported.
Standard errors calculated using 500 bootstrap replications resampling schools.
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Applied researchers are often interested in the full selection-corrected outcome distribution
or in summary statistics other than the mean. Researchers working with test scores may be
interested in the share of students who score above some threshold. We therefore use two

additional evaluation criteria:

1. The squared difference between selection-corrected pre-policy ACT score distribution to

the reference distribution, averaged over percentiles 1, 2, ..., 99.

2. The difference between the selection-corrected share of pre-policy students scoring above

19 (the ACT’s “college readiness” threshold) and the share in the reference distribution.

To construct these evaluation criteria, we cannot simply use the predicted values ACT; = X, B
from the selection-corrected regression of ACT scores on predictors. The distribution of ACT
is not comparable to the distribution of ACT; or ACT} because the former omits the variance
of ;. We therefore predict the fitted residual ¢; = ACT; — A@Tj for each student ;7 who
takes the ACT in the pre-policy period, and construct ACT, = ACT, + €j+i , adding to each
student’s predicted ACT score one of the fitted residuals from another randomly chosen student.
This generates a distribution of predicted ACT scores with variance comparable to the latent
distribution. We repeat this residual-adding process 1000 times and average over these 1000
repetitions to obtain a predicted distribution F (Aéﬂ) and compare this to the reference
distribution.

We estimate the variance of these two differences using a nonparametric cluster bootstrap,
clustering at the school level to account for correlated unobserved school-level characteristics.”
We use 500 bootstrap replications, each containing 100 iterations of the residual-adding process.

The selection correction methods we evaluate are not designed to predict the full outcome
distribution, so this part of the evaluation should be interpreted with caution. To formalize
this caution, note that the distribution of latent ACT scores Fycr-(.) can be evaluated at
any point a as Facr-(a) = Ex [Fx (a — X8)], where the outer expectation is taken over the
distribution of the predictors and the inner distribution is for the error distribution conditional
on the predictors. Parameter-oriented selection corrections aim to identify only (elements of)

f. Our approach entails identification of both 5 and Fx(.). The residual-adding procedure

10To the best of our knowledge, the econometric literature has not proposed a variance estimator for two-
stage semiparametric selection correction models that use clustered data. We follow typical empirical practice
by using the bootstrap, though Abadie and Imbens (2008) show that this is problematic for our nonparametric
first stage model.
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assumes that the error distribution does not vary with X or with ACT-taking: Facr.(a) =
Ex [Fep=1 (a — XB)]. This is a strong assumption. In particular, the assumptions of the Tobit
Type 1 and Heckman models imply that the error distribution should differ between ACT-takers
and non-takers. The accurate predictions reported in Section 4 suggest that with sufficiently
rich predictors, this assumption is innocuous.

We could instead adopt a parametric approach to identification of F¢x. Specifically, the Tobit
and Heckman models both assume that the errors have a homoskedastic normal distribution
with zero mean. Both models recover estimates of the variance of this distribution, 6%. We could
use this estimate to sample values of ¢; from a N (0,62) distribution instead of sampling from
the empirical distribution FE|T axE=1(.). This would introduce another difference between the
parametric (Tobit and Heckman) and semiparametric (Newey and Powell) selection correction
models.

Acknowledging this caveat, what do we learn from evaluating the selection correction methods
on these two additional criteria? We show in Appendix Table 9 the difference between the
selection-corrected pre-policy score distribution and the reference score distribution in the share
of students scoring above 19 and averaged over the percentiles. This table is analogous to
Table 3 in the main paper. We summarize the squared bias and variance of each comparison
in Appendix Figure 6, which is analogous to Figure 2 in the main paper. We also display the
observed pre- and post-policy scores and the selection-corrected scores in Appendix Figures 4
and 5.

The share of college-ready students in the reference distribution is 0.45. The share in the
uncorrected pre-policy distribution is 0.59 percentage points higher. Using OLS with student
demographics to predict the missing scores reduces prediction to 0.55. Using other selection
corrections to predict the missing values predicts 0.54 to 0.56, which continues to overstate
the share by 9 to 11 percentage points. Adding school- and district-level predictors reduces
this overstatement to 6 to 7 percentage points and adding student-level test scores reduces this
overstatement to 0 to 3 percentage points. As with the mean, richer predictors largely eliminate
the difference between the selection-corrected and reference statistics; changing the selection
correction method has little effect.

