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The learning curve: Revisiting the assumption of linear growth across the school year 
  

 

Abstract  

Important educational policy decisions, like whether to shorten or extend the school year, often 

require accurate estimates of how much students learn during the year.  Yet, related research 

relies on a mostly untested assumption: that growth in achievement is linear throughout the entire 

school year.  We examine this assumption using a dataset containing math and reading test 

scores for over seven million students in kindergarten through 8th grade across the fall, winter, 

and spring of the 2016-17 school year. Our results indicate that assuming linear within-year 

growth is often not justified, particularly in reading. Implications for investments in extending 

the school year, summer learning loss, and racial/ethnic achievement gaps are discussed. 

  



3 

Introduction  

Understanding a range of topics in education practice and policy is dependent on having 

accurate estimates of how much students learn during the year.  For example, research examining 

potential benefits of lengthening the school year, as well as how much achievement drops during 

the summer when students are out of school, require that we accurately capture how much 

students grow academically during the school year. Such studies often assume that students will 

continue learning at the same rate throughout the entire school year, including after standardized 

testing is administered in the spring. That is, because spring testing does not typically occur at 

the very end of the school year, research on how much achievement increases during the year 

and drops (on average) when students are not in school frequently uses linear extrapolation of 

test scores to account for in-school time after student testing (Downey, von Hippel, & Broh, 

2004; Quinn, Cooc, McIntyre, Gomez, 2016; von Hippel, Workman, & Downey, 2018).  The 

assumption of linear within-year growth is fundamental to much of what we know about the 

effects of extended learning time, summer loss, and whether educational inequality widens more 

during or outside of school time (e.g., Atteberry & McEachin, 2019; Downey, von Hippel, & 

Broh, 2004; von Hippel, Workman, & Downey, 2018).     

Yet, little evidence exists on whether such an assumption is justified.  This omission in 

the literature is surprising given, on a basic level, the claim of linear within-year growth may 

lack face validity.  Is it plausible to argue that the same amount of learning occurs during the 

week immediately before end-of-grade testing as during the week immediately before summer 

break?  While assumptions about the linearity of school-year growth have not gone entirely 

unexamined, we are only aware of two studies that have presented evidence on this topic 

explicitly (Fitzpatrick, Grissmer, & Hastedt, 2011; Hayes & Gershenson, 2016).  Other studies 
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have also briefly mentioned the issue, but none of them made testing the assumption of linear 

within-year growth their primary focus, nor did they present details on analyses checking that 

assumption (Downey, von Hippel, & Broh, 2004; Quinn et al., 2016; von Hippel & Hamrock, 

2019). 

One reason this issue has largely gone unexamined is the lack of available data.  Most 

achievement tests are administered once per year in the spring.  Yet, to examine assumptions 

about the functional form of within-year growth, researchers require not two but three timepoints 

per school year.  Thus, researchers are often left with no choice but to assume the linearity of 

within-year growth. In this study, we test the assumption of within-year linearity using data from 

the Measures of Academic Progress (MAP) Growth tests in math and reading. MAP Growth is a 

progress-monitoring assessment with a vertical scale that is typically administered in fall, winter, 

and spring to over 9 million students annually (NWEA, 2020).  These data allow us to fit a 

within-year polynomial for a huge sample of the country’s elementary school children.  In so 

doing, we can compare model fit between models that do and do not assume within-year growth 

is linear.  We can also see if the assumption affects estimates relevant to extending the school 

year, quantifying summer loss, and estimating achievement gaps.  Specifically, we investigate 

four research questions: 

1. Is there evidence that within-year growth is linear across kindergarten to 8th grade in 

math and reading? 

2. Are inferences about extending the school year sensitive to the assumption of linear 

growth throughout the school year? 

3. How sensitive are estimates of summer learning loss to the assumption of linearity? 
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4. To the degree we see patterns of nonlinear growth, are certain racial/ethnic and gender 

groups more likely to show a relative slowdown in learning rates across the school year 

that would contribute to achievement gaps? 

Background 

Evidence of linearity 

Evidence confirming or disconfirming the tenability of the within-year linearity 

assumption is limited.  Only a handful of studies even examine the issue, and all but two of the 

studies treat the issue as peripheral to the main research question of interest.  First, using the 

Early Childhood Longitudinal Study - Kindergarten Cohort (ECLS-K), Fitzpatrick, Grissmer, 

and Hastedt (2011) and Hayes and Gershenson (2016) each exploited the quasi-randomness of 

test dates and provided some initial evidence that students’ school year academic gains in 

kindergarten and 1st grade were best fit by a linear model. However, both studies relied on only 

two testing occasions (fall and spring) and therefore could only examine learning gains occurring 

during the very beginning or end of the school year. Furthermore, it is unclear whether evidence 

supporting linearity in kindergarten and 1st grade can be generalized to the upper elementary and 

middle school grades, when preparation for standardized testing greatly shapes the instructional 

organization of the school year. Second, von Hippel and Hamrock (2019) reported testing the 

linearity of within-year growth using NWEA’s MAP Growth data collected between 2008 and 

2010 in 419 schools, but did not describe the methods used or grades examined. In short, within-

year linearity is a relatively untested assumption and, as we describe below, is also fundamental 

to important inferences about education. 

