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Abstract

We use a natural experiment to evaluate sample selection correction methods’ perfor-

mance. In 2007, Michigan began requiring that all students take a college entrance exam,

increasing the exam-taking rate from 64 to 99%. We apply different selection correction

methods, using different sets of predictors, to the pre-policy exam score data. We then

compare the corrected data to the complete post-policy exam score data as a benchmark.

We find that performance is sensitive to the choice of predictors, but not the choice of

selection correction method. Using stronger predictors such as lagged test scores yields

more accurate results, but simple parametric methods and less restrictive semiparametric

methods yield similar results for any set of predictors. We conclude that gains in this

setting from less restrictive econometric methods are small relative to gains from richer

data. This suggests that empirical researchers using selection correction methods should

focus more on the predictive power of covariates than robustness across modeling choices.
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1 Introduction

Researchers routinely use datasets where outcomes of interest are unobserved for some cases.

When latent outcomes are systematically different for observed and unobserved cases, this

creates a sample selection problem. Many canonical economic analyses face this challenge:

wages are unobserved for the non-employed, test scores are unobserved for non-takers, and

all outcomes are unobserved for attriters from panel studies or experiments. Statisticians and

econometricians have proposed many selection correction methods to address this challenge.

However, it is difficult to evaluate these methods’ performance without observing the complete

outcome distribution as a benchmark.

We use a natural experiment to evaluate the performance of different selection correction

methods. In 2007, the state of Michigan began requiring that all students in public high

schools take the ACT college entrance exam, raising the exam-taking rate from 64% to 99%.

We apply different selection correction methods, using different sets of predictors, to the pre-

policy exam score data. We then compare the corrected data to the complete post-policy exam

score data as a benchmark.

We compare the performance of eight selection correction methods: linear regression (i.e.

no correction), a one-stage parametric censored regression model (Tobin, 1958), a two-stage

parametric selection model (Heckman, 1974), and several two-stage semiparametric selection

models (Ahn and Powell, 1993; Newey, 2009; Powell, 1987). These make successively weaker

assumptions about the economic or statistical model generating the latent outcomes and prob-

ability that the outcomes are missing. We evaluate each method using sets of predictors that

range from sparse (student demographics) to rich (lagged student test scores and school charac-

teristics) to mimic the different types of data available to researchers. We examine whether the

performance of these correction methods varies by student race or poverty status and whether

they can match gaps in the benchmark data in achievement by race and income.

We find that performance is not sensitive to the choice of selection correction method but is

sensitive to the choice of predictors. Performance is similar for methods with weak assumptions

(e.g. two-stage semiparametric methods) and methods with very restrictive assumptions (e.g.

linear regression). All methods perform poorly when we use sparse predictors and well when

we use rich predictors. We see the same patterns for subpopulations based on race and poverty,

showing that our findings are not specific to one data generating process.
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We consider several explanations for the similar performance across correction methods. This

is not explained by an absence of selection, the assumptions of the parametric models holding, a

weak instrument, or the data being too coarse to use semiparametric estimation. We conclude

that the violations of the parametric models’ assumptions are not quantitatively important in

this setting. In contrast, the importance of detailed school- and student-level predictors is easy

to explain. These characteristics strongly predict both latent test scores and test-taking and

hence improve performance irrespective of the choice of selection method. This echoes ideas in

Imbens (2003) and Oster (2017) that there is more scope for bias from unobserved predictors

when observed predictors explain less outcome variation.

We believe this is the first paper to evaluate the performance of selection correction methods

for missing data against a quasi-experimental benchmark. Other missing data papers comparing

estimates across selection correction methods lack a quasi-experimental or experimental bench-

mark for evaluation (Mroz, 1987; Newey, Powell, and Walker, 1990; Melenberg and Van Soest,

1996). Our approach is similar to the literature comparing different treatment effects methods

against experimental benchmarks (LaLonde, 1986; Heckman, Ichimura, Smith, and Todd, 1998;

Dehejia and Wahba, 1999).1

Our findings are relevant to three audiences. First, our findings can inform methodological

choices by applied researchers using selection correction methods or adapting existing methods

for new applications (e.g. Dahl 2002; Bonhomme, Jolivet, and Leuven 2016). Many applied

researchers establish that their results are robust across different selection correction methods

(Krueger and Whitmore, 2001; Card and Payne, 2002; Angrist, Bettinger, and Kremer, 2006;

Clark, Rothstein, and Whitmore Schanzenbach, 2009). Our findings show that results can be

robust without being correct. This suggests researchers should focus more on the strength of the

relationships between the observed predictors, the missing data indicator, and the non-missing

outcomes than robustness across different methods.

Second, our findings are relevant to econometricians developing selection correction meth-

ods or adapting methods for new problems such as dynamic selection (e.g. Semykina and

Wooldridge 2013). Most econometric work comparing selection correction methods’ perfor-

mance uses either simulated data or real data without a quasi-experimental benchmark (Mroz,

1LaLonde (1986) and Heckman, Ichimura, Smith, and Todd (1998) evaluate selection correction methods
for treatment effects against experimental benchmarks. However, selection into treatment is a substantively
different economic problem from selection due to missing data. Correction methods may work well for missing
outcome data, the problem we consider, but poorly for treatment effects problems or vice versa.
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1987; Goldberger, 1983; Paarsch, 1984; Newey, Powell, and Walker, 1990; Vella, 1998). We

advance the comparisons based on real data by providing a quasi-experimental benchmark

that allows us to evaluate rather than compare performance. We complement the comparisons

based on simulations by examining a real-world application, as performance in simulations can

be sensitive to how closely the simulation parameters match real-world data (Busso, DiNardo,

and McCrary, 2014; Frölich, Huber, and Wiesenfarth, 2015).

Third, our findings are relevant to researchers, practitioners, and policymakers who want

to use test scores to infer population achievement when test-takers are selected. Our results

show that US college entrance exam scores predict population achievement if other test scores

are observed. This contributes to the literature on selection into college entrance exam-taking

(Dynarski, 1987; Hanushek and Taylor, 1990; Dynarski and Gleason, 1993). Our findings may

be relevant to other education settings with selection into test-taking. For example, enrollment,

and hence test-taking, is heavily selected in many developing countries, and even assessments

used for accountability in the U.S. miss some students. Our findings can help researchers,

practitioners, and policymakers in these settings learn about cohort-level achievement from

assessments of enrolled, test-taking students.

We describe the sample selection problem in Section 2.1 and selection correction methods

in Section 2.2. In Section 3, we describe our data, our setting, and the extent of selection

into test-taking in the pre-policy period. We report the main findings in Section 4 and discuss

reasons for the similar performance of different selection correction methods in Section 5. In

Section 6, we conclude and discuss the extent to which our findings might generalize.

We extend our main analysis in five appendices. In Appendix A, we describe the dataset

construction and report additional summary statistics. In Appendix B, we elaborate on the

selection correction methods and how we implement them. In Appendix C, we show that our

findings are robust to evaluating selection correction methods using different criteria. In the

main paper we evaluate corrections based on means: we compare the mean selection-corrected

pre-policy test score to the mean score in the complete post-policy data. In the appendix

we also evaluate selection corrections based on regression parameters and the full test score

distribution.2 In Appendix D, we show that our findings are robust to changes in regression

2Specifically, we estimate a selection-corrected regression of test scores on covariates using pre-policy data
and compare the coefficients to the same regression estimated using the complete post-policy data. We then
predict the full selection-corrected distribution of pre-policy test scores and compare this to the complete post-
policy test score distribution. We also compare the predicted share of selection-corrected pre-policy ACT scores
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specifications and sample definitions. In Appendix E, we replicate our analysis using aggregate

data (e.g. mean test-taking rates and test scores by school), as many researchers observe only

aggregate data. We show that performance improves as we aggregate data at lower levels but

does not vary across selection correction methods, reinforcing the importance of richer data for

selection correction.3

2 Sample Selection, Corrections, Evaluation Criteria

2.1 The Sample Selection Problem

We introduce the sample selection problem with an application common in education research.

We want to analyze student achievement, using ACT scores to proxy for achievement. We

observe scores for a subset of students, and the latent achievement distribution may differ

for ACT-takers and non-takers. This is similar to the canonical selection problem in labor

economics: wages are observed only for employed workers, and the latent wage distribution

may differ by employment status (Gronau, 1974; Heckman, 1974). We focus on the case where

selection into test-taking is determined by unobserved characteristics that are not independent

of latent scores. Selection on only observed characteristics or on only unobserved characteristics

independent of latent scores can be addressed with simpler methods.

All the selection correction models we consider are special cases of this framework:

ACT ∗
i = Xiβ + εi (1a)

TAKE∗
i = g (Xi, Zi) + ui (1b)

TAKEi =

1 if TAKE∗
i ≥ 0

0 if TAKE∗
i < 0

(1c)

ACTi =

ACT ∗
i if TAKE∗

i ≥ 0

. if TAKE∗
i < 0

(1d)

where ACT ∗
i is the latent ACT score of student i with observed score ACTi. The objects of

interest are the conditional means of ACT ∗
i given Xi (i.e. the parameters from the population

meeting a college readiness threshold to the share in the complete post-policy data. These comparisons may be
useful for many applied researchers. But the corrections we evaluate are designed recover conditional outcome
means, not distributions. Hence these comparisons should thus be interpreted with caution.

3Similarly, Clark, Rothstein, and Whitmore Schanzenbach (2009) study selection into ACT-taking in Illinois.
They also find that parametric corrections using group-level data can approximate group-level latent ACT scores
when other group-level test scores are observed.
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linear regression of ACT ∗
i on Xi) and the unconditional mean of ACT ∗

i . We draw a distinction

between the sample selection problem due to missing values of ACT ∗
i , and the more general

identification problem due to correlation between Xi and εi. We abstract away from the latter

problem by assuming that the object of interest is the conditional mean of ACT ∗
i given Xi,

rather than some causal effect of Xi on ACT ∗
i . The ordinary least squares estimator of β

consistently estimates this conditional mean in the absence of sample selection. We therefore

refer to “predictors” of test scores rather than “determinants” or “causes.” In the main paper

we restrict attention to models where the functional form of Xiβ is known and where Xi and i

are additively separable.4

Equation (1b) models the sample selection problem. Selection depends on a vector of observed

characteristics (Xi, Zi) and an unobserved scalar term ui, which has an unknown distribution

and may be correlated with εi. There may exist instrumental variables Zi that are independent

of εi, influence the probability of taking the ACT, and do not influence latent ACT scores (all

conditional on Xi). We do not assume that the functional form of g(., .) is known. Equations

(1c) and (1d) show the relationships between latent and observed ACT-taking and scores. Note

that we observe the vector Xi for students who do not take the ACT.

Selection bias arises because the expectation of the observed ACT score conditional on Xi

depends on the conditional expectation of the error term:

E [ACTi|Xi, TAKEi = 1] = Xiβ + E [εi|g(Xi, Zi) + ui > 0, Xi] (2)

If ui and εi are not independent, the compound error term is correlated with Xi, creating an

omitted variable problem.5

2.2 Selection Correction Methods

We evaluate eight selection correction methods. All are discussed in more detail in Appendix B

and summarized in Appendix Table 3. First, we estimate ACTi = Xiβ+ εi using ordinary least

squares and the sample of ACT-takers. This approach provides a consistent estimator of β if

4The additive separability assumption is common in the empirical and theoretical literature on sample
selection. See Altonji, Ichimura, and Otsu (2012) and Arellano and Bonhomme (2017) for exceptions. In
Appendix D we implement an informal test of additive separability and fail to reject this assumption. We also
show in Appendix D that our results are robust to alternative parametric specifications of Xiβ.

5If εi and ui are independent, then we describe the data as missing conditionally at random (Rubin, 1976)
or selected on observed characteristics (Heckman and Robb, 1985). This still poses a sample selection problem
but is straightforward to address.
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unobserved predictors of test-taking are independent of latent test scores, because the omitted

variable in equation (2) is zero under this assumption.6 Second, we estimate ACTi = Xiβ + εi

using a Type 1 Tobit maximum likelihood estimator and the sample of ACT-takers (Tobin,

1958). If εi is normally distributed and equal to ui, we can estimate equation (2) by maximum

likelihood, allowing consistent estimation of β. This method assumes that ACT-taking and

ACT scores are jointly determined by the same unobserved student characteristic. If students

with high latent ACT scores do not take the ACT (or vice versa), this assumption fails.

Third, we jointly estimate the score and test-taking models using a parametric selection

correction method and assuming that g (Xi, Zi) = Xiδ + Ziγ (Heckman, 1974). If (εi, ui) are

jointly normally distributed, the omitted variable in equation (2) can be estimated and included

as a control variable, allowing consistent estimation of β. This does not impose the Tobit

model’s restrictive assumption that student selection into ACT-taking is based on latent scores.

However, this approach relies on specific distributional assumptions and may perform poorly

if there is no excludeable instrument Zi that predicts ACT-taking but not latent ACT scores

(Puhani, 2002).7 As our fourth model, we therefore estimate a Heckman selection correction

model excluding the driving distance from each student’s home to the nearest ACT test center

from the outcome model. This follows Card (1995), among others, and we justify the exclusion

restriction in Section 3.2.

We also estimate four semiparametric models, which relax the assumptions that (εi, ui) are

jointly normally distributed and that the functional form of g(., .) is known. Each model

combines one of two ACT-taking models, estimated for all students, and one of two selection-

corrected ACT score models, estimated for only ACT-takers. The first ACT-taking model is a

series logit: a logit regression of TAKEi on polynomial functions of Xi and Zi, with the poly-

nomial order chosen using cross-validation. The second ACT-taking model is a nonparametric

matching estimator that calculates the mean ACT-taking rate among group of students with

similar predictor values. We use the predicted probabilities of ACT-taking from these models

6This OLS approach relates to a broader literature in statistics on imputation. Imputation methods replace
student i’s missing ACT score with the ACT score for a randomly chosen student with similar values of the
predictors to i or the mean ACT score for a group of students with similar values of the predictors (Rubin,
1987). Like OLS, these methods assume there are no unobserved predictors of ACT-taking that also predict
latent ACT scores. These methods differ from OLS by using different functional forms of equation (1a). Rather
than evaluating a range of imputation methods, we show in Appendix Table 11 that our results are robust to
alternative functional forms of equation (1a).

7Joint normality of (εi, ui) is a sufficient but not necessary condition for this selection correction model to
provide a consistent estimator of β. There are other assumptions on the joint distribution that are sufficient.
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to construct two selection corrections for the ACT score model.

The first selection-corrected ACT score model approximates the bias term in equation (2) with

a polynomial in ˆTAKE∗
i , following Heckman and Robb (1985) and Newey (2009). The second

removes the bias term using pseudo-fixed effects for groups of students with similar values

of ˆTAKEi (Ahn and Powell, 1993; Powell, 1987). These approaches do not rely on specific

distributional assumptions. But they do impose some restrictions on the joint distribution of

(εi, ui) and the function g(., .) and may have poor statistical performance in even moderately

large samples. We discuss the assumptions and implementation of the semiparametric models

in Appendix B.

We refer to these eight methods as OLS, Tobit, Heckman, Heckman with IV, semiparametric

Newey, nonparametric Newey, semiparametric Powell, and nonparametric Powell. In the body

of the paper we only vary the ACT-taking equation and selection correction term; in the

appendices we also vary the functional form of the latent ACT score model. We summarize the

differences between these methods by describing a hypothetical student’s ACT-taking choice.