The mean squared difference between the percentiles of the raw pre-policy distribution and
reference distribution is 1.69. Predicting missing scores using OLS and the basic student demo-

graphics reduces this to 1.32. Other selection correction methods yield differences between 1.27

24



Appendix Table 9. Fraction College-Ready and Quantile Differences by Correction Method and Predictor Set

Fraction ACT*>=20 Quantile Differences
Student ...Plus School- ...Plus Student Student ...Plus School- ...Plus Student
Demographics  Level Covs. Test Scores Demographics  Level Covs. Test Scores
(€] ) () (] )] (6)
Post-Policy (“Truth"
Raw 0.440 0.440 0.440 - - -
DFL 0.482 0.482 0.482 - - -
oLs 0.451 0.468 0.468 0.300 0.325 0.324
(0.010) (0.011) (0.011) (0.028) (0.022) (0.016)
Pre-Policy (Biased
Raw 0.588 0.588 0.588 1.687 1.687 1.687
oLs 0.554 0.532 0.469 1.323 1.058 0.623
(0.008) (0.008) (0.008) (0.148) (0.128) (0.033)
Tobit 0.559 0.536 0.460 1.276 1.053 1.382
(0.008) (0.007) (0.007) (0.151) (0.130) (0.108)
Heckman, No Instrument 0.554 0.533 0.463 1.334 1.078 0.444
(0.008) (0.008) (0.008) (0.148) (0.129) (0.031)
Heckman, With Instrument 0.541 0.532 0.463 1.302 1.062 0.453
(0.008) (0.008) (0.008) (0.149) (0.128) (0.031)
Newey, Series Logit 0.540 0.532 0.460 1.292 1.073 0.419
(0.008) (0.008) (0.008) (0.148) (0.130) (0.030)
Newey, Nonparametric 0.541 0.532 0.463 1.307 1.070 0.525
(0.008) (0.008) (0.008) (0.149) (0.129) (0.033)
Powell, Series Logit 0.546 0.535 0.497 1.265 1.127 1.084
(0.009) (0.008) (0.010) (0.184) (0.132) (0.081)
Powell, Nonparametric 0.554 0.533 0.479 1.400 1.097 0.721
(0.008) (0.008) (0.009) (0.152) (0.129) (0.040)

Notes: The sample is as in Table 1, except only the 2005 and 2008 cohorts. For columns 1-3, the first and fourth rows report the raw
fraction scoring greater than or equal to 20 post- and pre-policy, respectively. The second row reports that fraction from the DFL-
weighted post-policy score distribution. All other rows report the predicted fraction scoring greater than or equal to 20 after
implementing the regression or correction type noted in the row header. The predicted ACT score is calcuated for ACT-takers and
non-takers. Columns 4-6 report quantile differences between the predicted score distribution from the regression or correction method
noted in the row header and the post-policy DFL-corrected score distribution. Standard errors calculated using 500 bootstrap
replications resampling schools.
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Appendix Figure IV: Comparing the Performance of Sample Selection Corrections

(a) Parametric Corrections
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Notes: Figure shows pre- and post-policy fitted values from regressions of ACT scores on student-, school-, and district-level
demographics, and 8th and 11th grade test scores. The post-policy regressions are DFL-weighted. The pre-policy fitted values
are predicted out of sample to all students. Draws from the distribution of residuals are added to all fitted values. Tobit,
Heckman, Newey, and Powell are several selection corrections estimated using the pre-policy sample. The semiparametric
corrections use the nonparametric first stage. 95% confidence intervals are tiny and omitted for readability.
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Appendix Figure V: Observed and Predicted ACT Scores Pre- and Post-Policy

(a) Predicting ACT Scores Using Basic Student and School Characteristics
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(b) Predicting ACT Scores Using Student 8th and 11th Grade Test Scores