Implications for extending the school year 
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One consideration often facing policymakers that relates to the nature of within-year 

learning trajectories is whether to shorten or lengthen the school year.  In particular, the question 

of whether to extend the school year remains a hotly debated policy topic (Patall, Cooper, & 

Allen, 2010).  Despite the debate, lengthening school calendars is a strategy widely used in 

practice.  Rocha (2008) found that more than 300 initiatives to extend learning time were 

launched between 1991 and 2007 in high-poverty and high-minority schools in 30 states.  One 

reason for the popularity of this approach may be the research base.  According to a literature 

review conducted by Patall, Cooper, and Allen (2010), 15 empirical studies of various designs 

have been conducted on the topic since 1985, most of which used descriptive analyses rather 

than quasi-experimental or experimental designs.  Those studies suggested that extending school 

time can be an effective way to support student learning, especially for students most at risk of 

dropping out and when a deliberate strategy is used to maximize the utility of that extended 

learning time.   

While the studies reviewed by Patall, Cooper, and Allen (2010) suggest that extending 

the school year is promising, their descriptive nature means they often rely on assumptions about 

how growth occurs during the school year.  That is, most evidence from such studies assumes 

that the benefits of extending the school year are linear such that every day increase is associated 

with some commensurate gain in achievement.  Thus, policymakers wishing to apply those 

findings can roughly estimate how much learning might improve given an extension of a certain 

number of days.  However, if within-year learning is nonlinear—and especially if those 

nonlinear trends differ by context—then the implications of the findings in the studies reviewed 

by Patall, Cooper, and Allen (2010) are much harder to identify.  For example, if learning gains 

taper dramatically in a given district towards the end of the year, then investing in a longer 
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school year may be less likely to improve achievement relative to other possible strategies. In 

summary, basing inferences about the benefits of extending the school year on studies that 

assume linear growth throughout the school year may lead to a misunderstanding of the actual 

benefit to students’ academic achievement.  

Implications for Studying Summer Learning Loss  

 Since students rarely are tested on the first and last day of the school year, quantifying 

summer learning loss typically involves the models to separate the effects of in-school time 

(including instruction that occurs after testing in the spring or before testing in the fall) on 

achievement from  the effects of summer vacation. Isolating the learning occurring during the 

summer is routinely achieved through linearly extrapolating test scores to the start and end of the 

school year (i.e., summer loss models assume that learning occurs at the same linear rate before 

the first test of the school year and after the last test). In some studies (e.g., Quinn, 2015; 

Atteberry & McEachin, 2019), test scores were projected to the start and end date based on each 

student’s individual growth rate prior to estimating summer loss. In other studies, school-year 

and summer learning patterns were estimated using a hierarchical linear growth model that 

assumes linear growth during the school year (Downey, von Hippel, & Broh, 2004; Quinn et al., 

2016; von Hippel, Workman, & Downey, 2018, von Hippel & Hamrock, 2019). As von Hippel 

and colleagues (2018) note, this model “implicitly extrapolates beyond the test dates to the 

scores that would have been achieved on the first and last day of the school year” (p. 335).  

As noted earlier, many of the summer learning loss studies included footnotes and/or 

supplemental materials addressing checks for non-linearity with the ECLS-K data (Downey, von 

Hippel, & Broh, 2004, pg. 620; Quinn, Cooc, McIntyre, & Gomez, 2016, pg. 452) and NWEA 

data (von Hippel & Hamrock, 2019, pg. 55; Atteberry & McEachin, 2019, pg. 40). Only 
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Atteberry and McEachin (2019) provided a comparison between the estimated degree of summer 

loss between the linearly projected scores and the observed fall and spring scores to investigate 

the degree to which projecting scores influences measurement of summer learning loss. In their 

study, the average student took the fall test about 26 days after the first day of school and took 

the spring test 39 days before the last day of school. When linearly projecting test scores to the 

start and end of the school year, they found that the 50th percentile student shows summer 

learning loss during each summer subsequent to 1st to 8th grade in both math and reading, 

whereas the observed test scores indicate that 50th percentile student was only losing ground in a 

subset of grades. These findings imply that the estimated impact of summer loss varies greatly 

depending on how test scores are projected to the start/end of the school year. However, as far as 

we are aware, no one has examined the sensitivity of summer learning drops to projecting test 

scores assuming students’ growth trajectories are linear versus non-linear.      