Assume that her decision to take the ACT depends on her unobserved (to the econometrician)

interest in attending college. The OLS correction is appropriate if this interest is uncorrelated

with unobserved predictors of her latent ACT score. The Tobit Type I correction is appropriate

if this interest predicts her ACT-taking decision only through her latent test score, so she

will take the ACT if and only if she has a high latent score, conditional on her observed

characteristics. The Heckman corrections are appropriate if this interest is correlated with

unobserved predictors of her latent ACT score but the joint distribution of these unobserved

characteristics satisfies specific parametric conditions. The Newey and Powell corrections are

appropriate if this interest is correlated with unobserved predictors of her latent ACT score

and the joint distribution of these unobserved characteristics satisfies weaker conditions.

All these methods aim to point identify β. Another set of methods aims to derive bounds

on possible values of β. These methods assume that non-takers have either very high or very

low latent ACT scores and use these two extreme assumptions to construct bounds on the

distribution of ACT scores (Manski, 1990; Lee, 2009). These methods yield bounds that are

too wide to be informative in our application.8

8Manki’s least restrictive bounding method assumes that all non-takers score either the maximum or mini-
mum ACT score. This approach estimates bounds of [13.40, 26.32] points for the mean ACT score, which only
excludes the top and bottom deciles of the complete post-policy ACT score distribution. Lee’s more restrictive
approach derives bounds for the difference in means between groups with higher and lower test-taking rates,
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2.3 Evaluating Alternative Selection Correction Methods

We evaluate each of the eight selection correction methods by how closely they predict the mean

ACT scores in the post-policy period, which we call the reference mean. For each correction

method, we regress the selected pre-policy ACT scores on predictors to estimate β̂ and then

predict ACT i = β̂Xi, using the predictors for the full population. We compare this to the mean

of the reference distribution. We construct the reference distribution from the observed post-

policy score distribution in two stages. First, we adjust for small differences in the distribution

of observed student predictors of ACT scores between the two time periods (shown in Table 2)

using inverse probability weights. Second, we account for the fact that 1.5% of students do not

take the ACT in the post-policy period by replacing their missing scores with predicted values

from estimating equation (1a) by OLS on the post-policy data. We show in Appendix Figures

10 and 11 and Appendix Table 11 that our findings are not affected by these adjustments.

In Appendix C, we report results from evaluating selection correction methods on three

additional criteria. First, we compare the estimated parameter vector β̂ to the parameter vector

from regressing the post-policy ACT scores on the same student predictors. Second, we compare

the selection-corrected pre-policy ACT score distribution to post-policy ACT score distribution.

Third, we compare the selection-corrected pre-policy student share passing a minimum ACT

score typically interpreted as “college-ready” to the same share in the post-policy period.9 Our

main findings are robust across all these criteria.

For all evaluation criteria, we interpret the difference between the selection-corrected pre-

policy statistic and the post-policy statistic as a measure of the correction method’s bias,

conditional on the predictors. We report this bias and the variance of the selection-corrected

pre-policy statistic, estimated using a nonparametric cluster bootstrap, clustering by school.10

rather than bounds for the population mean. For example, the ACT-taking rate differs by 7.7 percentage points
between black and white students and Lee’s method yields bounds of [3.66, 5.56] points for the black-white
ACT score gap, or roughly 0.4 standard deviations.

9The first additional criterion is similar to our primary comparison of the predicted mean, but does not use
β0, the constant term in equation (1a). Identification of the constant term in semiparametric correction methods
is a challenge that we discuss in section V. The selection correction methods we evaluate are not designed to
perform well on the second and third additional criteria. However, these criteria are of interest to many applied
researchers and we show how selection correction methods can be informally adapted for this purpose.

10To the best of our knowledge, the literature has not proposed an analytical variance estimator for two-stage
semiparametric selection correction models with clustered data. We follow typical empirical practice by using
the bootstrap, though this is problematic for our nonparametric first stage model (Abadie and Imbens, 2008).
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3 Context, Data, and the Extent of Selection

We use student level data for two cohorts (2005 and 2008) of all first-time 11th graders attending

Michigan public high schools.11 Using the last pre-policy cohort (2006) and first post-policy

cohort (2007) would minimize demographic differences between the samples. However, the

policy was piloted in some schools in 2006, and not all districts implemented the reform in

2007. Given these challenges with the 2006 and 2007 cohorts, our main analysis uses the 2005

and 2008 cohorts. Our results are robust to using the 2006/2007, 2006/2008, and 2005/2007

cohort combinations (see Appendix Figures 12, 13, and 14).

3.1 Data

We use student-level administrative data from the Michigan Department of Education (MDE)

that cover all first-time 11th grade students in Michigan public schools. The data contain the

time-invariant demographics sex, race, and date of birth, as well as the time-varying charac-

teristics free and reduced-price lunch status, limited-English-proficiency status (LEP), special

education status (SPED), and student home addresses. The data also contain 8th and 11th

grade state assessment results in multiple subjects. We match the MDE data to student-level

ACT and SAT information over the sample period and to the driving distance between stu-

dents’ home during 11th grade and the nearest ACT test center.12 See Appendix A for more

information about our data and sample definition.

Table 1 shows sample means for the combined sample (column 1) and separately for the two

cohorts of interest (columns 2 and 5). Four patterns are visible. First, the fraction of students

taking the ACT jumped discontinuously from 2006 to 2007 when the policy was introduced.

The ACT-taking rate rose from 64.1% in 2005 to 98.5% in 2008.13 Second, mean ACT scores did

not vary across years within each policy period: they are almost identical in 2005 and 2006 and

in 2007 and 2008. This suggests that cohort-level latent achievement was stable through time,

supporting our claim that differences in observed ACT scores reflect changes in ACT-taking

rather than changes in composition.

11Throughout the paper, we refer to academic years using the spring year (e.g., we use 2008 for 2007-08).
12If a student took the ACT multiple times, we use their first score. If a pre-policy student took the SAT but

not the ACT, we convert their score into ACT scale using the standard concordance table.
13Michigan’s policy required 95% of students in each school to take the ACT for accountability purposes but

did not require that individual students took the exam to graduate high school. This explains why 1.5% of
students did not take the ACT exam even after the policy change.
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Table 1. Sample Means of Michigan 11th Grade Cohorts

2005 and 
2008

2005 
Cohort

2006 
Cohort

2007 
Cohort

2008 
Cohort

P-Value  
(6)=0

(1) (2) (3) (4) (5) (6) (7)
Demographics

Female 0.516 0.514 0.515 0.517 0.517 0.003 0.226
White 0.790 0.805 0.792 0.782 0.775 -0.030 0.000
Black 0.145 0.132 0.148 0.154 0.158 0.026 0.000
Hispanic 0.029 0.027 0.027 0.029 0.031 0.004 0.000
Other race 0.035 0.036 0.033 0.034 0.035 0.000 0.600
Free or reduced lunch 0.242 0.204 0.231 0.256 0.279 0.075 0.000
Local unemployment 7.518 7.285 7.064 7.329 7.745 0.460 0.000
Driving miles to nearest 
ACT test center 3.71 4.87 4.61 2.59 2.58 -2.29 0.000

Took SAT 0.058 0.076 0.069 0.047 0.039 -0.037 0.000
SAT Score 25.2 24.8 24.6 25.6 25.9 1.0 0.000
Took SAT & ACT 0.054 0.070 0.064 0.046 0.039 -0.031 0.000
Took ACT or SAT

All 0.815 0.641 0.663 0.971 0.985 0.345 0.000
Male 0.793 0.598 0.621 0.969 0.984 0.387 0.000
Female 0.836 0.681 0.702 0.973 0.986 0.305 0.000
Black 0.780 0.575 0.608 0.905 0.947 0.372 0.000
White 0.822 0.652 0.674 0.985 0.993 0.341 0.000
Free or reduced lunch 0.749 0.434 0.483 0.936 0.970 0.536 0.000
Not free/reduced lunch 0.838 0.693 0.717 0.983 0.991 0.299 0.000
Low grade 8 scores 0.747 0.474 0.513 0.972 0.979 0.505 0.000
High grade 8 scores 0.875 0.778 0.789 0.971 0.991 0.213 0.000

First ACT or SAT Score
All 19.9 20.9 20.8 19.2 19.3 -1.6 0.000
Male 19.9 21.0 20.9 19.1 19.2 -1.8 0.000
Female 19.9 20.7 20.6 19.2 19.3 -1.4 0.000
Black 16.0 16.8 16.6 15.8 15.6 -1.2 0.000
White 20.6 21.4 21.5 19.8 20.0 -1.5 0.000
Free or reduced lunch 17.1 18.3 18.0 16.7 16.8 -1.5 0.000
Not free/reduced lunch 20.7 21.3 21.3 20.0 20.2 -1.1 0.000
Low grade 8 scores 16.8 17.8 17.6 16.4 16.3 -1.4 0.000
High grade 8 scores 22.1 22.4 22.5 21.6 21.8 -0.6 0.000

Number of Students 197,014 97,108 99,441 101,344 99,906

08-05 Diff   
(5) - (2)

Notes: The sample is first-time 11th graders in Michigan public high schools during 2004-05 through 
2007-08 who graduate high school, do not take the SPED 11th grade test, and have a non-missing home 
address. Free or reduced-price lunch lunch status is measured as of 11th grade. Low (high) grade 8 
scores are below (above) the median score in each sample.
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Third, ACT-taking rates increased more for student groups with lower pre-policy rates: black

students, free lunch-eligible students, and students with low 8th grade test scores. These same

groups saw weakly larger drops in their mean scores. This shows that groups of students pre-

policy positively selected into ACT-taking based on their latent ACT scores, and that the policy

largely eliminated this selection. Fourth, student demographics changed smoothly through time

with no jump at the policy change. The percentage of black and free lunch-eligible students

rose, as did the unemployment rate. Our comparisons account for this shift by reweighting

the post-policy cohort to have the same distribution of observed characteristics as the pre-

policy cohort (DiNardo, Fortin, and Lemieux, 1996).14 This adjustment does not account for

cross-cohort differences in unobserved latent ACT score predictors.

3.2 Modeling ACT-Taking

The two-stage selection correction methods are identified either by functional form assumptions,

which are seldom viewed as credible in empirical work, or by an exclusion restriction, a variable

that predicts ACT-taking but not latent test scores. We use the driving distance from each

student’s home to the nearest ACT test center to provide an exclusion restriction. We assume

that students with easier access to a test center have a lower cost and hence higher probability

of taking the test but do not have systematically different latent test scores, conditional on the

other test score predictors.15 We show below that driving distance strongly predicts test-taking

and does not predict scores on non-ACT tests, supporting the exclusion restriction. Appendix

Table 1 shows percentiles of the distance distribution by period and by urban/rural status.

This exclusion restriction follows closely from prior research on education participation (Card,

1995; Kane and Rouse, 1995). We do not claim that the exclusion restriction is perfect, but

rather that it is consistent with common empirical practice. This is the appropriate benchmark

if we aim to inform empirical researchers’ choice of selection correction methods, conditional

on the type of instruments typically available.

We test if distance robustly predicts ACT-taking. Using pre-policy data, we estimate a probit

regression of ACT-taking on a quadratic in distance. A quadratic allows the marginal cost of

14Our reweighting model includes indicators for individual race, gender, special education status, limited
English proficiency, and all interactions; school means for the same four variables, urban/suburban/rural location
and all interactions; and district enrollment, pupil-teacher ratio, local unemployment rate and all interactions.
Results are robust to alternative reweighting models or not reweighting.

15Bulman (2015) finds SAT-taking rises when schools offer the SAT, supporting the first assumption.
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ACT-taking to vary with distance, accounting for fixed costs of travel or increasing marginal

cost of time. We report the results in Table 2. Without controlling for any other predictors,

the distance variables are jointly but not individually significant (χ2 = 12.54, p = 0.002). The

relationship grows stronger as we control for student demographics, school- and district-level

characteristics, and student scores on other tests (χ2 = 25.15, p < 0.001). The controls account

for low test-taking by disadvantaged students who live in dense urban areas where distances

to test centers are small. The probability of ACT-taking falls with distance, dropping by 4

percentage points with a move from the 5th to the 95th percentile of driving distance to the

nearest ACT test center (14.1 miles). The instrument passes standard tests for instrument

strength, though these tests are developed for linear two-stage least squares models (Stock

and Yogo, 2005). We return to the interpretation of the instrument in Section 5, including a

discussion of identification at infinity.

We also use a placebo test to assess whether distance predicts latent achievement. We

regress the average of students’ 11th grade math and English test scores on the quadratic in

distance, reporting results in columns 5-8 of Table 2. Distance to a test center is associated with

higher scores but this relationship disappears when we control for other student characteristics

(χ2=1.30, p=0.480). This shows that distance predicts ACT-taking but not latent academic

performance, providing reassurance about the exclusion restriction’s validity.

3.3 Describing Selection by Comparing Pre- & Post-Policy Score Distributions

In this subsection, we compare the observed pre- and post-policy ACT score distributions to

describe pre-policy selection into ACT-taking. Positive/Negative selection occurs if pre-policy

scores are systematically higher/lower than post-policy scores. Researchers using selected test

scores often assume that all non-takers would score below some percentile in the observed

distribution (Angrist, Bettinger, and Kremer, 2006) or below all takers (Krueger and Whitmore,

2001). We assess the plausbility of these assumptions in our setting.

We estimate the latent ACT score distribution for non-takers by subtracting the number

of test-takers with each ACT score in the pre-period from the number with each score in the

post-period. We reweight the post-policy cohort to have the same number of students and

distribution of observed characteristics. If the reweighting accounts for all latent test score

predictors that differ between periods, then the difference in the number of students at each

13
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ACT score equals the number of non-takers with that latent score.16

Figure 1 plots the frequency distribution of ACT scores pre-policy, the reweighted post-policy

distribution of scores, and the difference, which proxies for the latent scores of non-takers pre-

policy.17 The observed test score distribution is approximately normal, reflecting the test’s

design. The non-takers’ test score distribution is shifted to the left. The mean pre-policy ACT

score is 1.3 points or 0.27 standard deviations higher than the mean post-policy ACT score.

Almost 60% of takers achieve the ACT’s “college-readiness” score, while less than 30% of the

non-takers would do so. However, some non-takers have high latent scores: 68% and 24% of

the latent scores exceed the 10th and 50th percentiles of the observed score distribution.

There is clear positive selection into ACT-taking, but less than that assumed in prior stud-

16Hyman (2017) conducts a more extensive version of this analysis, measuring the number of students in the
pre-policy cohort who have college-ready latent scores but do not take a college entrance test. He also examines
the effect of the mandatory ACT policy on postsecondary outcomes.

17Appendix Table 2 reports moments and percentiles of the three distributions.
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ies. Angrist, Bettinger, and Kremer (2006) and Krueger and Whitmore (2001) use Tobit and

bounding analyses by assuming that all non-takers would score below specific quantiles of the

observed distribution. In our data, this type of assumption would hold only at very high

quantiles, generating uninformative bounds. We conclude that selection corrections relying on

strong assumptions about negative selection are not justifiable in this setting.

The substantial number of individuals with high latent outcomes selecting out of participation

is not unique to our setting. For example, Bertrand, Goldin, and Katz (2010) show that women

who temporarily leave the labor market are not negatively selected on predictors of latent wages.

Similarly, high-income respondents routinely decline to report incomes on surveys, generating

positive selection. We do not believe that the pattern of selection shown in Figure 1 weakens

the generalizability of our results.

4 Results

4.1 Comparing Sample Selection Corrections

In this section, we evaluate the performance of multiple selection correction methods. We

estimate the selection-corrected means from the pre-policy ACT score distribution using the

methods described in Section 2.2 and Appendix B. We construct the benchmark distribution

from the post-policy ACT score distribution using the methods described in Section 2.3. We

report all results in Table 3 and summarize these results in Figure 2.