Density
02 .03 .04 .05 .06 .07 .08 .09
1 1 | | 1 1 1

.01
1

T
0 5 10 15 20 25 30 35
Composite ACT Score

Actual Post — — — Actual Pre
--------- Fitted Post - --- --- - Fitted Pre

Notes: Figure (a) shows pre- and post-policy raw ACT scores and fitted values from regressions of ACT scores on
student-level demographics and school- and district-level demographics and test scores. The post-policy regressions are
DFL-weighted. The pre-policy fitted values are predicted out of sample to all students. Draws from the distribution of
residuals are added to all fitted values. Figure (b) adds student-level 8th and 11th grade test scores to the prediction
equations. 95% confidence intervals are tiny and omitted for readability.
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Appendix Figure VI: MSE Comparison Across Correction Methods and Covariates

(a) Fraction College-Ready
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and 1.40 using the basic student demographics as predictors. With the richer set of predictors,
the mean squared difference falls to between 0.62 and 0.138. The Tobit model and Powell
model with series logit first stage perform particularly poorly. All other methods deliver lower
prediction error with richer covariates.

We conclude that for all four evaluation criteria, based both on prediction and parameter
estimation, the gains from using less restrictive econometric methods are small relative to the
gains from seeking richer or more disaggregated data. We find the same pattern when we repeat
the subgroup analysis from Section 4.3 for these two new evaluation criteria (Appendix Table

10 and Appendix Figures 7, 8, and 9).

D Robustness Checks

In this section, we establish that our findings are robust to several changes in our methods:
using a different reference distribution, changing the specification of the ACT regression model,
and comparing different pre- and post-policy cohorts.

In the primary analyses, we use the post-policy ACT scores as the reference distribution,
after adjusting for cross-cohort differences in the distribution of observed characteristics using
inverse probability weights, and predicting scores for the 1.5% of post-policy students who do
not take the ACT. We summarize the results using the unweighted post-policy distribution
in Appendix Figure 10. This is analogous to Figure 2 and Appendix Figure 6, which use the
weighted reference distribution. We display the subgroup means relative to the unweighted
post-policy means in Appendix Figure 11. This is analogous to Appendix Figures 2 and 7,
which use the weighted reference distribution. There are no substantial differences between the
analysis that uses the weighted and unweighted reference distributions.

Our findings are robust to five changes in the ACT regression model. First, we estimate the
model with a complete set of interactions between the predictors and squares of all continuous
predictors in both the first and second stages (Appendix Table 11, panel 1).!! The predictions
are more accurate for most models with the rich set of predictors and essentially identical for
all models with the two sparser sets of predictors. There remains no evidence that the more

flexible methods outperform those with more restrictive assumptions.

HUThe ACT-taking equations of the series logit model and nonparametric model already incorporate these
interactions explicitly or implicitly. So in these cases we are simply establishing robustness to changes in the
ACT score model.
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Appendix Table 10.

Race and Poverty Gaps in the Fraction College-Ready by Correction

Black White Gap Poor Non-Poor Gap
1) 2 3 @ (©) (6)
Post-Policy
Raw 0.124 0.506 0.383 0.224 0.522 0.298
DFL 0.156 0.532 0.376 0.232 0.545 0.313
oLs 0.129 0.516 0.387 0.208 0.528 0.320
(0.024) (0.009) (0.025) (0.007) (0.010) (0.010)
Pre-Policy
Raw 0.201 0.647 0.446 0.350 0.628 0.278
oLS 0.127 0.516 0.389 0.246 0.520 0.274
(0.017) (0.007) (0.017) (0.008) (0.008) (0.009)
Tobit 0.152 0.500 0.348 0.266 0.508 0.242
(0.017) (0.006) (0.017) (0.008) (0.007) (0.009)
Heckman 0.127 0.511 0.385 0.243 0.515 0.271
(with V) (0.017) (0.007) (0.018) (0.008) (0.008) (0.009)
Newey - 0.127 0.509 0.382 0.243 0.511 0.267
Series Logit (0.017) (0.007) (0.018) (0.009) (0.008) (0.010)
Newey - 0.126 0.514 0.387 0.241 0.516 0.275
Nonparametric ~ (0.017) (0.007) (0.017) (0.008) (0.008) (0.009)
Powell - 0.128 0.543 0.415 0.269 0.547 0.277
Series Logit (0.017) (0.010) (0.019) (0.011) (0.009) (0.013)
Powell - 0.135 0.523 0.389 0.265 0.528 0.263
Nonparametric ~ (0.017) (0.007) (0.018) (0.010) (0.008) (0.011)