Implications for Studying Achievement Gaps 

 Given achievement gaps are associated with a host of long-term outcomes like 

postsecondary attainment and earnings (e.g., Neal, 2006), there is much interest in how 

achievement gaps develop over the course of students’ schooling.  Yet, the majority of these 

studies assume that achievement gaps growth linearly during the school year, which may not be 

the case.  For example, Robinson and Lubienski (2011) showed that there is not a male-female 

mathematics gap in kindergarten using the ECLS-K, but that females lose some ground during 

elementary school before closing the gap again in middle school.  Related studies show that 

mathematics gaps in kindergarten increased, on average, by 3rd grade (Husain & Millimet, 2009; 

LoGerfo, Nichols, & Chaplin, 2006; Rathbun, West, & Hausken, 2004).  As for reading, 

Robinson and Lubienski (2011) also found that gaps are narrow across most grades, but widen 
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over time among initially low-achieving students.  For example, the ECLS-K achievement test 

showed a 0.2 SD gap at 4th grade and more than 0.3 SD in 8th grade and later (Robinson & 

Lubienski, 2011).   Similarly, Husain and Millimet (2009) found that low-achieving males tend 

to lose ground in reading between kindergarten and 3rd grade.   

 Similar evidence has been accrued for Black-White achievement gaps in studies that also 

tend to assume within-year growth is linear and, thus, that gaps widen linearly as well.  For 

instance, gaps appeared to widen by 5th grade, reaching 0.75 SD in reading and 1.0 SD in 

mathematics (Reardon & Galindo, 2009).  A study using the National Institute of Child Health 

and Human Development Study of Early Child Care and Youth Development showed that the 

mathematics gap narrowed between kindergarten and 3rd grade, but widened in reading during 

that same period (Murnane et al., 2006).  Another study using a different dataset suggested that 

mathematics and reading gaps grow between 1st and 2nd grade, then increase idiosyncratically in 

subsequent elementary grades (Phillips, Crouse, & Ralph, 1998).  Trends in later grades are less 

clear, though gaps persist.  A pair of studies using state data showed the mathematics gap 

growing from .59 to .70 SD between 3rd and 8th grade in Texas (Hanushek & Rivkin, 2006), but 

only growing from .77 to .81 SD in North Carolina (Clotfelter, Ladd, & Vigdor, 2006).  

Meanwhile, research using the National Assessment of Education Progress (NAEP) long-term 

trends data found that the mathematics gap widens between ages 9 and 13 (Ferguson, 2001; 

Neal, 2006; Phillips, Crouse, & Ralph, 1998).   

A growing literature also considers whether inequality by subgroup grows during the 

school year on average across schools, oftentimes assuming linear within-year growth in the 

process.  Perhaps most prominently, Downey, von Hippel, and Broh (2004) found that schools 

serve as important equalizers with most gaps growing faster during summer than during the 
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school year (the Black-White gap being the one exception).  This issue has been revisited many 

times over the intervening years.  von Hippel, Workman, and Downey (2018) similarly showed 

that socioeconomic gaps often shrink during the school year and expand during the summer, 

while the Black-White gap tends to grow during school.  However, other work, including 

research by von Hippel and Hamrock (2019), found that different gaps expand during different 

seasons and to varying degrees depending on data sources and measures of achievement. 

 Despite the attention paid to how gaps develop as student’s move through school, there is 

virtually no evidence on whether these gaps develop linearly or nonlinearly within school years.  

That is, we do not know if gaps widen at a consistent rate over the course of a school year or if 

they widen more during particular times in the year like just before summer break.  Once again, 

this omission in the literature likely occurs due in part to the limited availability of data from test 

scores administered three or more times per year. 

Data and Measures 

Analytic Sample 

The data for this study are from the Growth Research Database (GRD) at NWEA. School 

districts partner with NWEA to monitor elementary and secondary students’ reading and math 

growth throughout the school year, with assessments typically administered in the fall, winter, 

and spring. We use the test scores of over seven million kindergarten to 8th grade students in 

16,824 schools from the 2017-18 school year. Sixty-seven percent of students in our sample are 

assessed during all three terms, with the remaining 33% assessed during only one or two of the 

terms. The GRD also includes demographic information, including student race/ethnicity, 

gender, and age at assessment, though student-level socioeconomic status is not available.  Table 

1 provides descriptive statistics for the sample by subject and grade. In each grade, we observe 
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between 500,000 and 800,000 students. Overall, the sample is 51% male, 48% White, 17% 

Black, 4% Asian, and 18% Hispanic.  

The set of schools partnering with NWEA to administer MAP Growth in 2017-18 

represents approximately one in four US public schools. While extremely large, the sample 

consists of schools that partner with NWEA of their own volition and is therefore not inherently 

nationally representative. Table 2 provides a comparison of the school characteristics of our 

sample of 16,824 schools with the population1 of 62,601 US public schools serving grades K-8 

based on school-level data from the 2017-18 Common Core of Data (CCD). From these data, we 

are able to characterize our sample of schools based on a number of characteristics, including 

percentage of students eligible for free or reduced price lunch (FRPL), locale (e.g., urban vs. 

rural), enrollment by grade, and distribution of racial/ethnic groups. Overall, the NWEA sample 

of schools closely matches the national distribution of schools in urbanicity, percentage of FRPL 

eligibility, and percentage of White students, though schools serving a high percentage of 

Hispanic students are slightly underrepresented.  