In Table 3, we report the mean for the raw post-policy ACT score distribution (column 1),

the reweighted post-policy distribution (column 2), and the reweighted post-policy distribution

with missing scores replaced by predicted scores (column 3). These provide three measures, as

discussed in Section 2.3, of the benchmark latent ACT distribution to which we compare the

selection-corrected pre-policy ACT distribution. For example, the mean ACT score is 19.25 in

the raw post-policy data, 19.73 after reweighting, and 19.56 after predicting missing values.18

We report the mean from the observed distribution in column 4 and from the selection-corrected

distributions in columns 5-12. Readers can directly compare these selection-corrected statistics

to their preferred benchmark in columns 1-3.

Our first selection correction method uses a simple linear regression adjustment: we regress

18Reweighting raises the mean because the fraction of students eligible for free and reduced-price lunch is
higher post-policy. The predicted mean is slightly lower than the reweighted mean because the 1.5% of students
who do not take the ACT post-policy period are negatively selected on observed characteristics.
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observed test scores on a vector of student demographics and use the coefficients to predict

test scores. The mean of the predicted values using OLS is 20.67 (standard error 0.10), shown

in column 5. So OLS closes only 11% of the gap between the observed mean of 20.86 and

the reference mean of 19.56. The poor predictive fit is unsurprising, as there is substantial

heterogeneity within each conditional mean cell (e.g., within race groups) that we do not yet

model.19

Our second selection correction is a Type 1 Tobit model, censoring at the 36th percentile of the

post-policy ACT score distribution, as the test-taking rate in the pre-policy period is 64%. The

predicted mean is similar to that from OLS. We next show results from the Heckman two-stage

correction procedure in columns 7 and 8. When the test-taking model does not use an exclusion

restriction, the mean predicted score is essentially identical to that predicted by OLS. Adding

driving distance from students’ home to the nearest ACT test center as a predictor of test-

taking does not change the predicted mean ACT score. Finally, we implement the two-stage

semiparametric sample selection corrections: the Newey and Powell models, each estimated

using both the semiparametric and nonparametric first stages, including the driving distance

instrument in all cases. See Appendix B for details on how we implement these estimators,

including the data-driven choice of predictors in the series logit and functional form of the Newey

correction term. We report the results using the Newey correction in columns 9 (semiparametric

first stage) and 10 (nonparametric first stage). These results are almost identical to those from

the Heckman correction, very similar to those from the OLS and Tobit corrections, and robust

across different orders of polynomial selection correction terms. The Powell model yields similar

results (with semiparametric first stage in column 11 and nonparametric first stage in column

12) and is marginally more biased with the nonparametric than the semiparametric first stage.

4.2 Comparing Selection Corrections’ Performance with Different Predictors

We now examine whether a researcher who has access to school- and district-level covariates

(such as demographics, urbanicity, and average 8th and 11th grade test scores) can do a better

job at correcting for selection in ACT scores. We report these results in the second row of

Table 3. Adding these controls moves the predicted mean closer to the reference mean for all

methods. However, the predicted means still exceed the reference mean by at least 0.6 ACT

19Appendix Figure 1 shows the complete, selected, and latent test score distributions for subsamples by race
and poverty, using the same approach as Figure 1. The latent score distributions for all subsamples span a
similar range to the full sample, and remain quite skewed.
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points (equal to 0.27 standard deviations). There is again no evidence that the semiparametric

models outperform the parametric or single-equation models.

Finally, we include student-level 8th and 11th grade test scores in the prediction model.

These data are often available to state education administrators, though researchers seldom

have them matched to students’ college entrance test scores. We report these results in the third

row of Table 3. All the corrections perform much better using the student-level scores in the

prediction. This reflects the strong relationship between students’ past and contemporaneous

achievement, ACT-taking, and ACT scores. The predicted means are mostly within 0.2 ACT

points of the reference mean, though the Tobit and semiparametric Powell correction perform

worse. Although the skewness of the latent test score distribution visible in Figure 1 caused

serious problems for models with few predictors, this problem is much less serious with richer

predictors.20 The predicted mean is closest to the reference value for the nonparametric Powell

20We also implement this exercise using 8th grade test scores as predictors but omitting 11th grade test scores.
The relative predictive accuracy of different models, reported in Appendix Table 11, is unchanged.
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model. The more flexible models do not robustly outperform the parametric models, single-

equation models, or even simple OLS.21

We summarize these results in Figure 2. We show each of the 24 predicted ACT means gener-

ated by the 8 selection correction models and 3 predictor sets in a bias-variance scatterplot. This

allows us to visually compare the bias and variance of the model-predictor combinations. Points

closer to the origin estimate the mean with lower mean squared error. The predictions relying

on only student demographics (black points) or student demographics and school-/district-level

characteristics (red points) are consistently high on the bias axis, reflecting their poor ability to

replicate the benchmark ACT mean. The predictions that include student test scores are less

biased and have similar variance. Within each covariate set, there is little variation in bias or

variance across different selection correction methods, except the semiparametric Powell correc-

tion, which has consistently higher variance. This figure clearly demonstrates that if we seek to

minimize mean-squared error (or any reasonable weighted average of bias and variance), better

data is valuable and more flexible methods are less so. In particular, our results show that

robustness of results to different modeling choices, a common feature of empirical papers, is

not necessarily reassuring.

4.3 Comparing Selection Corrections on Other Criteria

We estimate the parameter vector from a linear regression of the non-missing pre-policy ACT

scores on the predictors for each of the 8 selection correction models and 3 predictor sets.

We compare each of these to the estimated parameter vector using the complete test scores

from the post-policy period and interpret this as a measure of how well each correction model

addresses selection-induced bias in parameter estimates. We discuss these comparisons in detail

in Appendix C. In brief, we find that the mean-squared bias across all parameter estimates is

lower with richer sets of predictors but not for more flexible econometric models. We observe the

lowest mean squared bias with OLS (i.e. without any selection correction). We conclude that

for both prediction and parameter estimation, the gains from using less restrictive econometric

methods are small relative to the gains from seeking richer or more disaggregated data. We

21We conduct several robustness checks where we further vary the set of predictors. We describe these
checks in Appendix D with results presented in Appendix Table 12. Our main findings are robust to including
squared and interacted predictors in the ACT-taking and ACT score models, using different combinations of the
individual, school-, and district-level predictors, and relaxing the assumption that the predictors and selection
correction terms are additively separable in the ACT score model.
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find a similar result when we compare the full distribution of selection-corrected pre-policy test

scores to the post-policy distribution.

4.4 Comparing Selection Corrections for Different Subgroups

We also evaluate how well individual-level selection correction models predict the mean latent

test score for four subgroups. This is of interest for two reasons. First, researchers, adminis-

trators, and policymakers are interested in latent scores for key student subgroups in addition

to the full population. Second, econometricians, applied and theoretical, are interested in how

well selection correction models perform across different data generating processes. The latent

ACT score distributions, ACT-taking rates, and the distributions of predictors differ substan-

tially for black, white, low-income, and higher-income students (see Appendix Figure 1). If the

main pattern of results that we find for the overall sample holds across these subgroups, this

shows that the results are not specific to a single data generating process and may be more

generalizable. Reassuringly, we find that the main results hold across different subgroups. For

all subgroups, as in the overall sample, we find that the choice of correction method makes

little difference, but that corrections perform substantially better when including richer covari-

ates (see Appendix Figure 7 and Appendix Table 10). This robustness across different data

generating processes addresses some concerns about the generalizability of our findings.

We present results for all eight selection correction models estimated separately by race and

free-lunch status, using the full set of predictors, in Table 4 (summarized in Appendix Figure

2). There are large gaps in mean observed ACT scores between black and white students and

between low-income and higher-income students in the pre-policy period. In the post-policy

period, the test-taking rate rises for all groups. The gap in the test-taking rate between low-

income and higher-income students narrows, but the gap between black and white students

remains approximately constant. The rise in test-taking rates is associated with a fall in mean

test scores for all four subgroups. All selection correction models, applied to all four subgroups,

raise the predicted mean score relative to the observed data. However, many of the models

overestimate the predicted mean, particularly for black and low-income students. The gaps

in performance by race and by income are therefore underestimated; some models actually

estimate gaps that are farther from the truth than the observed gap. This pattern is more

pronounced for the income gap than the race gap.

What might explain this result? Recent research shows that past achievement is less pre-
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Table 4. Race and Poverty Gaps in Mean Latent ACT Scores by Correction Method

Black White Gap Poor Non-Poor Gap
(1) (2) (3) (4) (5) (6)

Post-Policy
Raw 15.61 19.98 4.38 16.77 20.19 3.42

DFL 15.95 20.28 4.33 16.84 20.46 3.62

OLS 15.86 20.27 4.41 16.78 20.43 3.65
(0.26) (0.11) (0.28) (0.08) (0.12) (0.12)

Pre-Policy
Raw 16.76 21.44 4.68 18.29 21.28 3.00

OLS 16.04 20.07 4.03 17.21 20.12 2.91
(0.19) (0.08) (0.20) (0.08) (0.09) (0.10)

Tobit 15.87 19.79 3.92 16.94 19.90 2.95
(0.19) (0.08) (0.20) (0.09) (0.09) (0.11)

16.08 20.18 4.10 17.31 20.22 2.91
(0.18) (0.08) (0.19) (0.09) (0.09) (0.11)

16.05 20.22 4.17 17.31 20.25 2.93
(1.42) (0.08) (1.43) (0.10) (0.09) (0.11)

16.00 20.16 4.16 17.15 20.18 3.03
(0.18) (0.08) (0.19) (0.09) (0.09) (0.11)

16.27 20.41 4.14 17.39 20.46 3.06
(0.20) (0.11) (0.22) (0.11) (0.10) (0.13)

16.12 20.17 4.05 17.41 20.22 2.80
(0.19) (0.08) (0.21) (0.09) (0.09) (0.11)

Notes: The sample is as in Table 3. The table reports means of the predicted ACT score 
from regressions of ACT scores on the full set of covariates, including student-level 8th and 
11th grade test scores. The predicted ACT score is calculated for ACT-takers and non-
takers. Poverty status is proxied for using free or reduced-price lunch receipt measured 
during 11th grade. Standard errors calculated using 500 bootstrap replications resampling 
schools.

Heckman        
(with IV)

Newey -   
Series Logit

Newey -  
Nonparametric

Powell -          
Series Logit

Powell -          
Nonparametric
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dictive of college application behavior among disadvantaged groups (Avery and Hoxby, 2013;

Hyman, 2017; Dillon and Smith, 2017). This is consistent with our results. Among white and

higher-income students we find that the corrections perform quite well after conditioning on

student test scores, suggesting that such test scores are strongly predictive of ACT-taking and

ACT scores. The fact that the models perform substantially worse among black and lower-

income students even after conditioning on student test scores, suggests that such scores are

less predictive of ACT-taking, which is a critical piece of the college application process.

Alternatively, the worse prediction among disadvantaged groups may reflect the nature of

the quasi-experiment we study. Students required to take the ACT by a mandatory testing

policy who do not anticipate applying to a four-year college may not exert as much effort as

students who take the test voluntarily. Our selection corrections predict latent scores for these

students using observed characteristics and a distance instrument that shifts the cost of taking

the ACT but not the value of performing well in the ACT. This selection correction strategy

will imperfectly account for heterogeneity in effort on the ACT. We risk predicting incorrectly

high ACT scores for non-takers, particularly non-takers from disadvantaged groups with lower

probabilities of attending college conditional on observed characteristics. This hypothesis would

explain both our overprediction of ACT scores for disadvantaged subgroups (see Table 4) and

our slight overprediction of ACT scores on average (see Table 3). However, we find no difference

between periods in the share of students with the precise score they would obtain by random

guessing. This shows that the students induced to take the ACT by the mandatory testing

policy are not more likely to exert very low effort on the test. Even if this hypothesis holds, it

does not explain why we see similar performance across different selection correction methods.

5 Explaining Similar Results across Different Corrections

Section 4 shows that different selection corrections methods predict similar mean ACT scores

despite their different assumptions. In this section, we explore possible economic and statistical

explanations for the similarities.

We begin by noting that different methods predict similar student-level ACT-taking and

scores as well as similar mean ACT scores. Table 5 reports summary statistics for the predicted

probabilities of taking the ACT for all first stages (probit with and without instruments, series

logit, nonparametric) and the three predictor sets. The student-level predicted probabilities are

23



very similar across the series logit and the two probit models, with correlation coefficients≥ 0.93.

The correlations between the nonparametric model and other models are still ≥ 0.84. These

high correlations help to explain the similarity of the predicted ACT score distributions across

the different corrections. The student-level predicted ACT scores are also very highly correlated

across models (see Appendix Table 5). The different correction models generate predicted ACT

scores with correlations ≥ 0.97 when using only student demographics as predictors. Including

student test scores and school- and district-level characteristics leaves all correlations ≥ 0.95.

Table 5 also shows that the predicted probabilities cover the whole unit interval only if we

use the richest set of predictors. When only student demographics are used as predictors, the

predicted values from all models are coarse and seldom near 0 or 1. This limited variation

in the predicted probabilities of ACT-taking contributes to the poor performance of selection

corrections using weak predictors.

This shows that the similarity in predicted mean ACT scores and coefficients in ACT re-

gressions is explained by similar student-level predicted test-taking probabilities and scores.

But why do the different corrections deliver such similar predictions? We consider and reject

four possible explanations. First, there may be no sample selection problem. If test-taking is

not influenced by unobserved characteristics that also influence test scores, then the selection

corrections are unnecessary. We can reject this explanation. The distributions of observed and

latent scores in Figure 1 show clear evidence of negative selection into test-taking. Further, the

selection correction terms in both the Heckman and Newey models are large and significant

predictors of ACT scores (see Appendix Tables 6, 7, and 8).22

Second, there may be a sample selection problem, but the structure of the problem may satisfy

the parametric assumptions of the Tobit or Heckman models. In particular, the Heckman model

is appropriate if the unobserved factors determining ACT scores and ACT-taking are jointly

normally distributed. The latent test score distribution in Figure 1 is not normal, and we verify

this with parametric (skewness-kurtosis) and nonparametric (Kolmogorov-Smirnov) normality

tests.23 The latent distribution is also non-normal conditional on demographic characteristics

22The inverse Mills ratio term in the Heckman model has a zero coefficient if the unobserved determinants
of test-taking and test scores are uncorrelated. We reject the hypothesis of a zero coefficient for models with
all combinations of the predictors and the instrument (p < 0.001). The coefficients are large: moving from the
5th to the 95th percentile of the predicted probability of ACT-taking shifts the ACT score by 10-13 points. We
also test if the coefficients on all of the polynomial correction terms in the Newey model are zero. We reject
this hypothesis for all combinations of predictors (p < 0.005).

23The rejection of normality is not explained by our large sample size. We also consistently reject normality
for random 1% subsamples of the data.
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(see Appendix Figure 1) and the threshold censoring assumed by the Tobit model clearly does

not hold, even conditional on demographic characteristics. We also test the assumption that

the unobserved factors that affect latent test scores are normally distributed: we regress post-

policy test scores on each of the three sets of predictors, generate the fitted residuals, and test

whether they are normally distributed. We reject normality of all three sets of residuals using

both Kolmogorov-Smirnov and skewness-kurtosis tests (p < 0.001 in all cases). We conclude

that the structure of the selection problem, given the specification of the predictors, does not

satisfy the joint normality assumption.24

Third, there may be sample selection that violates the parametric models’ assumptions, but

the test-taking predictors may be too coarse for the semiparametric models to perform well.

Some semiparametric models are identified only if at least one predictor is strictly continuous

(Ichimura, 1993; Klein and Spady, 1993). The series logit and Mahalanobis matching models

we use do not have this requirement but their performance may still be poor if the data are all

discrete or coarse. Coarse data may generate predicted probabilities that do not span the unit

interval, limiting the effective variation in the selection correction terms.25 This can explain

the similarity in the ACT scores predicted by different models using only the discrete student

demographics. But it does not explain the similarity across models using the richer set of

predictors. The 8th and 11th grade student test scores are relatively continuous variables,

which have respectively 1270 and 213 unique values, with no value accounting for more than

respectively 1.3% and 2.5% of all observations.