Notes: The sample is as in Table 3. Table reports the fraction of the predicted ACT scores
that are greater than or equal to 20 from regressions of ACT scores on the full set of
covariates, including student-level 8th and 11th grade test scores. The predicted ACT score
is calcuated for ACT-takers and non-takers. Poverty status is proxied for using free or
reduced-price lunch receipt measured during 11th grade. Standard errors calculated using
500 bootstrap replications resampling schools.
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Appendix Figure VIII: MSE Comparison by Race

(a) Mean ACT Score - Black

(b) Mean ACT Score - White

0
« L]
- @

a -~ o
- @
B

” »

B % g

= 3

3 8o | =

S ] AN » "g

(%] [%] x

o w
2 -
&4 <2 9
=] N x
L]
o - 24 o4 od m o
[) o1 062 03 04 05 0 07 08 [) 002 004 006 008 01 012
Variance (Efficiency) Variance (Efficiency)
+ oLS x Tobit e Heckman  © Hkmn-IV] + oLs x  Tobit e Heckman o Hkmn-IV
O Newey-SP & Newey-NP O Powell-SP  ®  Pwi-NP & Newey-SP A Newey-NP O Powel-SP  m Pwl-NP
(c) Fraction College-Ready - Black (d) Fraction College-Ready - White
w w0
g £
. n
g - g :*
81 S
% s

23] 3 ®

©3 @,

3 R 35

ERS g%
8% 82 ] * "o
E
g1 *- & |
) s " s
o
o 4 o> o 1 X o m
[ .0001 .0002 0003 0004 .0005 0 .00002 100004 .00006 100008 0001
Variance (Efficiency) Variance (Efficiency)
+ OLS x  Tobit ® Heckman ©  Hkmn-1V| + OLS x  Tobit ® Heckman ©  Hkmn-IV
O Newey-SP A Newey-NP O Powel-SP  ® Pwi-NP O Newey-SP A& Newey-NP O Powel-SP  ® Pwi-NP
(e) Test Score Distribution - Black (f) Test Score Distribution - White
@ - ©
? o L}
9 |
o
A K
-~ . @
S o sw |
[} [
3] 3 .
5 L 5 & a
8 ]
g e
- - .
L X x
w |
< x o
L]
o o &
: : ; ; : : ; ; ' : : :
0 01 I R 04 05 ) 005 . R 02 025
Variance (Efficiency) Variance (Efficiency)
+ oLs x Tobit e Heckman o Hkmn-IV + oLs x Tobit e Heckman o Hkmn-IV
© Newey-SP A Newey-NP O Powel-SP W Pwi-NP o Newey-SP A Newey-NP O Powel-SP W Pwi-NP

Notes: Figure shows the mean squared error of each combination of correction method and covariate set by race. Black (top
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between the statistic predicted by a) the correction method

applied to the pre-policy data and b) the post-policy, DFL-weighted, fitted distribution. Markers with very large variance or

squared bias excluded for readability.
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Appendix Figure IX: MSE Comparison by Poverty Status

(a) Mean ACT Score - Poor

(b) Mean ACT Score - Non-Poor
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Appendix Figure X: MSE Comparison Using Post-Policy Distribution W/Out DFL Weights

(a) Mean ACT Score
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Appendix Figure XI: Score Gaps Compared to Post-Policy Distribution W/Out DFL Weights

(a) Predicted Mean ACT Score and Fraction College-Ready
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Second, we omit 11th grade social studies test scores from the “rich” set of predictors and
use only 8th grade test scores, student demographics and school- and district-level predictors
(Appendix Table 11, panel 2). The predictions are slightly less accurate for every model and
every summary statistic, particularly for the mean squared difference between the predicted and
reference distributions. But the predictions are still substantially more accurate than without
using any student test scores and there remains no clear winner amongst the selection correction
models.