Measures of Achievement 

Student test scores from NWEA’s MAP Growth reading and math assessments are used 

in this study. MAP Growth is a computer adaptive test—which means measurement is precise 

even for students above or below grade level—and is vertically scaled to allow for the estimation 

of gains across time. Each test begins with a question appropriate for the student’s achievement 

level (either based on a student’s past performance or grade-level expectations), and then adapts 

throughout the test in response to student performance. The MAP Growth assessments are 

typically administered three times a year (fall, winter, and spring) and are aligned to state content 

 
1 We define the population of schools as the set of US public schools in the 50 states plus the District of Columbia 

that reported enrollment of at least one K-8 student during the 2017-18 school year within the CCD data file. 
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standards. Test scores are reported on the RIT (Rasch unIT) scale, which is a linear 

transformation of the logit scale units from the Rasch item response theory model. Table 3 

provides the mean and standard deviations (SD) of students’ RIT scores by term, grade, and 

subject. 

Months of School Exposure 

Schools using MAP Growth assessments set their own testing schedules, resulting in 

considerable variation around when students take the tests during the school year. To account for 

time in school before testing, we draw on district calendars for the 2017-18 school year from 

participating school districts. We calculate “months of exposure” to school at each test event as 

the total number of days elapsed between the school’s start date and testing date(s) divided by 

30. For example, a hypothetical student who started school on the first of August and tested three 

times (say September 5th, January 10th, and April 15th) would have a vector of months of 

exposure values of 1.17, 5.40, and 8.57 months. Table 3 provides the mean and SD of students’ 

observed months of school by term, grade, and subject.  The average student in our sample takes 

the fall test three weeks into the school year and the spring test with slightly over one month of 

school remaining. 

Analyses 

Descriptive Analyses. We first look at the variation in testing dates within MAP Growth 

data. Panel A of Figure 1 presents the frequency of test events within each month during the 

2017-18 school year. Fall testing peaks between August and September, winter testing primarily 

takes place in December and January, and spring testing primarily occurs in April and May, 

though there is a fair amount of variability overall. However, our primary unit of time is not the 

date of testing but months of exposure to school, which accounts for differences in school start 
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date. Panel B in Figure 1 in the supplemental materials displays the distribution of months of 

exposure.  

To help answer the first research question, for each pair of terms (fall-winter and winter-

spring), we first estimate the standardized mean difference effect sizes between terms. The 

means and SDs that we use in the effect size calculation are estimated pooling all students within 

a term (fall, winter, or spring), which ignores differences in testing month within a term. The 

standardized gain2 between fall and winter test scores is 

RIT̅̅ ̅̅ ̅𝑊𝑔−RIT̅̅ ̅̅ ̅𝐹𝑔

√
(NWg−1)SD𝑊𝑔

2 +(N𝐹𝑔−1)SD𝐹𝑔
2

N𝑊𝑔+NFg−2

,        (1) 

where RIT̅̅ ̅̅ ̅
𝑊𝑔  is the average winter test score in grade g, RIT̅̅ ̅̅

𝐹̅𝑔 is the average fall test score in 

grade g, SD𝑊𝑔  and SD𝐹𝑔 are the SD estimates in the winter and fall of grade g, and 𝑁𝑊𝑔 and N𝐹𝑔 

are the observed sample size in the winter and fall of grade g respectively. The mean and SD 

estimates used in these calculations are all reported in Table 3. In addition, given the variation in 

testing windows observed with the MAP Growth data, we extend the above effect size equation 

to account for individual differences in the amount of time passed between two test events.  

Specifically, we calculate the average monthly gain between the fall and winter as 

∑
RIT𝑊𝑖−RIT𝐹𝑖

Mon𝑊𝑖−Mon𝐹𝑖

𝑁𝑔
𝑖=1

𝑁𝑔
,        (2) 

where RIT𝑊𝑖  is student i's winter test score, RIT𝐹𝑖 is student ’'s fall test score,  Mon𝑊𝑖 is the 

month of exposure by the winter test event, Mon𝐹𝑖 is the month of exposure by the fall test event, 

and 𝑁𝑔 is the number of unique students with a fall and winter test score observed in grade g. 

Winter-spring effect sizes and average gains are calculated in the same manner.   

 
2 We also calculated standardized gains estimates accounting for within-person correlations across terms and results 

were highly similar.  
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Multilevel Growth Models. We also examine the assumption of linear school-year 

learning rates using a set of multilevel growth models (Raudenbush & Bryk, 2002). By coding 

time as months of exposure to school, our modeling approach adjusts for variation in the test 

dates and school-year start/end dates. We directly account for the clustering of students in 

schools by estimating three-level models, where MAP Growth test scores across fall, winter, and 

spring (level 1) are nested within students (level 2) and schools (level 3). For each grade and 

subject, three growth models are estimated. 