Fourth, there may be a sample selection problem whose structure violates the assumptions of

the parametric models, but the instrument may not be strong enough for the semiparametric

models to perform well. The instrument satisfies conventional instrument strength conditions

and does not predict other 11th grade test scores. However, the instrument does not satisfy

“identification at infinity” (see Appendix B).26 This means we can identify the slope coefficients

24As joint normality is a sufficient but not necessary condition for identification in the Heckman model, this
test should be viewed as only partial evidence against the validity of the model assumptions.

25We show in Appendix Figure 3 that the predicted probability of ACT-taking has a narrow distribution and
is linear in the predictors when we use only student demographics. This helps explain why two-stage corrections
using only student demographics perform poorly: the correction terms are highly colinear with the predictors
in the ACT regression. This relationship becomes nonlinear when we use richer predictor sets.

26In the probit model with the full set of predictors, moving from the 5th to the 95th percentile of the
instrument (14.1 miles) lowers the probability of test-taking by 4 percentage points. The relationship is similar
for the series logit model. Standard identification arguments for β0 require an instrument that shifts the test-
taking probability from 0 to 100 (Andrews and Schafgans, 1998; Chamberlain, 1986; Heckman, 1990).
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in equation (1a) but cannot separately identify the intercept coefficient β0 from the level of the

selection correction term. This is not necessarily a problem for our analysis, which examines the

mean predicted test score and is not interested in separating the intercept coefficient from the

selection correction term. We view this as a natural feature of semiparametric selection models

in many settings, rather than a feature specific to this application. The relationship between

our instrument and participation measure is at least as strong as in many classic education

applications (Card, 1995; Kane and Rouse, 1995). However, we acknowledge that the relative

performance of different selection models may differ when an extremely strong instrument is

available that permits identification of β0.

We conclude that there is a selection problem whose structure is not consistent with the

assumptions of the parametric models and that the data are continuous enough to use semi-

parametric analysis. The instrument does not support identification of the intercept coefficient

in the ACT model but this does not explain why parametric and semiparametric methods per-

form similarly well at estimating slope coefficients. It appears that the violations of the more

restrictive models’ assumptions are not quantitatively important in this setting.27

6 Conclusion

Sample selection arises when outcomes of interest are not observed for part of the population and

the latent outcomes differ for the cases with observed and unobserved values. Econometricians

and statisticians have proposed a range of parametric and semiparametric methods to address

sample selection bias, and applied researchers routinely implement these methods, but there

is little evidence on their relative performance. We use a Michigan policy that changed ACT-

taking for 11th graders from voluntary to required to observe partially missing outcomes for

one cohort and complete outcomes for another cohort. We evaluate how well different selection

corrections, applied to the partially missing outcomes, can match the complete outcomes.

We show that none of the sample selection corrections perform well when using only basic

demographic information as predictors. With more information about students, particularly

scores on state-administered standardized tests, simple OLS regressions perform well and there

are few gains from using more flexible selection correction methods. This result holds when

27Vella (1998) also finds that parametric and semiparametric selection models produce similar results even
when the assumptions of the parametric models fail. He uses real data but without a quasi-experimental
benchmark. However, Goldberger (1983), Heckman, Tobias, and Vytlacil (2003), and Paarsch (1984) show that
some parametric models perform poorly in simulations when their assumptions are violated.
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we evaluate selection corrections on their ability to predict the mean outcome, predict the

complete outcome distribution, or match the parameters of regression models estimated with

the complete data. Predictions are more accurate for white and higher-income students than for

black and lower-income students, leading to incorrect predictions of latent achievement gaps.

Finally, group-level correction methods perform poorly across different model specifications.

Aggregating the groups to increasingly refined cells, in particular cells defined by prior test

scores, substantially improves performance.

What, if any, more general implications can be drawn from our findings? Our results may not

generalize to very different settings, such as selection into wage employment (Heckman, 1974),

selection into education levels (Willis and Rosen, 1979), or selection into different occupations or

industries (Roy, 1951). However, two aspects of our results may be useful for other researchers.

First, we find that performance depends heavily on the richness of the predictors. Regressing

pre-policy ACT scores on the three sets of predictors – basic, district/school, and student test

scores – yields R2 values of respectively 0.134, 0.198, and 0.614. Regressing ACT-taking on

the instrument and the three sets of predictors yields pseudo-R2 values of 0.045, 0.088, and

0.223 respectively. Researchers estimating selection corrections with models that explain only

a small fraction of the variation in the outcome should be very cautious. In a labor economics

context, our results suggest that correcting wage distributions or regressions for selection will

work better when lagged wage data is available as a predictor.28 This reinforces findings in the

treatment effects literature emphasizing the importance of rich data for estimating treatment

effects in non-experimental settings (Heckman, Ichimura, Smith, and Todd, 1998; Heckman and

Smith, 1999).

Second, our findings are not limited to settings where the assumptions of parametric selec-

tion correction models hold. We find strong evidence of quantitatively important selection on

latent test scores, in a form that does not satisfy the assumptions of the parametric models we

implement. The predictors are continuous enough to allow semiparametric estimation, and the

instrument is comparable in strength to other widely-used instruments. This is a setting where

we would expect semiparametric models to outperform parametric models. However, the gains

from using these more flexible methods are minimal. Researchers who believe that parametric

28This echoes results in labor economics that lagged earnings are a particularly important control variable
when matching methods are used for program evaluation (Andersson, Holzer, Lane, Rosenblum, and Smith,
2016; Lechner and Wunsch, 2013). Though see Heckman and Smith (1999) for a cautionary discussion.
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model assumptions do not fit their application should not necessarily conclude that they will

do better by estimating more flexible methods.
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Selection Corrections: Online Appendices
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A Data Construction and Additional Statistics

This appendix provides more information on how we construct the dataset and shows additional

summary statistics.

Matching data sources: We matched the MDE data with three other sources using a

restricted access computer at the MDE. First, using student name, date of birth, sex, race,

and 11th grade home zip code, we match the student-level Michigan data to microdata from

ACT Inc. and The College Board on every ACT-taker and SAT-taker in Michigan over the

sample period. For the pre-policy cohorts, we use students’ first ACT score, which is typically

from 11th grade, but in some cases is from 12th grade. For students taking the SAT but not

the ACT pre-policy, we convert their first SAT score into the ACT scale following published

concordance tables.

Second, we acquired from ACT Inc. a list of all ACT test centers in Michigan over the sample

period, including their addresses and open and close dates. We geocode student home addresses

during 11th grade and the addresses of these test centers to construct a student-level driving

distance from 11th grade home to the nearest ACT test center. When a student has multiple

addresses during 11th grade, we use the one with the shortest distance to a center. When

11th grade home address is missing, we use home address during the surrounding grades. The

≈2% of students with a missing address during every high school grade are dropped from the

pre- and post-policy samples. Appendix Table 1 shows detailed summary statistics for driving

distance.
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Third, we matched unemployment rates at the city (when available) or county level from the

Bureau of Labor Statistics onto the school-level data.

Test scores: For the pre-policy cohorts, we measure students’ ACT scores using their first

attempt. This is typically from 11th grade, but in some cases is from 12th grade. For students

taking the SAT but not the ACT pre-policy, we convert their first SAT score into the ACT scale

following published concordance tables. Appendix Table 2 shows detailed summary statistics

for ACT scores. Appendix Figure 1 shows the distribution of observed pre- and post-policy

test scores and the difference between these, interpreted as a measure of the latent scores of

non-takers. Unlike Figure 1 in the main paper, this figure shows the distributions for subgroups

based on race and free lunch (in)eligibility.

We construct student-level 8th and 11th grade test scores from state-wide assessments. For

the 8th grade test score, we use the average of a student’s standardized math and English

scores. For 11th grade, we use standardized social studies scores because post-policy math and

English scores are in part determined by a student’s ACT score. If a student has missing test

scores, we replace the scores with zeros and include indicator variables for missing test scores

as predictors.

Sample restrictions: Our main analysis excludes the small number of students who do not

complete high school and students who take the special education version of the state-wide 11th

grade test. These students are not suited for our analysis because they are not required to take

the ACT in either period. Our results are robust to including them. The 2006 cohort includes

students in some schools where the mandatory ACT policy was piloted. When we analyze the

2006 cohort in Appendix D, we exclude these schools.

Additional statistics: Appendix Figure 2 graphically displays the test score gaps by race

and free lunch (in)eligibility observed in the reference distribution and estimated from the

selection-corrected pre-policy distributions. This displays the same information as Table 4 in a

more compact form.

B Selection Correction Models

This appendix elaborates on Section 2.2 of the main paper. We discuss each of the selection

correction models in more detail, explaining the different assumptions under which they yield

consistent estimators of β, and discuss implementation of the semiparametric models. We sum-
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Appendix Table 2. ACT Score Distributions Pre- and Post-Policy

Takers Non-Takers
(1) (2) (3)

Moments
Mean 20.85 17.65 19.73
Variance 4.54 5.11 4.98
Skewness 0.31 1.01 0.42
Kurtosis 2.72 3.56 2.65

Percentiles
1st 12 10 11
5th 14 12 12
10th 15 12 14
25th 17 14 16
Median 21 16 19
75th 24 20 23
90th 27 25 27
95th 29 28 29
99th 32 33 32

Fraction Scoring>=20 0.588 0.285 0.482

K-S Test vs Column 1
D-Stat 0.335 0.117
P-Value 0.000 0.000

Number of Students 62,186 33,475 95,661

2005 Cohort
2008 Cohort

Notes:  The sample is as in Table 1, except only the 2005 and 
2008 cohorts. The reported number of students in the 2008 cohort 
is adjusted to match the size of the 2005 cohort and also includes 
only the 98.5% of the sample who take the ACT. Column (2) 
reports the distribution of latent ACT scores of students not taking 
the exam calculated using the methodology described in the text.  
The K-S Test is a Kolmorogov-Smirnov non-parametric test of the 
equality of the distributions.
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marize these models in Appendix Table 3 We do not evaluate imputation methods, bounding

methods, or methods focused on identification at infinity without instruments.1

The variances for all models are estimated using a nonparametric bootstrap that resamples

schools.2 The bootstrap is not valid for the nonparametric first stage estimator we use (Abadie

and Imbens, 2008). However, to the best of our knowledge, the econometric literature does

not provide an analytical variance estimator for two-stage semiparametric selection correction

models with clustered data. We follow most applied researchers in using the bootstrap but

acknowledge that our variance estimates should be interpreted with caution.

B.1 Single-Equation Corrections for Sample Selection Bias (“OLS” and “Tobit”)

We begin with a simple single equation adjustment for sample selection bias using ordinary

least squares. Specifically, we estimate the model

ACTi = Xiβ + εi (1)

for the test-takers. This is a special case of system (1) where ui and εi are independent and

Pr (TAKEi = 1|Xi) > 0 for all Xi. In this case, the probability of taking the ACT score may

depend on observed and unobserved characteristics, but these are independent of εi and so

there is no sample selection problem. Differences between the observed and latent distributions

occur only because the probability of test-taking and test scores jointly vary across observed

characteristics. For example, students from low-income households have both lower rates of

test-taking (in the pre-policy period) and lower test scores (in the post-policy period). The

assumptions for this special case will be violated if test-taking decisions and latent test scores

are jointly influenced by any unobserved characteristics, such as motivation.

We next estimate a single equation adjustment for sample selection bias adapted from Tobin

(1958). This “Type 1 Tobit” adjustment assumes that εi is homoskedastic and normally dis-

tributed and that students take the ACT if and only if their latent scores exceed some threshold

value ACT . Under these assumptions, we can assign the threshold score ACT to all students

1Lewbel (2007) and D’Haultfoueille and Maurel (2013) propose methods that identify selection models with-
out instruments or parametric assumptions. Intuitively, both approaches rely on identifying a subsample of
students whose probability of taking the ACT is arbitrarily close to one. There is no missing data problem
within this subsample, which facilitates identification of the parameters of the outcome equation. Both ap-
proaches make assumptions that are unlikely to hold in our setting.

2Analytical variance estimators have been developed for one-stage nonparametric estimators with clustered
data (Hanson and Sunderam, 2012) or two-stage nonparametric estimators with independent data (Mammen,
Rothe, and Schienle, 2016).
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who do not take the ACT, where ACT is the lowest score obtained by any test-taker. In prac-

tice, researchers generally set ACT higher than the minimum observed value and then assign

the score ACT to both students with missing scores and students with non-missing scores below

ACT . This necessarily discards information for some test-takers, and discards more informa-

tion as ACT is set higher. Under these assumptions, the parameter vector equals the minimizer

of the likelihood function

L
(
β, σ2

)
=

n∏
i=1

(
1

σ
φ

(
TAKEi −Xiβ

σ

))TAKEi

·

(
1− Φ

(
Xiβ − ACT

σ

))1−TAKEi

(2)

where the first and second terms of the likelihood reflect the observed ACT scores and the

probability of taking the ACT respectively. φ(.) and Φ(.) are the standard normal density and

distribution functions respectively. Differences between the observed and latent distributions

occur because no students with latent scores below ACT take the test. This set of assumptions

allows test-taking to depend on the unobserved characteristic εi but in a very restrictive way.

These assumptions will be violated if students with low latent scores take the test and/or

students with high latent scores do not take the test, perhaps due to heterogeneity in preferences

for going to college. The assumptions will also be violated if εi is not homoskedastic and

normally distributed, or if the threshold ACT is incorrectly specified. We set ACT equal to

the 34th percentile of the post-policy distribution of test scores, as the test-taking rate in the

pre-policy period is 64%. Results reported in Section 4 are robust to substantial changes in

this threshold.

B.2 Parametric Multiple-Equation Corrections for Sample Selection Bias (“Heck-

man” and “Heckman with IV”)

We estimate two variants of the bivariate normal selection model proposed by Gronau (1974)

and Heckman (1974, 1976, 1979). Both consider the system

ACTi = Xiβ + σuρε,uλ (Ziγ) + εi if TAKE∗i ≥ 0 (3a)

TAKE∗i = Xiδ + Ziγ + ui (3b)

TAKEi =

1 if TAKE∗i ≥ 0

0 if TAKE∗i < 0
(3c)

9



where εi and ui are jointly normally distributed and homoskedastic, and φ(.) and Φ(.) are the

standard normal density and distribution functions respectively. Under the assumption of joint

normality, the non-zero conditional mean error function E [ACTi|Xi] = Xiβ+E [ui > −Xiδ − Ziγ]

is a linear function of the inverse Mills ratio. Hence, estimating a probit regression of TAKEi

on (Xi, Zi) and equation (3a) by ordinary least squares provides a consistent estimator of β. We

estimate equation (3b) using only Xi as predictors (“Heckman”) and also including a set of in-

struments Zi that are excluded from equation (3a) and assumed not to affect test scores directly

(“Heckman with IV”). The former approach generally performs poorly in Monte Carlo simu-

lations because the inverse Mills ratio is approximately linear for most of its support (Puhani,

2002). We report the coefficient estimates for equation (3b) in Appendix Table 4. In Appendix

Figure 3 we show that the inverse Mills ratio is roughly linear when we use only demographic

predictors but convex in Xiδ̂ + Ziγ̂ when we use richer predictors.