Third, we estimate models with a different combination of predictors: student demographics
and student test scores, but without school- and district-level predictors (Appendix Table 11,
panel 3). The predictions are generally slightly less accurate than for the models including
all predictors, but are always substantially more accurate than for the models that do not use
any student test scores as predictors. Once again, the two-stage semiparametric models fail to
outperform two-stage or one-stage parametric models.

Fourth, we calculate the mean squared quantile differences between the selection-corrected
distributions and the reweighted and predicted reference distribution (Appendix Table 11, panel
4). The general pattern of results is unchanged, though here the parametric two-stage selection
models slightly outperform the semiparametric two-stage selection models. Readers who wish
to compare the mean ACT score and fraction college-ready generated by the correction models
to the reference distribution in columns 1 or 3 can do so by directly comparing across columns
in the first four panels.

Fifth, we implement a test of the assumption that the predictors and selection correction
term are additively separable in the ACT score model. We regress ACT scores on the set of
predictors and the inverse Mills ratio (for all three sets of predictors, with and without an
instrument), generate the residuals from this regression, regress the residuals on a full set of
interactions between the predictors and the inverse Mills ratio, and test the joint significance of
all the interactions. We fail to reject the hypothesis that they are jointly zero (F' < 0.12 for all
tests). Additivity is a standard assumption in most of the literature on selection models and
this assumption seems at least plausible in our setting.!?

We also verify that our finding are robust to comparing different pairs of pre- and post-policy
cohorts. Our primary analysis compares the 2005 cohort to the 2008 cohort, as the mandatory

ACT policy was piloted in some schools in 2006 and not implemented in all schools in 2007. We

12See Arellano and Bonhomme (2017), Altonji, Ichimura, and Otsu (2012) and Manski (1990) for exceptions.
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also compare the 2005 cohort to the 2007 cohort (Appendix Figure 12), the 2006 cohort to the
2007 cohort (Appendix Figure 13), and the 2006 cohort to the 2008 cohort (Appendix Figure
14). The main findings are unchanged across choices of cohorts: predictive accuracy is higher

with richer predictors and does not vary substantially across selection correction methods.

E Group-level Correction Methods

Many researchers using test scores as a dependent variable observe only students who take the
test and so cannot estimate individual probabilities of test-taking (Card and Payne, 2002;
Rothstein, 2006). The individual-level corrections discussed thus far are infeasible in this
case. We also evaluate the performance of selection correction models that use only group-
level data. These methods are useful when researchers observe only the mean non-missing
outcome and share non-missing outcomes for each group. For example, labor economists might
observe regional employment rates and mean wages conditional on employment, while educa-
tion economists might observe school-level test-taking rates and mean test scores conditional
on taking. Building on Gronau (1974), Card and Payne (2002) adapt equation system (1) for

use with aggregate data:

ACZZ = ngﬁ + €ig (7&)
TAKE;, = Wy + ug (7b)
1 if TAKE! >0
TAKE;, = g (7c)
0 if TAKE; <0
ACT: it TAKE: >0
ACT,, = g g (7d)

it TAKE;, <0

The key difference between systems (1) and (7) is the ACT-taking model. In this model we
assume ACT-taking depends on a vector of group-level characteristics Wg and an individual
error term u;, that may be correlated with ¢;,. Card and Payne (2002) evaluate the observed

test score equation at group means, yielding an estimating equation:
ACT, = X,8+ h (TAKE) +¥¢, (8)

The selection correction term uses only the observed ACT-taking rate in each group, so we do

not require that the predictors of ACT-taking, Wy, are observed.
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Appendix Figure XII: MSE Comparison Using 2005 and 2007 Student Cohorts