Linear Growth Model. In the linear growth model, the test score y𝑡𝑖𝑗  for student i in 

school j at timepoint t is modeled as a linear function of the months (Months𝑡𝑖𝑗) that the student 

has been in school: 

y𝑡𝑖𝑗 =  𝜋0𝑖𝑗 + 𝜋1𝑖𝑗Months𝑡𝑖𝑗 + 𝑒𝑡𝑖𝑗 .       (3) 

At level 2 and 3, we include student- (𝑟0𝑖𝑗  and 𝑟1𝑖𝑗) and school-level (𝑢00𝑗  and 𝑢10𝑗) random 

effects for both the intercept and linear growth terms: 

Level-2 Model (student (i) within school (j)):     (4) 

𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝑟0𝑖𝑗 

𝜋1𝑖𝑗 = 𝛽10𝑗 + 𝑟1𝑖𝑗  

 

Level-3 Model (school (j)): 

𝛽00𝑗 = 𝛾000 + 𝑢00𝑗 

𝛽10𝑗 = 𝛾100 + 𝑢10𝑗 

In this model, 𝛾000  is the expected average test score on the first day of school and 𝛾100 is the 

average linear gain in RIT points per month of school during the school year. An important 

assumption of this model is that growth is constant with respect to time, which implies that one 

month at the beginning of the school year is associated with the same amount of learning gains 

as one month at the end of the school year. The next two models discussed relax this assumption. 
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Quadratic Growth Model. The quadratic growth model expands upon the linear growth 

model by including a quadratic growth term at level 1: 

y𝑡𝑖𝑗 =  𝜋0𝑖𝑗 + 𝜋1𝑖𝑗Months𝑡𝑖𝑗 + 𝜋2𝑖𝑗Months𝑡𝑖𝑗
2 + 𝑒𝑡𝑖𝑗 ,      (5) 

where Months𝑡𝑖𝑗
2  is the squared number of months in school at timepoint t. After testing the 

model with random effects included for each parameter at the student-level, we determined that 

there are minimal within-school variations in the quadratic growth term, and so student-level 

random effects are only included for the intercept and linear growth term. At levels 2 and 3, the 

quadratic model is specified as: 

Level-2 Model (student (i) within school (j)):                (6) 

𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝑟0𝑖𝑗 

𝜋1𝑖𝑗 = 𝛽10𝑗 + 𝑟1𝑖𝑗  

𝜋2𝑖𝑗 = 𝛽20𝑗 + 𝑟2𝑖𝑗 

Level-3 Model (school (j)): 

𝛽00𝑗 = 𝛾000 + 𝑢00𝑗 

𝛽10𝑗 = 𝛾100 + 𝑢10𝑗 

𝛽20𝑗 = 𝛾200 + 𝑢20𝑗 

 

In this model, 𝛾000  is the average test score on the first day of school, 𝛾100 is the average 

instantaneous rate of change at the start of the school year, and 𝛾200  is the average rate of change 

of the linear growth term for a one-unit change in time (e.g., the acceleration or deceleration in 

growth). 

Piecewise Growth Model. In the piecewise model (also referred to as a linear spline 

model), we approximate a nonlinear function by tying together two linear growth components. 

The knot (transition point) is set at halfway through the school year (4.75 months) so that we can 

separately estimate linear growth rates during the first half and second half of the school year. 

The level-1 model is specified as: 
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y𝑡𝑖𝑗 =  𝜋0𝑖𝑗 + 𝜋1𝑖𝑗Fall_Months𝑡𝑖𝑗 + 𝜋2𝑖𝑗Spring_Months𝑡𝑖𝑗 + 𝑒𝑡𝑖𝑗 ,   (7) 

where Fall_Months𝑡𝑖𝑗  is the coding of time for the first 4.75 months of the school year (fall to 

winter) and Spring_Months𝑡𝑖𝑗 is the coding of time for the second 4.75 months (winter to 

spring). The level-2 and level-3 parts of the model are specified in a similar manner to the other 

models: 

Level-2 Model (student (i) within school (j)):      (8) 

𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝑟0𝑖𝑗 

𝜋1𝑖𝑗 = 𝛽10𝑗 + 𝑟1𝑖𝑗  

𝜋2𝑖𝑗 = 𝛽20𝑗 + 𝑟2𝑖𝑗 

Level-3 Model (school (j)): 

𝛽00𝑗 = 𝛾000 + 𝑢00𝑗 

𝛽10𝑗 = 𝛾100 + 𝑢10𝑗 

𝛽20𝑗 = 𝛾200 + 𝑢20𝑗 

 

Model Fit Assessment. All models reported in this study are estimated using full 

information maximum likelihood with HLM version 7 (Raudenbush, Bryk, Cheong, & Congdon, 

2011). To evaluate whether the quadratic model fits the data better than the linear model, we 

conduct a likelihood-ratio test (LRT) for each grade/subject. The LRT compares the deviance 

statistic (e.g., -2 times the log-likelihood estimate) of the more restricted linear model (nine 

estimated parameters) to the less two restricted models (13 estimated parameters for both the 

piecewise and quadratic model). The difference between the deviance estimate of the linear (𝐷0) 

and the alternative (𝐷1) model is chi-squared distributed with degrees of freedom equal to the 

difference in number of freed parameters between the two models (four in this case): 

(𝐷0 − 𝐷1) ~ χ2 (𝑑𝑓 = 4).       (9) 
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A significant LRT indicates that the inclusion of additional parameters improves model fit, while 

a non-significant LRT indicates that the additional parameters have not significantly improved 

model fit (e.g., the more restricted model is supported).  