This approach allows ACT-taking and ACT scores to depend jointly on both observed and

unobserved characteristics. Unlike the Tobit model, the Heckman model allows the thresh-

old score to vary with Xi, ui, and potentially Zi. This imposes few behavioral or economic

assumptions but requires a strong statistical assumption on the joint distribution of εi and

ui. The approaches discussed in Appendix B.3 are all attempts to relax these distributional

assumptions.3

B.3 Semiparametric Multiple-Equation Corrections for Sample Selection Bias

(“Newey” and “Powell”)

We now consider models of the form

ACT ∗i = Xiβ + h (ĝ (Xi, Zi)) + εi (4a)

TAKE∗i = g (Xi, Zi) + ui (4b)

TAKEi =

1 if TAKE∗i ≥ 0

0 if TAKE∗i < 0
(4c)

where g(., .) and h(.) are potentially unknown functions, and we do not assume a specific

distribution for εi or ui. There are a wide range of semiparametric sample selection correction

3Several authors propose extensions of the bivariate normal selection model that yield consistent estimators
under alternative parametric assumptions: uniform (Olsen, 1980) or Student-t (Lee, 1982, 1983) error distri-
butions, or normal but heteroskedastic error distributions (Donald, 1995). Results for alternative parametric
models, not reported in this version of the paper, are almost identical to those from the Heckman model.
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Appendix Figure III: IMRs vs Linear Predictions From Probits

(a) No IV - Student Demographics
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(f) IV - Plus Student Scores
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Notes: Figures plot the inverse Mills ratio against the linear prediction from the first stage Heckman corrections, with and
without an IV and by predictor set. This demonstrates that the student test scores and school- and district-level predictors
generate substantial nonlinearity in the inverse Mills ratio. This nonlinearity facilitates separate identification of the selection
correction term and the predictors in the ACT score model.

11



Appendix Table 4: First Stage Results

Coef. Std. Err.
Student-Level

Distance (Miles) -0.007 0.001
Distance Squared ( / 10) 0.003 0.001
Free Lunch -0.111 0.005
Female 0.067 0.003
Black 0.106 0.009
Hispanic -0.004 0.012
Other Race 0.084 0.011
8th Grade Test Score 0.114 0.003
11th Grade Test Score 0.147 0.002

School-Level
Average Class Size 0.000 0.000
Percent Free Lunch 0.001 0.034
Percent Black -0.003 0.087
Grade 11 Enrollment 0.000 0.000
Average 8th Grade Score 0.127 0.020
Average 11th Grade Score 0.020 0.016

District-Level
Suburb 0.006 0.011
Town 0.025 0.015
rural 0.034 0.013
Grade 11 Enrollment 0.000 0.000
Average Class Size -0.005 0.002
Percent Free Lunch -0.081 0.041
Percent Black 0.171 0.092
Student-Counselor Ratio 0.000 0.000
Local Unemployment Rate -0.003 0.002

Notes: Table shows marginal effects from the first 
stage probit regression of a dummy for whether a 
student takes the ACT or SAT on student, school, and 
district demographics and test scores.
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models (Pagan and Ullah, 1999), all of which use some “flexible” procedure to estimate the

first stage model Pr(TAKEi = 1|Xi, Zi) and to approximate the selection correction function

h(ĝ(Xi, Zi)). We consider two approaches to estimating the first stage and two approaches to

dealing with the selection correction function.

Our first ACT-taking model is a series logit model, following Hirano, Imbens, and Ridder

(2003). We assume that we can approximate g (Xi, Zi) using polynomial expansions in Xi and

Zi, inside a logistic link function:

Pr (TAKEi = 1) = L

(
P∑
p=1

(
K∑
k=1

θkXi,k

)p

+

Q∑
q=1

ψZq
i

)
(5)

We observe multiple predictors Xi,1, . . . , Xi,K , so we include polynomial terms in each element

of Xi and interactions between the elements of Xi. We observe only a single instrument Zi, so

we include only polynomial terms of the instrument. Higher values of P and Q achieve a closer

fit to the data and hence reduce the bias of the coefficient estimator but at the cost of higher

variance.

We choose the orders P and Q of the two series to minimize the mean squared prediction

error of the logistic regression using 10-fold repeated cross-validation.4 We first randomly sort

the data and estimate a logit model with a linear specification inside the logit (P = Q = 1) on

deciles 2-10 of the sample and predict the outcomes for decile 1. We then estimate the model

for deciles 1 and 3-10 and predict the outcomes for decile 2 and repeat this process to obtain

predictions for all deciles. We calculate the mean squared difference between the observed binary

values of TAKEi and the predicted values. We then resort the data and repeat this process

10 times, averaging the mean-squared prediction error over repetitions. This repetition reduces

the sensitivity of the prediction error to the initial ordering of the data and performs well in

simulations (Borra and Di Ciaccio, 2010). We repeat this process for different values of P and

Q and select the pairs of values that minimize the mean-squared prediction error. The sparse

set of predictors includes only 1 continuous instrument and 6 binary predictors, so we do not

need to consider values of P greater than 6. The richer sets of predictors include up to 24 binary

and 14 continuous covariates. For these sets of predictors, we consider only P ∈ {1, 2, 3}. The

fourth order expansion with all 38 covariates generates almost 80,000 predictors and estimation

4There does not appear to be a consensus on how to choose the order of series estimators in nonlinear
regression models, even though series logit models are used in important econometric theory papers such as
Hirano, Imbens, and Ridder (2003). We use repeated 10-fold cross-validation because leave-one-out cross-
validation with a nonlinear model is computationally burdensome in large datasets like ours.
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is infeasible without dimension reduction techniques.

This cross-validation algorithm selects a second-order polynomial in the predictors for the

basic, school/district, and student test score sets of predictors. This polynomial contains linear

terms in all predictors, quadratic terms in all continuous variables, and all pairwise interaction

terms.5 This yields 17, 585, and 731 terms when using the basic, school/district, and student

test score sets of predictors. Some pairwise interaction terms are omitted because they are

mutually exclusive (e.g. black and Hispanic). The cross-validation algorithm selects seventh-,

eighth-, and seventh- order polynomials in the instrument when using respectively the basic,

school/district, and student test score sets of predictors.

This semiparametric model therefore differs from the probit model used in the Heckman

selection correction in three ways: the semiparametric model includes quadratic and interaction

terms in the predictors, includes a seventh or eighth order polynomial in the instrument instead

of a second order polynomial, and uses a logit instead of a probit link function. Nonetheless,

we see in Appendix Table 5 that the predicted probabilities of ACT-taking are similar, with

correlations of at least 0.93. The predicted probabilities are robust to all polynomial orders

that we consider (P ≤ 3 and Q ≤ 8).

Our second ACT-taking model uses a K-nearest neighbor matching approach. We directly

estimate the conditional expectation E [Xi, Zi] = g (Xi, Zi) rather than approximating it with a

regression model. We start by calculating the Mahalanobis distance between every pair of ob-

servations i and j: Di,j =
√

(Wi −Wj) (VW )−1 (Wi −Wj)
′, where Wi = (Xi, Zi). Mahalanobis

distance generalizes Euclidean distance by weighting the differences between the elements of the

vectors Wi and Wj by the inverse of the sample covariance matrix VW . This takes into account

the different variances of different predictors/instruments and the covariances between predic-

tors/instruments. We then identify the K nearest neighbors of each observation with respect

to the Mahalanobis distance and calculate the weighted average outcome amongst these K

observations: ˆTAKEi =
∑K

k=1 ωi,kTAKEk. The weighting function ωi,k = 1
1+di,k

/
∑K

k=1
1

1+di,k

assigns more weight to observations with a lower Mahalanobis distance to i.6 This estimator

directly constructs the conditional mean E [Wi = w] at each value w without making assump-

5The series model includes the interaction and polynomial terms in the ACT-taking model but not in the
ACT score model. This effectively treats them as instruments for ACT-taking, though we do not claim they
are excludable from the ACT score model. Our results are robust to including these terms in the ACT score
model as well.

6We use 1
1+di,k

in the weighting function rather than 1
di,k

to avoid zero-valued denominators for pairs of

observations with di,k = 0.
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Appendix Table 5. ACT-Hat Correlations, by Selection Correction

No IV With IV Series Lgt N.P. Series Lgt N.P.
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A:  X = Student Demographics
OLS 1.000
Tobit 1.000 1.000
Heckman (no IV) 0.999 0.999 1.000
Heckman (with IV) 0.994 0.993 0.994 1.000
Newey - Series Logit 0.989 0.989 0.992 0.994 1.000
Newey - Nonparametric 0.997 0.996 0.997 0.994 0.993 1.000
Powell - Series Logit 0.996 0.995 0.995 0.989 0.985 0.992 1.000
Powell - Nonparametric 0.989 0.990 0.989 0.983 0.979 0.986 0.989 1.000

Panel B:  X = …Plus School-Level Covs
OLS 1.000
Tobit 0.974 1.000
Heckman (no IV) 0.996 0.963 1.000
Heckman (with IV) 0.999 0.971 0.998 1.000
Newey - Series Logit 0.997 0.971 0.997 0.998 1.000
Newey - Nonparametric 0.997 0.972 0.996 0.997 0.998 1.000
Powell - Series Logit 0.995 0.969 0.993 0.995 0.993 0.993 1.000
Powell - Nonparametric 0.981 0.996 0.971 0.978 0.978 0.979 0.979 1.000

Panel C:  X = …Plus Student Test Scores
OLS 1.000
Tobit 0.995 1.000
Heckman (no IV) 0.985 0.980 1.000
Heckman (with IV) 0.990 0.985 0.999 1.000
Newey - Series Logit 0.984 0.980 0.995 0.995 1.000
Newey - Nonparametric 0.997 0.992 0.989 0.993 0.990 1.000
Powell - Series Logit 0.985 0.988 0.976 0.980 0.975 0.983 1.000
Powell - Nonparametric 0.977 0.991 0.959 0.965 0.963 0.975 0.976 1.000

Notes: Table reports correlations of predicted ACT scores  pre-policy by covariate set and selection correction 
model.

OLS Tobit
Heckman Newey Powell
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tions about the function g(.). We report results in this paper using K = 100, but we find

similar results with K = 10 and K = 1000. Code for implementing this estimator is available

on the authors’ websites.

Our first selection-corrected ACT score model approximates h(.) using a series model in

ˆTAKEi, the predicted probability of test-taking (Newey, 2009).7 We select the order of the

series using leave-one-out cross-validation. We then estimate equation (4a) including a polyno-

mial with the selected order as a control. This approach yields a consistent estimator of β when

the selection correction term is a sufficiently smooth function of the predicted probabilities of

test-taking. The cross-validation algorithm selects thirteenth, fourth, and ninth order polyno-

mials for the selection term when we use a semiparametric first stage with respectively basic,

school/district, and student test score sets of predictors. The cross-validation algorithm selects

third, sixth, and fourth order polynomials for the selection term when we use a nonparametric

first stage with respectively basic, school/district, and student test score sets of predictors. The

main results are robust to choice of the polynomial orders between one and sixteen.

Second, we remove h(.) from equation (4a) using a differencing approach (Ahn and Powell,

1993; Powell, 1987). We calculate dACTi = ACTi − 1
N−1

∑
j 6=iw(i, j)ACTj and dXi = Xi −

1
N−1

∑
j 6=iw(i, j)Xj, where w(i, j) is a kernel or weighting function that is decreasing in the

difference between i and j’s predicted probability of ACT-taking. For appropriate choices of

the weighting function, dhi = hi− 1
N−1

∑
j 6=iw(i, j)hj ≈ 0. Hence we can rewrite equation (4a)

as

dACTi = dXiβ + dεi (6)

and estimate this using least squares. Intuitively, this approach avoids the need to approxi-

mate the selection correction term and instead differences it out of the test score model. This

approach again yields a consistent estimator of β when the selection correction term is a suffi-

ciently smooth function of the predicted probability of test-taking, so that hi ≈ hj when i and j

have sufficiently similar predicted probabilities of ACT-taking. In practice, we sort the data by

7Newey (2009) proposes using polynomials in either the predicted probability TAKEi or the latent index
TAKE∗i . Our nonparametric matching estimator generates only predicted probabilities of test-taking so we use
this in the ACT-taking model. Our series logit estimator generates both predicted index values and predicted
probabilities. We report results in this paper using predicted index values, after censoring the top and bottom
percentiles. Results are almost identical using predicted probabilities. Note that concerns about “forbidden
regression” are not necessarily applicable here, as the series in Newey (2009) is simply an approximating function
and not an exact replacement for the selection bias term E [ACTi|Xi] = Xiβ + E [ui > g (Xi, Zi)].
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the predicted probability of test-taking and use a weight function that equals 1/ (1 + |p̂i − p̂j|)

for 0 < |i−j| < 5 and zero otherwise. We then estimate the differenced equation using weighted

least squares with weight 1/
∑4

i−j=−4 |p̂i − p̂j)|. These weights mean that observations that have

close matches on the predicted probability of ACT-taking influence the regression coefficients

more than observations without close matches, as Ahn and Powell (1993) recommend. We

obtain similar results (not reported in this draft) using a smaller number of matches in the dif-

ferencing operation, taking an unweighted average in the differencing operation, and estimating

the differenced equation without weights.8

Both the series (“Newey”) and differencing (“Powell”) approaches yield consistent estimators

of β without making distributional assumptions on the unobserved determinants of test-taking

or test scores, or functional form assumptions for the probability of test-taking or the selection

correction term. However, this flexibility does have several costs. First, the identification proofs

underlying both approaches assume that there is at least one exclusion restriction: some ob-

served variable Zi affects the probability of test-taking but does not directly affect test scores.

Intuitively, the coefficient vector β and the selection term in (4a) are separately identified only

if there is additional information in the selection correction term (from an exclusion restriction)

or by a nonlinear functional form of the selection correction term. The exclusion restriction is

sufficient for identification of the slope coefficients in β but not the intercept, β0. β0 is identi-

fied when Zi shifts the probability of test-taking from 0 to 1 as Zi moves from its maximum to

minimum value (or vice versa). This “identification at infinity” argument requires an unusu-

ally strong excluded instrument (Andrews and Schafgans, 1998; Chamberlain, 1986; Heckman,

1990). We exclude driving distance from the student’s home to the nearest ACT center from

the outcome equation. The probability of ACT-taking falls by 4 percentage points with a move

from the 5th to the 95th percentile of this variable. This does not satisfy the identification

at infinity argument, like most excluded instruments in the empirical literature, (Card, 1995;

Kane and Rouse, 1995; Bulman, 2015). This means we can identify the shape of ACT test

score distribution around the mean, but not necessarily the mean. However, with the richer

sets of predictors, we find that the semiparametric models almost perfectly predict the mean,

suggesting this problem is not quantitatively important in practice.

8The consistency theorems in Ahn and Powell (1993) and Powell (1987) assume that this kernel function
is continuously differentiable, which is not true of the weighted K-nearest neighbor kernels we consider. In
simulations on a dataset with moments matched to our data the results are very robust to choices of different
kernels.
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Second, the semiparametric models yield consistent estimators only with appropriate choices

of the tuning parameters: respectively the order of the series and the weighting function. The

parameter estimates may in principle be very sensitive to the choice of these parameters. In

our application, results are robust to alternative series orders and weighting functions. Third,

some semiparametric and nonparametric sample selection correction models converge at slower

rates than parametric models, particularly when the number of predictors is large. This means

that the rate at which the estimators approach the true parameters as the sample size grows

is slower, potentially generating estimates far from the truth with even moderate sample sizes.

Ahn and Powell (1993) and Newey (2009) establish sufficient conditions for the estimators of

the slope parameters in β to converge at parametric rates. However, our object of interest

is the ACT test score distribution, and it is not obvious that the empirical distribution of

the predicted ACT scores converges at a parametric rate under Ahn and Powell’s or Newey’s

assumptions.