(a) Mean ACT Score
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Notes: Figure shows the mean squared error of each combination of correction method and covariate set estimated using the
2005 and 2007 student cohorts, instead of the 2005 and 2008 cohorts. Black (top of each figure): basic student demographics;
Red (middle): plus school- and district-level covariates; Blue (bottom): plus student 8th and 11th grade test scores. Bias is
the difference between the statistic predicted by a) the correction method applied to the pre-policy data and b) the

post-policy, DFL-weighted, fitted distribution.
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Appendix Figure XIII: MSE Comparison Using 2006 and 2007 Student Cohorts

(a) Mean ACT Score
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Appendix Figure XIV: MSE Comparison Using 2006 and 2008 Student Cohorts
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This estimating equation is corrected for within-group selection but not for between-group
selection, conditional on the observed ACT score predictors X;,. Within-group selection occurs
if individual ACT-taking covaries with individual deviations from mean latent ACT scores of
the group, cov (€, — €,, Uiy — Uy) 7# 0. Between-group selection occurs if the group ACT-taking
rate covaries with the group mean latent ACT score, cov (a-g,mg) # 0. As an example,
assume groups are schools. The group-level model (8) is corrected for within-school selection,
which could occur if individual students with higher latent scores are more likely to take the
ACT than students in the same school with lower latent scores. But model (8) is not corrected
for between-school selection, which could occur if “good” schools have high mean latent scores
and high ACT-taking rates. This means that the level of aggregation is important. With larger
groups, more of the selection is within-group and is addressed by the selection correction.'?
However, the group mean predictors X, are less informative in larger groups. So using larger,
more aggregated groups relies more on the correction model and less on the data.

The functional form of the selection correction term depends on the assumed distribution of
the unobserved factors influencing ACT scores and ACT-taking, €;, and w;,. If these are jointly
normally distributed, then the selection correction term equals the inverse Mills ratio evaluated
at the group mean ACT-taking rate (Card and Payne, 2002). We estimate equation (8) using a
variety of functional forms for the selection correction term, including a polynomial in TKE’g,
following the strategy in Newey (2009).1

Clark, Rothstein, and Whitmore Schanzenbach (2009) use this approach to study selection
into ACT-taking in Illinois. They observe no data on non-takers (neither ACT scores nor lagged
test scores and demographic characteristics). They therefore use only group-level methods and
consider only parametric correction models based on joint normality assumptions. The study
uses the shift from voluntary to mandatory ACT-taking in Illinois in 2002 as an instrument
in these models. They conclude that this correction allows a reasonable approximation to the
latent distribution of ACT scores.

We estimate group-level selection models of the form of equation (8) using pre-policy data,

generate the predicted distribution of group mean ACT scores, and compare this to the dis-

13 As the group size approaches one, the correction term approaches a constant.

1We estimate equation (8) using weighted least squares, where the weights equal the number of students in
each group. We construct the predicted distribution of school mean ACT scores using 1000 replications of the
same residual-adding process described in Section 2.3. We construct the standard errors using 500 replications
of a nonparametric bootstrap, each containing 1000 residual-adding iterations.
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tribution of group mean ACT scores in the post-policy period. We also estimate models that
use the group-level fraction of ACT-taking students who score at or above the ACT’s college-
readiness threshold score. The vector of predictors, 79, includes the group-level fraction black,
fraction on free lunch, teacher-pupil ratio, average 11th grade social studies score (standardized
across individuals at the grade-year level), and average 8th grade math and English scores.
We drop groups where there is not at least one ACT-taking student in the pre-policy and the
post-policy periods, losing approximately 2% of the students in the sample.

We vary two features of the comparison. First, we vary the form of the control function, A(.),
while defining groups as schools. We use no control function, a linear function, a cubic function,
a log function, and the inverse Mills ratio. The inverse Mills ratio is the appropriate functional
form if the individual ACT score and ACT-taking errors are jointly normally distributed. The
other functional forms can be interpreted as approximations to an unknown form of i(). The
logarithmic form is used by Card and Payne (2002) and the linear and cubic forms follow from
ideas in Heckman and Robb (1985) and Newey (2009).