Extending the School Year. To examine the expected benefits from extending the 

school year (for the purpose of specificity, we examine the effect of a one month extension), we 

use the results from the multilevel growth models to predict each student’s model-based learning 

gains across two school year lengths: (a) a 9-month school year and (b) a 10-month school year. 

For student i in school j in a given subject/grade, the expected gain during the school year under 

the linear model (Δ̂ij,lin) is predicted as  

Δ̂ij,lin =  (𝛾100 + 𝑢̂10𝑗 + 𝑟̂1𝑖𝑗) ∗ Time,       (10) 

where 𝛾100  is the estimated linear growth fixed effect from the multilevel growth model, 𝑢̂10𝑗 is a 

school-level empirical Bayes (EB) estimate of the linear growth random effect, and  𝑟̂1𝑖𝑗 is a 

student-level EB estimate of the linear growth random effect. Time represents the months of 

school exposure and is set to either nine months (traditional schedule) or 10 months (extended 

school year). Under the quadratic model, the expected gain is 

Δ̂ij,quad =  (𝛾100 + 𝑢̂10𝑗 + 𝑟̂1𝑖𝑗) ∗ Time + (𝛾200 + 𝑢̂20𝑗 + 𝑟̂2𝑖𝑗) ∗ Time2.    (11) 

In this equation, 𝛾200 is the estimated quadratic growth fixed effect, 𝑢̂20𝑗  is a school-level 

quadratic growth EB estimate, and 𝑟̂2𝑖𝑗 is student-level quadratic growth EB estimate. The HLM 

software produces the EB estimates in the level-2 residual file for each model/grade/subject. 

Once the model-based gains are estimated for each individual, we calculate the average gain in 
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RIT units for a subject/grade for each model (linear or quadratic) and exposure to time (9 or 10 

months):  

Δ̂lin,9mo =
∑ Δ̂ij,lin,9mo

𝑁𝑔
𝑖=1

𝑁𝑔
;            Δ̂lin,10mo =

∑ Δ̂ij,lin,10mo
𝑁𝑔
𝑖=1

𝑁𝑔
       (12) 

Δ̂quad,9mo =
∑ Δ̂ij,quad,9mo

𝑁𝑔

𝑖=1

𝑁𝑔
;    Δ̂quad,10mo =

∑ Δ̂ij,quad,10mo
𝑁𝑔

𝑖=1

𝑁𝑔
 

 

where 𝑁𝑔 is the total number of students in grade g. To estimate the extra learning gains from an 

additional month at the end of school year, we subtract the average expected gain across nine 

months from the average expected gain across 10 months for both the linear model 

(Δ̂lin,10mo−Δ̂lin,9mo) and the quadratic model (Δ̂quad,10mo−Δ̂quad,9mo). Finally, we standardize 

each set of estimates by the pooled SD for the corresponding grade/subject (estimated using the 

fall and spring SD estimates reported in Table 3). The standardized gain from an additional 

month of schooling assuming a linear model is therefore reported as: 

Δ̂lin,10mo−Δ̂lin,9mo

√
(N𝐹g−1)SD𝐹𝑔

2 +(N𝑆𝑔−1)SD𝑆𝑔
2

N𝐹𝑔+N𝑆g−2

.         (13) 

Summer Learning Loss. As with the previous research question, we use the EB 

estimates of students’ linear and quadratic growth trajectories to project students’ spring 2018 

test score to the end of the school year. However, unlike in the previous analysis, we use each 

student’s unique testing date and observed school calendar information to produce individual 

projections based on how many days remain in the student’s school year. Since summer learning 

estimates require a spring and a fall test score, we estimate the summer growth for the subset of 

students who have observed fall test scores in the 2018-19 school year. We were able to locate 

and merge in fall 2018 test scores for 1st to 8th grade students for 71% of the original sample of 

students (unfortunately we are unable to follow our 8th grade cohort into 9th grade). Projections 
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are conducted using both the linear and quadratic growth model within each grade and subject 

for both fall and spring scores (see Appendix B in the supplemental materials for more details), 

and then summer loss is calculated by subtracting students’ projected fall test score from the 

projected spring test score.  

Racial/ethnic and Gender Differences in Growth Deceleration. Lastly, we investigate 

whether there are group differences in the degree to which growth slows during the school year. 

Such estimates are relevant to understanding how achievement gaps change over the course of 

the school year.  Specifically, we estimate a conditional quadratic growth model where the 

intercept, linear, and quadratic slope term are all regressed on fixed effects for student 

race/ethnicity and gender. That is, the coefficient for the interaction between the quadratic term 

and race/gender variable allows us to investigate whether there is an association between 

learning acceleration/deceleration and subgroup status.  Additionally, to account for school-level 

socioeconomic status, we include controls for school percentage FRPL. 