Both the semiparametric and parametric models assume that the unobserved determinants

of test scores εi and test-taking ui are homoskedastic conditional on the predictors. There exist

parametric and semiparametric sample selection models that relax this assumption but they

have seldom been applied in practice (Donald, 1995; Chen and Khan, 2003).

C Alternative Evaluation Criteria

In the body of the paper we evaluate selection correction methods by running selection-corrected

regressions of pre-policy ACT scores on a vector of predictors, predicting the mean ACT score,

and comparing this to the mean ACT score in the reference distribution based on the complete

post-policy ACT scores. In this appendix we consider three more evaluation criteria, all of

which yield similar findings.

First, we evaluate the selection correction methods on how close the parameter estimates

from the pre-policy selection-corrected regression of partly missing ACT scores on predictors

are to the post-policy regression of complete ACT scores on parameters. Most theoretical

papers on selection correction focus on this criterion. They try to correct the estimator of a

specific parameter or vector of parameters for selection bias. Correction methods’ performance

may be very different with respect to prediction and parameter estimation.

In column 1 of Appendix Tables 6, 7, and 8 we show the parameter estimates from regressing
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post-policy ACT scores on each of the three vectors of predictors (using inverse probability

weights to equate the distribution of pre-policy predictors). In columns 2 to 9 we report

the parameter estimates from regressing pre-policy ACT scores on each of the three vectors

of predictors using our eight different selection correction models.9 We evaluate the models’

performance on parameter estimation against two criteria: the percentage of parameters whose

signs are the same across the true and selection-corrected regressions, and the average squared

difference between the parameters in the true and selection-corrected regressions (i.e. the

squared bias of the estimates, averaged across the estimates). The general patterns are similar

across the two criteria and are robust to weighting the squared biases by the variances of the

corresponding predictors.

All methods perform better with richer predictors. The average squared bias is lowest for

the rich set of predictors for seven out of eight models (all except the Heckman-IV model) and

highest for the sparse set of predictors for all eight models. The squared bias averaged across all

parameter estimates and across all eight models is 1.95 for the student demographic predictors,

0.67 when school- and district-level predictors are included, and 0.47 when student test scores

are included. Similarly, adding richer predictors reduces the share of coefficient estimates with

incorrect signs from 0.38 to 0.18. This pattern is entirely consistent with the pattern across

predictions reported in Section 4. The only difference is that bias reduction from school- and

district-level predictors is slightly larger for parameter estimation than for mean prediction.

The semiparametric models do not consistently outperform the more restrictive models. For

the richest set of predictors, the squared bias is lowest for OLS (0.056), followed by the two semi-

parametric models with nonparametric first stages (0.075-0.082), Tobit (0.110), the two semi-

parametric models with series logit first stages (0.198-0.203), the Heckman-IV model (1.207),

and the Heckman model (1.858). The pattern is similar for sign differences, though here Tobit

and OLS both outperform any of the parametric or semiparametric two-stage models. There is

a similar pattern with the two sparser sets of predictors. OLS always yields the lowest squared

bias and fewest sign differences; the Heckman model without an instrument always yields the

highest squared bias and the most sign differences. The semiparametric two-stage models gen-

erally outperform the parametric two-stage models but fail to outperform OLS and the Tobit

model.

9We do not report parameter estimates for the missing data dummies. The general patterns are unaffected
by including these in our analysis.
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Appendix Table 6. The Relationship Between ACT Scores and Student Demographics

OLS OLS Tobit No IV With IV Series Lgt N.P. Series Lgt N.P.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Student-Level
Free Lunch -2.866 -1.841 -2.361 2.180 0.449 -1.378 -1.367 -1.546 -1.247

(0.105) (0.104) (0.141) (1.825) (0.573) (0.588) (0.162) (0.680) (0.172)
Female 0.298 -0.130 -0.213 -1.710 -1.025 -0.572 -0.331 -0.035 -0.292

(0.036) (0.034) (0.043) (0.702) (0.232) (0.162) (0.050) (0.247) (0.058)
Black -3.414 -4.102 -5.349 -4.087 -4.081 -3.836 -4.019 -3.330 -4.099

(0.232) (0.204) (0.384) (0.245) (0.158) (0.190) (0.207) (0.280) (0.235)
Hispanic -1.967 -1.818 -2.154 -0.443 -1.019 -1.495 -1.603 -1.212 -1.452

(0.127) (0.215) (0.261) (0.779) (0.381) (0.318) (0.222) (0.379) (0.241)
Other 1.032 0.616 0.862 -1.295 -0.474 -0.355 0.412 -0.147 -0.155

(0.307) (0.290) (0.319) (0.978) (0.342) (0.364) (0.264) (0.451) (0.268)
Inverse Mills Ratio 8.807 5.010

(4.025) (1.256)
Correction Term 1.629 -14.890

(1.709) (6.973)
Correction Term^2 -13.914 26.321

(8.024) (12.913)
Correction Term^3 -33.446 -13.058

(26.510) (7.639)
Correction Term^4 116.523

(70.223)
Correction Term^5 183.034

(163.238)
Correction Term^6 -434.349

(266.709)
Correction Term^7 -360.897

(468.272)
Correction Term^8 826.494

(495.019)
Correction Term^9 204.032

(670.136)
Correction Term^10 -744.410

(524.08)
Correction Term^11 104.713

(379.809)
Correction Term^12 234.721

(343.836)
Correction Term^13 -83.986

(96.860)
Summary Measures

% with incorrect signs 0.2 0.2 0.6 0.6 0.4 0.2 0.4 0.4
Mean squared bias 0.380 0.865 7.537 3.270 1.059 0.705 0.764 1.023

Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186
Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of 
ACT scores on the reported student-level demographics. Standard errors calculated using 500 bootstrap replications 
resampling schools.

Post-
Policy

Pre-Policy, by Correction Method
Heckman Newey Powell
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Appendix Table 7. The Relationship Between ACT Scores and Student and School Characteristics

OLS OLS Tobit No IV With IV Series Lgt N.P. Series Lgt N.P.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Student-Level
Free Lunch -1.858 -1.078 -1.408 1.016 -0.405 -1.023 -1.137 -1.124 -1.136

(0.072) (0.073) (0.100) (0.581) (0.377) (0.118) (0.100) (0.118) (0.090)
Female 0.288 -0.058 -0.124 -1.180 -0.419 -0.154 -0.089 -0.118 -0.055

(0.036) (0.033) (0.042) (0.318) (0.207) (0.057) (0.042) (0.069) (0.048)
Black -2.998 -3.370 -4.481 -3.592 -3.441 -3.324 -3.306 -3.299 -3.375

(0.121) (0.118) (0.158) (0.165) (0.124) (0.112) (0.115) (0.116) (0.109)
Hispanic -1.781 -1.566 -1.877 -0.876 -1.342 -1.524 -1.519 -1.532 -1.488

(0.114) (0.146) (0.203) (0.295) (0.199) (0.146) (0.147) (0.149) (0.141)
Other 0.505 0.157 0.268 -0.844 -0.165 -0.084 0.041 -0.320 -0.104

(0.197) (0.193) (0.209) (0.337) (0.244) (0.180) (0.187) (0.167) (0.139)
Inverse Mills Ratio 5.889 1.894

(1.661) (1.069)
Correction Term -0.019 39.854

(0.157) (30.019)
Correction Term^2 0.041 -252.815

(0.092) (189.779)
Correction Term^3 0.003 752.899

(0.116) (572.647)
Correction Term^4 0.023 -1153.059

(0.053) (890.813)
Correction Term^5 871.799

(690.295)
Correction Term^6 -255.603

(210.965)
School-Level

Pupil Teacher Ratio 0.001 -0.002 -0.005 0.002 -0.001 -0.002 -0.002 -0.002 -0.001
(0.007) (0.007) (0.012) (0.010) (0.008) (0.007) (0.006) (0.006) (0.006)

Fraction Free Lunch 0.636 -0.582 -1.100 -0.727 -0.634 -0.486 -0.585 -0.365 -0.355
(0.485) (0.272) (0.419) (0.563) (0.331) (0.270) (0.257) (0.283) (0.263)

Fraction Black 1.712 1.017 0.802 -0.140 0.644 0.814 0.892 0.619 0.835
(0.445) (0.771) (1.236) (1.645) (1.007) (0.657) (0.670) (0.577) (0.570)

Number of 11th Graders -0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Average 8th Grade Score 1.938 2.338 2.904 -0.188 1.523 1.836 2.028 1.951 1.965
(0.194) (0.237) (0.291) (0.765) (0.517) (0.263) (0.225) (0.247) (0.200)

Average 11th Grade Score 2.741 1.224 1.443 -0.624 0.628 1.066 1.141 1.004 1.126
(0.185) (0.197) (0.237) (0.506) (0.356) (0.193) (0.186) (0.169) (0.145)

District-Level
Pupil Teacher Ratio -0.066 -0.020 -0.017 0.052 0.004 0.002 -0.002 0.012 -0.000

(0.018) (0.019) (0.025) (0.042) (0.025) (0.020) (0.019) (0.020) (0.018)
Fraction Free Lunch -0.554 0.300 0.980 0.906 0.499 0.236 0.370 0.182 0.057

(0.457) (0.346) (0.537) (0.767) (0.440) (0.347) (0.333) (0.371) (0.338)
Fraction Black 1.510 0.864 1.428 -1.238 0.186 0.591 0.652 0.620 0.675

(0.482) (0.784) (1.243) (1.841) (1.050) (0.658) (0.674) (0.633) (0.604)
Number of 11th Graders -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Suburb -0.169 -0.418 -0.479 -0.488 -0.447 -0.430 -0.415 -0.401 -0.372

(0.106) (0.149) (0.186) (0.233) (0.169) (0.149) (0.145) (0.134) (0.123)
Town -0.177 0.023 0.038 -0.188 -0.052 0.079 0.080 0.078 0.166

(0.125) (0.168) (0.206) (0.289) (0.201) (0.169) (0.168) (0.161) (0.145)
Rural -0.210 -0.201 -0.172 -0.498 -0.303 -0.183 -0.157 -0.162 -0.102

(0.114) (0.156) (0.194) (0.247) (0.180) (0.155) (0.150) (0.150) (0.132)
-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Local Unemployment Rate -0.009 -0.032 -0.051 0.006 -0.020 -0.030 -0.032 -0.025 -0.021
(0.014) (0.015) (0.020) (0.036) (0.021) (0.017) (0.016) (0.017) (0.015)

Summary Measures
% with incorrect signs 0.3 0.3 0.6 0.35 0.4 0.3 0.4 0.4
Mean squared bias 0.336 0.580 2.221 0.690 0.395 0.375 0.411 0.342

Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Pupil / Guidance Counselor 
Ratio

Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of ACT 
scores on the reported student-, school- and district-level covariates. Missing value indicators also included but coefficients not 
reported.  Standard errors calculated using 500 bootstrap replications resampling schools.

Post-
Policy

Pre-Policy, by Correction Method
Heckman Newey Powell
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Appendix Table 8. The Relationship Between ACT Scores, Demographics, and Achieviement

OLS OLS Tobit No IV With IV Series Lgt N.P. Series Lgt N.P.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Student-Level
Free Lunch -0.383 -0.254 -0.317 1.444 1.086 0.141 -0.107 0.138 -0.102

(0.027) (0.045) (0.062) (0.109) (0.146) (0.070) (0.064) (0.068) (0.067)
Female 0.505 0.027 0.076 -1.091 -0.856 -0.288 -0.106 -0.305 -0.117

(0.023) (0.025) (0.032) (0.078) (0.098) (0.044) (0.031) (0.046) (0.031)
Black -0.696 -1.295 -1.766 -3.106 -2.723 -1.569 -1.279 -1.581 -1.238

(0.059) (0.080) (0.111) (0.188) (0.205) (0.091) (0.080) (0.095) (0.078)
Hispanic -0.589 -0.727 -0.886 -0.753 -0.741 -0.745 -0.525 -0.744 -0.467

(0.061) (0.091) (0.139) (0.230) (0.192) (0.106) (0.098) (0.118) (0.106)
Other 0.394 0.209 0.224 -1.384 -1.048 -0.127 0.081 -0.112 0.048

(0.090) (0.111) (0.108) (0.245) (0.232) (0.131) (0.120) (0.131) (0.114)
8th Grade Score 1.639 1.833 2.155 -0.135 0.276 1.237 1.668 1.267 1.669

(0.037) (0.031) (0.038) (0.100) (0.159) (0.063) (0.034) (0.064) (0.031)
11th Grade Score 3.048 2.616 3.238 0.109 0.634 1.940 2.402 1.952 2.397

(0.024) (0.035) (0.044) (0.132) (0.203) (0.076) (0.045) (0.075) (0.042)
Inverse Mills Ratio 6.513 5.147

(0.333) (0.521)
Correction Term 0.312 -3.051

(0.098) (6.903)
Correction Term^2 0.324 12.537

(0.067) (19.153)
Correction Term^3 0.029 -23.072

(0.068) (22.289)
Correction Term^4 -0.012 15.245

(0.028) (9.257)
Correction Term^5 -0.025

(0.021)
Correction Term^6 0.006

(0.005)
Correction Term^7 0.002

(0.002)
Correction Term^8 -0.001

(0.001)
Correction Term^9 0.000

(0.000)
School-Level

Pupil Teacher Ratio -0.006 -0.003 -0.008 0.002 0.001 -0.002 -0.002 -0.002 -0.002
(0.007) (0.005) (0.010) (0.010) (0.009) (0.005) (0.005) (0.005) (0.004)

Fraction Free Lunch -0.536 -0.449 -0.827 -0.540 -0.535 -0.367 -0.391 -0.503 -0.363
(0.437) (0.297) (0.429) (0.605) (0.501) (0.297) (0.294) (0.275) (0.287)

Fraction Black -0.253 -0.273 -0.644 -0.442 -0.413 -0.451 -0.489 -0.578 -0.369
(0.474) (0.578) (0.916) (1.617) (1.348) (0.504) (0.505) (0.491) (0.463)

Number of 11th Graders 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.001
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Average 8th Grade Score 0.907 1.085 1.198 -1.248 -0.771 0.165 0.595 0.137 0.578
(0.192) (0.181) (0.214) (0.363) (0.340) (0.178) (0.173) (0.171) (0.166)

Average 11th Grade Score -0.231 -0.206 -0.187 -0.525 -0.462 -0.131 -0.267 -0.094 -0.261
(0.176) (0.154) (0.180) (0.291) (0.243) (0.142) (0.141) (0.136) (0.129)

District-Level
Pupil Teacher Ratio -0.044 -0.039 -0.040 0.061 0.044 -0.001 -0.015 -0.001 -0.012

(0.017) (0.017) (0.021) (0.037) (0.032) (0.019) (0.017) (0.018) (0.016)
Fraction Free Lunch -0.272 -0.758 -0.534 0.611 0.335 -0.325 -0.344 -0.281 -0.391

(0.448) (0.336) (0.464) (0.746) (0.622) (0.335) (0.321) (0.326) (0.305)
Fraction Black 1.150 1.260 1.605 -1.737 -1.111 0.523 0.805 0.673 0.634

(0.499) (0.629) (0.973) (1.748) (1.448) (0.557) (0.549) (0.535) (0.511)
Number of 11th Graders -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Suburb -0.165 -0.356 -0.381 -0.394 -0.407 -0.350 -0.351 -0.333 -0.329

(0.101) (0.123) (0.149) (0.223) (0.192) (0.128) (0.118) (0.117) (0.110)
Town -0.174 -0.072 -0.098 -0.339 -0.310 -0.147 -0.090 -0.146 -0.064

(0.125) (0.142) (0.176) (0.268) (0.226) (0.144) (0.133) (0.131) (0.120)
Rural -0.121 -0.224 -0.196 -0.606 -0.550 -0.338 -0.205 -0.320 -0.202

(0.112) (0.134) (0.164) (0.239) (0.202) (0.140) (0.128) (0.130) (0.115)
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Local Unemployment Rate -0.008 -0.039 -0.058 0.023 0.009 -0.021 -0.028 -0.021 -0.025

(0.015) (0.014) (0.018) (0.036) (0.030) (0.016) (0.014) (0.015) (0.014)
Summary Measures

% with incorrect signs 0.045 0.045 0.455 0.409 0.182 0.091 0.136 0.091
Mean squared bias 0.056 0.110 1.858 1.207 0.203 0.075 0.198 0.082

Sample Size 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Pupil / Guidance Counselor 
Ratio

Notes: The sample is as in Table 3. The level of observation is the student. Each column is from a separate regression of ACT scores 
on the reported student-, school- and district-level covariates. Missing value indicators also included but coefficients not reported.  
Standard errors calculated using 500 bootstrap replications resampling schools.