We report the predicted mean ACT score and predicted fraction scoring college-ready in
panel A of Appendix Table 12. The mean ACT score from the post-policy reference distribution
is 19.26 and pre-policy is 20.63, again using inverse probability weighting to adjust for time
differences in student demographics and school characteristics. The observed fractions college-
ready are 0.443 and 0.569. Using the pre-policy data and omitting any selection correction
generates predictions almost identical to the raw numbers (20.62 and 0.565). The control
functions improve slightly on the uncorrected OLS regression but are nearly identical to one
another and remain far from the benchmark value.'> We also account for the possibility that the
within-school selection process may differ between schools, by interacting the control function
with the fraction of students who qualify for free lunch and the mean 11th grade test score.
This allows the selection correction term, and hence the underlying distribution of individual
errors, to vary by school type. However, this does not change the predicted outcomes. The
estimates are robust over all our choices of the control function, echoing Card and Payne (2002)
and Rothstein (2006). However, our results suggest that the estimates may simply be robustly
incorrect.

Second, we vary the group definition, using demographic and academic subgroups within

schools instead of schools. With these less aggregated groups, the predictor vector 79 contains

15We omit estimates from the cubic correction model, which are identical to those from the linear model.
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more information, which facilitates better prediction. However, the group-level selection cor-
rection models correct only for within-group selection. Using less aggregated groups increases
the scope for between-group selection and hence worse prediction. Using less aggregated groups
thus emphasizes the role of the predictors relative to the corrections.

We begin by creating cells at the school-by-free lunch status-by-minority status level and
report the results in panel B of Appendix Table 12. Disaggregating cells to this level leaves
the raw post-policy mean and fraction college-ready unchanged, though the summary statistics
for the post-policy reweighted and predicted distributions are slightly lower. The pre-policy
predicted parameters are slightly closer to the truth than in panel A, closing approximately 0.2
points of the 1.4 point gap for the mean, and 2 of the 13 percentage point gap for the fraction
college-ready. Again, the predictions do not differ with the functional form of the correction.

We next group the data at the school-by-free lunch status-by-minority status-by-11th grade
test score quartile level and report the results in panel C of Table 12. Variants of this strategy
are feasible when researchers observe prior academic performance for demographic subgroups of
students, which are available in many NCLB-mandated school reports. The raw mean score and
fraction college-ready are lower in the pre-period for this sample, while they are unchanged in
the post-period.'® The predictions are substantially better with this less refined data and some
fall almost within the 95% confidence intervals of the parameters of the reference distribution
(column 3). The functional form of the correction is again almost irrelevant; the uncorrected
predictions are as accurate as any of the selection-corrected predictions.

We display these estimates in Appendix Figure 15, showing the variance and squared bias
for each combination of control functions and data aggregation levels. The finer aggregation
levels clearly generate less biased estimates of the mean and fraction college-ready, particularly
for the finest aggregation level; the estimates for the mean are also lower variance than those
based on coarser aggregation levels. There is little variation across control functions in squared
bias. There is some variation in variance, though no clearly dominant control function. We
repeat this exercise using as a reference distribution the post-policy score distribution without
reweighting and show the results in Appendix Figure 16. The results are unchanged.

We conclude that none of the functional form choices for the selection correction term robustly

16The change in these statistics occurs for two reasons. Students with missing 11th grade scores are now
dropped, as they do not fall into a test score quartile. There are also some school-by-poverty-by-test score
quartile cells that contain no ACT takers. Students in these cells are assigned zero weight in this disaggregated
analysis but received positive weight in the previous, more aggregated, analysis.
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Appendix Figure XV: MSE Comparison Across Control Functions and Aggregation Levels

(a) Mean ACT Score
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lunch*minority-level; Blue (bottom): school*free lunch*minority*test score quartile-level. Bias is the difference between the
statistic predicted by 1) the correction method applied to the pre-policy data and 2) the post-policy, DFL-weighted, fitted
distribution.
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Appendix Figure XVI: Group-Level MSE Comparison W/Out DFL Weights

(a) Mean ACT Score
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outperforms the others. However, the less aggregated data yields substantially more accurate
predictions. This emphasizes the importance of the predictors, relative to the correction model,
for prediction. Research based on highly aggregated data, such as state-level reports, should

be interpreted with caution.
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