Level-1 Model (time (t) within student (i) within school (j)):       (14) 

y𝑡𝑖𝑗 =  𝜋0𝑖𝑗 + 𝜋1𝑖𝑗Months𝑡𝑖𝑗 + 𝜋2𝑖𝑗Months𝑡𝑖𝑗
2 + 𝑒𝑡𝑖𝑗 , 

Level-2 Model (student (i) within school (j)): 

𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝛽01𝑗Black𝑖𝑗 + 𝛽02𝑗Hispanic𝑖𝑗 + 𝛽03𝑗Asian𝑖𝑗  

        +𝛽04𝑗OtherRace𝑖𝑗 + 𝛽05𝑗Male𝑖𝑗 + 𝑟0𝑖𝑗 

𝜋1𝑖𝑗 = 𝛽10𝑗 + +𝛽11𝑗Black𝑖𝑗 + 𝛽12𝑗Hispanic𝑖𝑗 + 𝛽13𝑗Asian𝑖𝑗  

        +𝛽14𝑗OtherRace𝑖𝑗 + 𝛽15𝑗Male𝑖𝑗 +    𝑟1𝑖𝑗 

𝜋2𝑖𝑗 = 𝛽20𝑗 + 𝛽21𝑗Black𝑖𝑗 + 𝛽22𝑗Hispanic𝑖𝑗 + 𝛽23𝑗Asian𝑖𝑗  

        +𝛽24𝑗OtherRace𝑖𝑗 + 𝛽25𝑗Male𝑖𝑗            

Level-3 Model (school (j)): 

𝛽00𝑗 = 𝛾000 + 𝛾001%FRPL𝑗 + 𝑢00𝑗  

𝛽10𝑗 = 𝛾100 + 𝛾101%FRPL𝑗 + 𝑢10𝑗     

𝛽20𝑗 = 𝛾200 + 𝛾201%FRPL𝑗 + 𝑢20𝑗  
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Results 

Is there evidence that within-year growth is linear across kindergarten to 8th grade in 

math and reading?   

Table 4 presents fall-to-winter and winter-to-spring math and reading gains reported as 

standardized mean difference effect sizes. On average, fall and winter tests were 3.77 months 

apart and winter and spring tests were 3.95 months apart. Consistent with findings from other 

assessments (e.g., Dadey & Briggs, 2012; Bloom et al., 2008), the MAP Growth effect sizes are 

substantially larger in earlier grades than in middle school. The effect sizes show that, while the 

linear growth assumption appears tenable in some grades for math, growth in math for several 

grades and in reading across most grades appears to decelerate during the school year. The 

differences between the fall-winter and winter-spring effect sizes in math range from 0.17 SD in 

kindergarten to 0.01 SD in 4th grade. In the middle school grades, fall-winter growth effect sizes 

in reading are approximately twice as large as the effect sizes observed between winter and 

spring. Table 4 provides the average monthly learning rates (accounting for time elapsed 

between test), which also consistently show higher growth during the fall-winter period. 

Figure 2 displays the predicted average growth trajectories based on the linear, quadratic, 

and piecewise growth models. Within-year growth deceleration in reading is quite apparent for 

students in 4th through 8th grade. The quadratic parameter can be interpreted as the rate of change 

in the growth that occurs during the school year, with negative values indicating that growth is 

decelerating during the school year.   

Table 5 shows the parameter estimates from the three unconditional multilevel growth 

models. The growth model results confirm the decelerating growth patterns seen in the 

standardized gain estimates. For example, whereas the estimate of the quadratic parameter (in 
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RIT units) is close to zero in math during 4th through 8th grade, the same parameter estimates in 

reading range from -0.04 RIT points per month (7th grade) to -0.10 RIT points per month (3rd 

grade).  These coefficients appear small, but as demonstrated in Figure 2, this degree of growth 

deceleration leads to a noticeable tapering of growth in reading during the last two months of 

school. Further, in the piecewise model, the estimated linear growth in reading for the same 

grades from winter to spring is less than half the growth from fall to winter. Table A1 in the 

supplemental materials provides the sample size and deviance estimates for each multilevel 

growth model, as well as the results of the LRT significance tests.  While the quadratic model 

always fit the data better than the linear model, the piecewise model did not improve fit in math 

in 4th to 6th grade. 

How sensitive are estimates of the gains from extending the school year to the assumption 

of linear growth? 

 Results presented in Figure 3 indicate that estimates of how extending the school year by 

one month will affect learning can be highly sensitive to the assumption of linearity. While some 

grade-subject combinations show little difference between linear and quadratic estimates, others 

show stark differences. For example, looking at 2nd grade reading, linear estimates show that 

extending the school year by a month leads to a gain of 0.15 SD compared to 0.04 for the 

quadratic model.  Further, whereas linear models indicate at least some gain in reading by 

extending the school year in 4th to 8th grades, the quadratic model suggests practically no gain. 

How sensitive are estimates of summer learning loss to the assumption of linearity? 