Post-
Policy

Pre-Policy, by Correction Method
Heckman Newey Powell
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Applied researchers are often interested in the full selection-corrected outcome distribution

or in summary statistics other than the mean. Researchers working with test scores may be

interested in the share of students who score above some threshold. We therefore use two

additional evaluation criteria:

1. The squared difference between selection-corrected pre-policy ACT score distribution to

the reference distribution, averaged over percentiles 1, 2, . . . , 99.

2. The difference between the selection-corrected share of pre-policy students scoring above

19 (the ACT’s “college readiness” threshold) and the share in the reference distribution.

To construct these evaluation criteria, we cannot simply use the predicted values ˆACT i = Xiβ̂

from the selection-corrected regression of ACT scores on predictors. The distribution of ˆACT i

is not comparable to the distribution of ACTi or ACT ∗i because the former omits the variance

of εi. We therefore predict the fitted residual ε̂j = ACTj − ˆACT j for each student j who

takes the ACT in the pre-policy period, and construct ˜ACTi = ˆACTi + ε̂j 6=i , adding to each

student’s predicted ACT score one of the fitted residuals from another randomly chosen student.

This generates a distribution of predicted ACT scores with variance comparable to the latent

distribution. We repeat this residual-adding process 1000 times and average over these 1000

repetitions to obtain a predicted distribution F̂
(

˜ACTi

)
and compare this to the reference

distribution.

We estimate the variance of these two differences using a nonparametric cluster bootstrap,

clustering at the school level to account for correlated unobserved school-level characteristics.10

We use 500 bootstrap replications, each containing 100 iterations of the residual-adding process.

The selection correction methods we evaluate are not designed to predict the full outcome

distribution, so this part of the evaluation should be interpreted with caution. To formalize

this caution, note that the distribution of latent ACT scores F̃ACT ∗(.) can be evaluated at

any point a as FACT ∗(a) = EX
[
Fε|X (a−Xβ)

]
, where the outer expectation is taken over the

distribution of the predictors and the inner distribution is for the error distribution conditional

on the predictors. Parameter-oriented selection corrections aim to identify only (elements of)

β. Our approach entails identification of both β and Fε|X(.). The residual-adding procedure

10To the best of our knowledge, the econometric literature has not proposed a variance estimator for two-
stage semiparametric selection correction models that use clustered data. We follow typical empirical practice
by using the bootstrap, though Abadie and Imbens (2008) show that this is problematic for our nonparametric
first stage model.
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assumes that the error distribution does not vary with X or with ACT-taking: FACT∗(a) =

EX [Fε,D=1 (a−Xβ)]. This is a strong assumption. In particular, the assumptions of the Tobit

Type 1 and Heckman models imply that the error distribution should differ between ACT-takers

and non-takers. The accurate predictions reported in Section 4 suggest that with sufficiently

rich predictors, this assumption is innocuous.

We could instead adopt a parametric approach to identification of Fε|X . Specifically, the Tobit

and Heckman models both assume that the errors have a homoskedastic normal distribution

with zero mean. Both models recover estimates of the variance of this distribution, σ̂2
ε . We could

use this estimate to sample values of ε̂i from a N (0, σ̂2
ε ) distribution instead of sampling from

the empirical distribution F̂ε|TAKE=1(.). This would introduce another difference between the

parametric (Tobit and Heckman) and semiparametric (Newey and Powell) selection correction

models.

Acknowledging this caveat, what do we learn from evaluating the selection correction methods

on these two additional criteria? We show in Appendix Table 9 the difference between the

selection-corrected pre-policy score distribution and the reference score distribution in the share

of students scoring above 19 and averaged over the percentiles. This table is analogous to

Table 3 in the main paper. We summarize the squared bias and variance of each comparison

in Appendix Figure 6, which is analogous to Figure 2 in the main paper. We also display the

observed pre- and post-policy scores and the selection-corrected scores in Appendix Figures 4

and 5.

The share of college-ready students in the reference distribution is 0.45. The share in the

uncorrected pre-policy distribution is 0.59 percentage points higher. Using OLS with student

demographics to predict the missing scores reduces prediction to 0.55. Using other selection

corrections to predict the missing values predicts 0.54 to 0.56, which continues to overstate

the share by 9 to 11 percentage points. Adding school- and district-level predictors reduces

this overstatement to 6 to 7 percentage points and adding student-level test scores reduces this

overstatement to 0 to 3 percentage points. As with the mean, richer predictors largely eliminate

the difference between the selection-corrected and reference statistics; changing the selection

correction method has little effect.

The mean squared difference between the percentiles of the raw pre-policy distribution and

reference distribution is 1.69. Predicting missing scores using OLS and the basic student demo-

graphics reduces this to 1.32. Other selection correction methods yield differences between 1.27
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Appendix Table 9. Fraction College-Ready and Quantile Differences by Correction Method and Predictor Set

Student 
Demographics

...Plus School-
Level Covs.

...Plus Student 
Test Scores

Student 
Demographics

...Plus School-
Level Covs.

...Plus Student 
Test Scores

(1) (2) (3) (4) (5) (6)
Post-Policy ("Truth")

Raw 0.440 0.440 0.440 - - -

DFL 0.482 0.482 0.482 - - -

OLS 0.451 0.468 0.468 0.300 0.325 0.324
(0.010) (0.011) (0.011) (0.028) (0.022) (0.016)

Pre-Policy (Biased)
Raw 0.588 0.588 0.588 1.687 1.687 1.687

OLS 0.554 0.532 0.469 1.323 1.058 0.623
(0.008) (0.008) (0.008) (0.148) (0.128) (0.033)

Tobit 0.559 0.536 0.460 1.276 1.053 1.382
(0.008) (0.007) (0.007) (0.151) (0.130) (0.108)

Heckman, No Instrument 0.554 0.533 0.463 1.334 1.078 0.444
(0.008) (0.008) (0.008) (0.148) (0.129) (0.031)

Heckman, With Instrument 0.541 0.532 0.463 1.302 1.062 0.453
(0.008) (0.008) (0.008) (0.149) (0.128) (0.031)

Newey, Series Logit 0.540 0.532 0.460 1.292 1.073 0.419
(0.008) (0.008) (0.008) (0.148) (0.130) (0.030)

Newey, Nonparametric 0.541 0.532 0.463 1.307 1.070 0.525
(0.008) (0.008) (0.008) (0.149) (0.129) (0.033)

Powell, Series Logit 0.546 0.535 0.497 1.265 1.127 1.084
(0.009) (0.008) (0.010) (0.184) (0.132) (0.081)

Powell, Nonparametric 0.554 0.533 0.479 1.400 1.097 0.721
(0.008) (0.008) (0.009) (0.152) (0.129) (0.040)

Fraction ACT*>=20 Quantile Differences

Notes: The sample is as in Table 1, except only the 2005 and 2008 cohorts. For columns 1-3, the first and fourth rows report the raw 
fraction scoring greater than or equal to 20 post- and pre-policy, respectively. The second row reports that fraction from the DFL-
weighted post-policy score distribution.  All other rows report the predicted fraction scoring greater than or equal to 20 after 
implementing the regression or correction type noted in the row header. The predicted ACT score is calcuated for ACT-takers and 
non-takers. Columns 4-6 report quantile differences between the predicted score distribution from the regression or correction method 
noted in the row header and the post-policy DFL-corrected score distribution. Standard errors calculated using 500 bootstrap 
replications resampling schools.
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Appendix Figure IV: Comparing the Performance of Sample Selection Corrections

(a) Parametric Corrections
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(b) Semiparametric Corrections
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Notes: Figure shows pre- and post-policy fitted values from regressions of ACT scores on student-, school-, and district-level
demographics, and 8th and 11th grade test scores. The post-policy regressions are DFL-weighted. The pre-policy fitted values
are predicted out of sample to all students. Draws from the distribution of residuals are added to all fitted values. Tobit,
Heckman, Newey, and Powell are several selection corrections estimated using the pre-policy sample. The semiparametric
corrections use the nonparametric first stage. 95% confidence intervals are tiny and omitted for readability.
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Appendix Figure V: Observed and Predicted ACT Scores Pre- and Post-Policy

(a) Predicting ACT Scores Using Basic Student and School Characteristics
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(b) Predicting ACT Scores Using Student 8th and 11th Grade Test Scores
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Notes: Figure (a) shows pre- and post-policy raw ACT scores and fitted values from regressions of ACT scores on
student-level demographics and school- and district-level demographics and test scores. The post-policy regressions are
DFL-weighted. The pre-policy fitted values are predicted out of sample to all students. Draws from the distribution of
residuals are added to all fitted values. Figure (b) adds student-level 8th and 11th grade test scores to the prediction
equations. 95% confidence intervals are tiny and omitted for readability.
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Appendix Figure VI: MSE Comparison Across Correction Methods and Covariates

(a) Fraction College-Ready

All covs

Demographic covs

School & district covs

(b) Test Score Distribution

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set from Table 3. Black
(top of each figure): basic student demographics; Red (middle): plus school- and district-level covariates; Blue (bottom): plus
student 8th and 11th grade test scores. Bias is the difference between the statistic predicted by a) the correction method
applied to the pre-policy data and b) the post-policy, DFL-weighted, fitted distribution.
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and 1.40 using the basic student demographics as predictors. With the richer set of predictors,

the mean squared difference falls to between 0.62 and 0.138. The Tobit model and Powell

model with series logit first stage perform particularly poorly. All other methods deliver lower

prediction error with richer covariates.

We conclude that for all four evaluation criteria, based both on prediction and parameter

estimation, the gains from using less restrictive econometric methods are small relative to the

gains from seeking richer or more disaggregated data. We find the same pattern when we repeat

the subgroup analysis from Section 4.3 for these two new evaluation criteria (Appendix Table

10 and Appendix Figures 7, 8, and 9).

D Robustness Checks

In this section, we establish that our findings are robust to several changes in our methods:

using a different reference distribution, changing the specification of the ACT regression model,

and comparing different pre- and post-policy cohorts.

In the primary analyses, we use the post-policy ACT scores as the reference distribution,

after adjusting for cross-cohort differences in the distribution of observed characteristics using

inverse probability weights, and predicting scores for the 1.5% of post-policy students who do

not take the ACT. We summarize the results using the unweighted post-policy distribution

in Appendix Figure 10. This is analogous to Figure 2 and Appendix Figure 6, which use the

weighted reference distribution. We display the subgroup means relative to the unweighted

post-policy means in Appendix Figure 11. This is analogous to Appendix Figures 2 and 7,

which use the weighted reference distribution. There are no substantial differences between the

analysis that uses the weighted and unweighted reference distributions.

Our findings are robust to five changes in the ACT regression model. First, we estimate the

model with a complete set of interactions between the predictors and squares of all continuous

predictors in both the first and second stages (Appendix Table 11, panel 1).11 The predictions

are more accurate for most models with the rich set of predictors and essentially identical for

all models with the two sparser sets of predictors. There remains no evidence that the more

flexible methods outperform those with more restrictive assumptions.

11The ACT-taking equations of the series logit model and nonparametric model already incorporate these
interactions explicitly or implicitly. So in these cases we are simply establishing robustness to changes in the
ACT score model.
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Appendix Table 10. Race and Poverty Gaps in the Fraction College-Ready by Correction

Black White Gap Poor Non-Poor Gap
(1) (2) (3) (4) (5) (6)

Post-Policy
Raw 0.124 0.506 0.383 0.224 0.522 0.298

DFL 0.156 0.532 0.376 0.232 0.545 0.313

OLS 0.129 0.516 0.387 0.208 0.528 0.320
(0.024) (0.009) (0.025) (0.007) (0.010) (0.010)

Pre-Policy
Raw 0.201 0.647 0.446 0.350 0.628 0.278

OLS 0.127 0.516 0.389 0.246 0.520 0.274
(0.017) (0.007) (0.017) (0.008) (0.008) (0.009)

Tobit 0.152 0.500 0.348 0.266 0.508 0.242
(0.017) (0.006) (0.017) (0.008) (0.007) (0.009)

0.127 0.511 0.385 0.243 0.515 0.271
(0.017) (0.007) (0.018) (0.008) (0.008) (0.009)

0.127 0.509 0.382 0.243 0.511 0.267
(0.017) (0.007) (0.018) (0.009) (0.008) (0.010)

0.126 0.514 0.387 0.241 0.516 0.275
(0.017) (0.007) (0.017) (0.008) (0.008) (0.009)

0.128 0.543 0.415 0.269 0.547 0.277
(0.017) (0.010) (0.019) (0.011) (0.009) (0.013)

0.135 0.523 0.389 0.265 0.528 0.263
(0.017) (0.007) (0.018) (0.010) (0.008) (0.011)

Notes: The sample is as in Table 3. Table reports the fraction of the predicted ACT scores 
that are greater than or equal to 20 from regressions of ACT scores on the full set of 
covariates, including student-level 8th and 11th grade test scores. The predicted ACT score 
is calcuated for ACT-takers and non-takers. Poverty status is proxied for using free or 
reduced-price lunch receipt measured during 11th grade. Standard errors calculated using 
500 bootstrap replications resampling schools.

Heckman        
(with IV)

Newey -   
Series Logit

Newey -  
Nonparametric

Powell -          
Series Logit

Powell -          
Nonparametric
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Appendix Figure VIII: MSE Comparison by Race

(a) Mean ACT Score - Black

All covs

Demographic covs

School & district covs

(b) Mean ACT Score - White

All covs

Demographic covs

School & district covs

(c) Fraction College-Ready - Black

All covs

Demographic covs

School & district covs

(d) Fraction College-Ready - White

All covs

Demographic covs

School & district covs

(e) Test Score Distribution - Black

All covs

Demographic covs

School & district covs

(f) Test Score Distribution - White

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set by race. Black (top
of each figure): basic student demographics; Red (middle): plus school- and district-level covariates; Blue (bottom): plus
student 8th and 11th grade test scores. Bias is the difference between the statistic predicted by a) the correction method
applied to the pre-policy data and b) the post-policy, DFL-weighted, fitted distribution. Markers with very large variance or
squared bias excluded for readability.
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Appendix Figure IX: MSE Comparison by Poverty Status

(a) Mean ACT Score - Poor

All covs

Demographic covs

School & district covs

(b) Mean ACT Score - Non-Poor

All covs

School & district covs

Demographic covs

(c) Fraction College-Ready - Poor

All covs

Demographic covs

Demographic covs

(d) Fraction College-Ready - Non-Poor

All covs

School & district covs

Demographic covs

(e) Test Score Distribution - Poor

All covs

School & district covs

Demographic covs

(f) Test Score Distribution - Non-Poor

All covs School & district covs

Demographic covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set by poverty status.
Black (top of each figure): basic student demographics; Red (middle): plus school- and district-level covariates; Blue
(bottom): plus student 8th and 11th grade test scores. Bias is the difference between the statistic predicted by a) the
correction method applied to the pre-policy data and b) the post-policy, DFL-weighted, fitted distribution. Markers with very
large variance or squared bias excluded for readability.
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Appendix Figure X: MSE Comparison Using Post-Policy Distribution W/Out DFL Weights

(a) Mean ACT Score

All covs

Demographic covs

School & district covs

(b) Fraction College-Ready

All covs

Demographic covs

School & district covs

(c) Test Score Distribution

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set estimated without
DFL weights. Black (top of each figure): basic student demographics; Red (middle): plus school- and district-level covariates;
Blue (bottom): plus student 8th and 11th grade test scores. Bias is the difference between the statistic predicted by a) the
correction method applied to the pre-policy data and b) the post-policy fitted distribution without DFL weights.

34



Appendix Figure XI: Score Gaps Compared to Post-Policy Distribution W/Out DFLWeights

(a) Predicted Mean ACT Score and Fraction College-Ready
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(b) Predicted Poverty and Race Gaps
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Notes: Figure (a) shows the “true” (using the fitted post-policy distribution without the DFL weights) and predicted mean
latent ACT score and fraction college-ready across correction methods by poverty status and race. Figure (b) shows the
“true” (using the fitted post-policy distribution without the DFL weights) and predicted gaps in these measures across
correction methods by poverty status and race. All specifications include basic student demographics, school- and
district-level covariates, and student 8th and 11th grade test scores.
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Second, we omit 11th grade social studies test scores from the “rich” set of predictors and

use only 8th grade test scores, student demographics and school- and district-level predictors

(Appendix Table 11, panel 2). The predictions are slightly less accurate for every model and

every summary statistic, particularly for the mean squared difference between the predicted and

reference distributions. But the predictions are still substantially more accurate than without

using any student test scores and there remains no clear winner amongst the selection correction

models.

Third, we estimate models with a different combination of predictors: student demographics

and student test scores, but without school- and district-level predictors (Appendix Table 11,

panel 3). The predictions are generally slightly less accurate than for the models including

all predictors, but are always substantially more accurate than for the models that do not use

any student test scores as predictors. Once again, the two-stage semiparametric models fail to

outperform two-stage or one-stage parametric models.

Fourth, we calculate the mean squared quantile differences between the selection-corrected

distributions and the reweighted and predicted reference distribution (Appendix Table 11, panel

4). The general pattern of results is unchanged, though here the parametric two-stage selection

models slightly outperform the semiparametric two-stage selection models. Readers who wish

to compare the mean ACT score and fraction college-ready generated by the correction models

to the reference distribution in columns 1 or 3 can do so by directly comparing across columns

in the first four panels.

Fifth, we implement a test of the assumption that the predictors and selection correction

term are additively separable in the ACT score model. We regress ACT scores on the set of

predictors and the inverse Mills ratio (for all three sets of predictors, with and without an

instrument), generate the residuals from this regression, regress the residuals on a full set of

interactions between the predictors and the inverse Mills ratio, and test the joint significance of

all the interactions. We fail to reject the hypothesis that they are jointly zero (F < 0.12 for all

tests). Additivity is a standard assumption in most of the literature on selection models and

this assumption seems at least plausible in our setting.12

We also verify that our finding are robust to comparing different pairs of pre- and post-policy

cohorts. Our primary analysis compares the 2005 cohort to the 2008 cohort, as the mandatory

ACT policy was piloted in some schools in 2006 and not implemented in all schools in 2007. We

12See Arellano and Bonhomme (2017), Altonji, Ichimura, and Otsu (2012) and Manski (1990) for exceptions.
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also compare the 2005 cohort to the 2007 cohort (Appendix Figure 12), the 2006 cohort to the

2007 cohort (Appendix Figure 13), and the 2006 cohort to the 2008 cohort (Appendix Figure

14). The main findings are unchanged across choices of cohorts: predictive accuracy is higher

with richer predictors and does not vary substantially across selection correction methods.

E Group-level Correction Methods

Many researchers using test scores as a dependent variable observe only students who take the

test and so cannot estimate individual probabilities of test-taking (Card and Payne, 2002;

Rothstein, 2006). The individual-level corrections discussed thus far are infeasible in this

case. We also evaluate the performance of selection correction models that use only group-

level data. These methods are useful when researchers observe only the mean non-missing

outcome and share non-missing outcomes for each group. For example, labor economists might

observe regional employment rates and mean wages conditional on employment, while educa-

tion economists might observe school-level test-taking rates and mean test scores conditional

on taking. Building on Gronau (1974), Card and Payne (2002) adapt equation system (1) for

use with aggregate data:

ACT ∗ig = Xigβ + εig (7a)

TAKE∗ig = Wgµ+ uig (7b)

TAKEig =

1 if TAKE∗ig ≥ 0

0 if TAKE∗ig < 0
(7c)

ACTig =

ACT ∗ig if TAKE∗ig ≥ 0

. if TAKE∗ig < 0
(7d)

The key difference between systems (1) and (7) is the ACT-taking model. In this model we

assume ACT-taking depends on a vector of group-level characteristics Wg and an individual

error term uig that may be correlated with εig. Card and Payne (2002) evaluate the observed

test score equation at group means, yielding an estimating equation:

ACTg = Xgβ + h
(
TAKE

)
+ εg (8)

The selection correction term uses only the observed ACT-taking rate in each group, so we do

not require that the predictors of ACT-taking, Wg, are observed.
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Appendix Figure XII: MSE Comparison Using 2005 and 2007 Student Cohorts

(a) Mean ACT Score

All covs

Demographic covs

School & district covs

(b) Fraction College-Ready

All covs

Demographic covs

School & district covs

(c) Test Score Distribution

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set estimated using the
2005 and 2007 student cohorts, instead of the 2005 and 2008 cohorts. Black (top of each figure): basic student demographics;
Red (middle): plus school- and district-level covariates; Blue (bottom): plus student 8th and 11th grade test scores. Bias is
the difference between the statistic predicted by a) the correction method applied to the pre-policy data and b) the
post-policy, DFL-weighted, fitted distribution.

39



Appendix Figure XIII: MSE Comparison Using 2006 and 2007 Student Cohorts

(a) Mean ACT Score

All covs

Demographic covs

School & district covs

(b) Fraction College-Ready

All covs

Demographic covs

School & district covs

(c) Test Score Distribution

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set estimated using the
2006 and 2007 student cohorts, instead of the 2005 and 2008 cohorts. Black (top of each figure): basic student demographics;
Red (middle): plus school- and district-level covariates; Blue (bottom): plus student 8th and 11th grade test scores. Bias is
the difference between the statistic predicted by a) the correction method applied to the pre-policy data and b) the
post-policy, DFL-weighted, fitted distribution.
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Appendix Figure XIV: MSE Comparison Using 2006 and 2008 Student Cohorts

(a) Mean ACT Score

All covs

Demographic covs

School & district covs

(b) Fraction College-Ready

All covs

Demographic covs

School & district covs

(c) Test Score Distribution

All covs

Demographic covs

School & district covs

Notes: Figure shows the mean squared error of each combination of correction method and covariate set estimated using the
2006 and 2008 student cohorts, instead of the 2005 and 2008 cohorts. Black (top of each figure): basic student demographics;
Red (middle): plus school- and district-level covariates; Blue (bottom): plus student 8th and 11th grade test scores. Bias is
the difference between the statistic predicted by a) the correction method applied to the pre-policy data and b) the
post-policy, DFL-weighted, fitted distribution.
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This estimating equation is corrected for within-group selection but not for between-group

selection, conditional on the observed ACT score predictors Xig. Within-group selection occurs

if individual ACT-taking covaries with individual deviations from mean latent ACT scores of

the group, cov (εig − εg, uig − ug) 6= 0. Between-group selection occurs if the group ACT-taking

rate covaries with the group mean latent ACT score, cov
(
εig, TAKEg

)
6= 0. As an example,

assume groups are schools. The group-level model (8) is corrected for within-school selection,

which could occur if individual students with higher latent scores are more likely to take the

ACT than students in the same school with lower latent scores. But model (8) is not corrected

for between-school selection, which could occur if “good” schools have high mean latent scores

and high ACT-taking rates. This means that the level of aggregation is important. With larger

groups, more of the selection is within-group and is addressed by the selection correction.13

However, the group mean predictors Xg are less informative in larger groups. So using larger,

more aggregated groups relies more on the correction model and less on the data.

The functional form of the selection correction term depends on the assumed distribution of

the unobserved factors influencing ACT scores and ACT-taking, εig and uig. If these are jointly

normally distributed, then the selection correction term equals the inverse Mills ratio evaluated

at the group mean ACT-taking rate (Card and Payne, 2002). We estimate equation (8) using a

variety of functional forms for the selection correction term, including a polynomial in TAKEg,

following the strategy in Newey (2009).14

Clark, Rothstein, and Whitmore Schanzenbach (2009) use this approach to study selection

into ACT-taking in Illinois. They observe no data on non-takers (neither ACT scores nor lagged

test scores and demographic characteristics). They therefore use only group-level methods and

consider only parametric correction models based on joint normality assumptions. The study

uses the shift from voluntary to mandatory ACT-taking in Illinois in 2002 as an instrument

in these models. They conclude that this correction allows a reasonable approximation to the

latent distribution of ACT scores.

We estimate group-level selection models of the form of equation (8) using pre-policy data,

generate the predicted distribution of group mean ACT scores, and compare this to the dis-

13As the group size approaches one, the correction term approaches a constant.
14We estimate equation (8) using weighted least squares, where the weights equal the number of students in

each group. We construct the predicted distribution of school mean ACT scores using 1000 replications of the
same residual-adding process described in Section 2.3. We construct the standard errors using 500 replications
of a nonparametric bootstrap, each containing 1000 residual-adding iterations.
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tribution of group mean ACT scores in the post-policy period. We also estimate models that

use the group-level fraction of ACT-taking students who score at or above the ACT’s college-

readiness threshold score. The vector of predictors, Xg, includes the group-level fraction black,

fraction on free lunch, teacher-pupil ratio, average 11th grade social studies score (standardized

across individuals at the grade-year level), and average 8th grade math and English scores.

We drop groups where there is not at least one ACT-taking student in the pre-policy and the

post-policy periods, losing approximately 2% of the students in the sample.

We vary two features of the comparison. First, we vary the form of the control function, h(.),

while defining groups as schools. We use no control function, a linear function, a cubic function,

a log function, and the inverse Mills ratio. The inverse Mills ratio is the appropriate functional

form if the individual ACT score and ACT-taking errors are jointly normally distributed. The

other functional forms can be interpreted as approximations to an unknown form of h(). The

logarithmic form is used by Card and Payne (2002) and the linear and cubic forms follow from

ideas in Heckman and Robb (1985) and Newey (2009).

We report the predicted mean ACT score and predicted fraction scoring college-ready in

panel A of Appendix Table 12. The mean ACT score from the post-policy reference distribution

is 19.26 and pre-policy is 20.63, again using inverse probability weighting to adjust for time

differences in student demographics and school characteristics. The observed fractions college-

ready are 0.443 and 0.569. Using the pre-policy data and omitting any selection correction

generates predictions almost identical to the raw numbers (20.62 and 0.565). The control

functions improve slightly on the uncorrected OLS regression but are nearly identical to one

another and remain far from the benchmark value.15 We also account for the possibility that the

within-school selection process may differ between schools, by interacting the control function

with the fraction of students who qualify for free lunch and the mean 11th grade test score.

This allows the selection correction term, and hence the underlying distribution of individual

errors, to vary by school type. However, this does not change the predicted outcomes. The

estimates are robust over all our choices of the control function, echoing Card and Payne (2002)

and Rothstein (2006). However, our results suggest that the estimates may simply be robustly

incorrect.

Second, we vary the group definition, using demographic and academic subgroups within

schools instead of schools. With these less aggregated groups, the predictor vector Xg contains

15We omit estimates from the cubic correction model, which are identical to those from the linear model.
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more information, which facilitates better prediction. However, the group-level selection cor-

rection models correct only for within-group selection. Using less aggregated groups increases

the scope for between-group selection and hence worse prediction. Using less aggregated groups

thus emphasizes the role of the predictors relative to the corrections.

We begin by creating cells at the school-by-free lunch status-by-minority status level and

report the results in panel B of Appendix Table 12. Disaggregating cells to this level leaves

the raw post-policy mean and fraction college-ready unchanged, though the summary statistics

for the post-policy reweighted and predicted distributions are slightly lower. The pre-policy

predicted parameters are slightly closer to the truth than in panel A, closing approximately 0.2

points of the 1.4 point gap for the mean, and 2 of the 13 percentage point gap for the fraction

college-ready. Again, the predictions do not differ with the functional form of the correction.

We next group the data at the school-by-free lunch status-by-minority status-by-11th grade

test score quartile level and report the results in panel C of Table 12. Variants of this strategy

are feasible when researchers observe prior academic performance for demographic subgroups of

students, which are available in many NCLB-mandated school reports. The raw mean score and

fraction college-ready are lower in the pre-period for this sample, while they are unchanged in

the post-period.16 The predictions are substantially better with this less refined data and some

fall almost within the 95% confidence intervals of the parameters of the reference distribution

(column 3). The functional form of the correction is again almost irrelevant; the uncorrected

predictions are as accurate as any of the selection-corrected predictions.

We display these estimates in Appendix Figure 15, showing the variance and squared bias

for each combination of control functions and data aggregation levels. The finer aggregation

levels clearly generate less biased estimates of the mean and fraction college-ready, particularly

for the finest aggregation level; the estimates for the mean are also lower variance than those

based on coarser aggregation levels. There is little variation across control functions in squared

bias. There is some variation in variance, though no clearly dominant control function. We

repeat this exercise using as a reference distribution the post-policy score distribution without

reweighting and show the results in Appendix Figure 16. The results are unchanged.

We conclude that none of the functional form choices for the selection correction term robustly

16The change in these statistics occurs for two reasons. Students with missing 11th grade scores are now
dropped, as they do not fall into a test score quartile. There are also some school-by-poverty-by-test score
quartile cells that contain no ACT takers. Students in these cells are assigned zero weight in this disaggregated
analysis but received positive weight in the previous, more aggregated, analysis.

45



Appendix Figure XV: MSE Comparison Across Control Functions and Aggregation Levels

(a) Mean ACT Score

School X demographic 
X test score groups

School groups

School X demographic groups

(b) Fraction College-Ready

School X demographic 
X test score groups

School groups

School X demographic groups

Notes: Figure shows the mean squared error of each combination of control function and data aggregation level for the
group-level selection corrections from Table 5. Black (top of each figure): school-level; Red (middle): school*free
lunch*minority-level; Blue (bottom): school*free lunch*minority*test score quartile-level. Bias is the difference between the
statistic predicted by 1) the correction method applied to the pre-policy data and 2) the post-policy, DFL-weighted, fitted
distribution.

46



Appendix Figure XVI: Group-Level MSE Comparison W/Out DFL Weights

(a) Mean ACT Score

School X demographic 
X test score groups

School groups

School X demographic groups

(b) Fraction College-Ready

School X demographic X test score groups

School groups

School X demographic groups

Notes: Figure shows the mean squared error of each combination of control function and data aggregation level for the
group-level selection corrections from Table 5, fitting the post-policy distribution without DFL weights. Black (top of each
figure): school-level; Red (middle): school*free lunch*minority-level; Blue (bottom): school*free lunch*minority*test score
quartile-level. Bias is the difference between the statistic predicted by 1) the correction method applied to the pre-policy data
and 2) the post-policy fitted (non-DFL weighted) distribution.
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outperforms the others. However, the less aggregated data yields substantially more accurate

predictions. This emphasizes the importance of the predictors, relative to the correction model,

for prediction. Research based on highly aggregated data, such as state-level reports, should

be interpreted with caution.
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