 Figure 4 shows estimated summer loss by grade and subject based on linear versus 

quadratic extrapolations.  Results are reported in terms of the SD of the spring test score.  As the 

figure illustrates, for several grade-subject combinations, the discrepancies between results 
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assuming different within-year functional forms are minimal.  For instance, in 5th grade 

mathematics (the largest estimated summer loss by subject-grade combination), linear and 

quadratic estimates are virtually identical.  However, for other grade-subject pairings, differences 

in results appear practically significant, especially for reading in the early grades.  As an 

example, in reading for grades one and two, the linear estimates suggest that summer loss 

exceeds 0.10 SD.  Yet, based on the quadratic model, the summer loss estimates for those grades 

are roughly half as large.  Thus, while not all summer loss estimates appear sensitive to the 

assumption of within-year linearity, some certainly do.   

To the degree we see nonlinear growth, are certain racial/ethnic and gender groups more 

likely to show a relative slowdown in learning rates across the school year? 

 Table 6 presents results from our multilevel model with controls for race/ethnicity, 

gender, and school percentage FRPL.  When examining the quadratic parameter estimate and its 

association with race, results are highly dependent on the grade in question.  In fact, the results 

indicate that Black and Hispanic students show less within-year deceleration in early grades, but 

more deceleration in later grades.  For example, in kindergarten, the quadratic fixed effect 

estimate is -0.07 and the coefficient on Hispanic is 0.03 (significant at the .05 level).  Thus, the 

deceleration is less pronounced for Hispanic kindergarten students relative to White students.  By 

comparison, in 8th grade Hispanic students’ growth is decelerating at nearly double the rate of 

White students, though overall deceleration rates are low for both groups. However, one should 

note that this finding did not hold across all racial/ethnic groups.  Unlike for Black and Hispanic 

students, the deceleration for Asian students is almost always less extreme relative to White 

students, regardless of grade. 
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 Within-year deceleration is also associated with gender in our sample.  In most grades, 

deceleration is larger for males, especially in later grades.  For example, in 8th grade, the male 

students demonstrate twice the rate of deceleration as female students.  By contrast, the 

differences between male and female students are either nonsignificant or small for kindergarten 

and 1st grade. 

Discussion 

 Many inferences related to program evaluation and policy require an accurate estimate of 

how much learning occurs during the school year. Yet, because most achievement tests are 

administered once a year in the spring, and few assessments are administered more than two 

timers per year, most related research simply assumes that within-year growth is linear.  While a 

handful of studies provide some evidence germane to the tenability of this assumption in 

kindergarten and 1st grade (Fitzpatrick, Grissmer, & Hastedt, 2011; Hayes & Gershenson, 2016), 

we are aware of no studies that thoroughly investigate the assumption of the within-year linearity 

across upper elementary and middle school grades. Given that preparation for federally-

mandated standardized testing in the spring may drive the sequencing of instruction in these later 

grades, it is highly plausible that learning rates prior to and subsequent to spring end-of-grade 

testing are different.   

 In this study, we address this gap in the literature by using a test typically administered 

three times per year to over seven million students nationwide.  Using those data, we are able to 

estimate models that assume within-year linearity, as well as models that relax the assumption 

through inclusion of a within-year quadratic term, and compare results.  Specifically, results are 

compared in terms of not only model fit, but also the sensitivity of policy-relevant estimates like 

the effect of extending the school year, summer loss, and the development of achievement gaps. 
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These analyses provide results that should be helpful not only to methodologists working with K-

8 assessment data, but also applied researchers interested in related questions of practice, policy, 

and evaluation. 

 First, our results suggest that the assumption of linear within-year growth is tenuous at 

best, with the most extreme violations occurring for reading gains within late elementary and 

middle school grades.  While the linear growth assumption appears plausible in most grades for 

math, growth appears to decelerate during the school year in reading across most grades. The 

differences between the fall-winter and winter-spring effect sizes in math are as high as 0.17 SD 

in kindergarten. In middle school, fall-winter growth effect sizes in reading are approximately 

twice as large as the effect sizes observed between winter and spring.  These results are further 

borne out when multilevel models are fit to the data, with significant quadratic terms in all grade-

year combinations.   

 Second, the questionable assumption of within-year linearity has implications for our 

understanding of how extending the school year might affect learning.  That is, the estimated 

effect of extending the school year by one month is highly sensitive to the assumption of 

linearity.  For instance, in 2nd grade reading, linear estimates suggest extending the school year 

leads to a gain of 0.08 SD compared to 0.03 SD for the quadratic model.  Similarly, while linear 

models indicate benefits to extending the school year in 2nd through 8th grade for learning 

reading, the quadratic model suggests gains are very near zero. Given much of the current 

justification for extending the school year assumes students will continue to learn at the same 

rate during the extra time added, our findings indicate that a portion of the related research base 

relies on an assumption that is often not justifiable. 
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 Third, we see that summer loss estimates can be sensitive to the within-year linearity 

assumption.  While some estimates of summer loss in math change little between linear and 

quadratic extrapolations, fairly large shifts occur in reading.  As an example, for reading during 

the early grades, quadratic model estimates of summer loss are about half those same estimates 

when based on the linear model.  Given these results, the common practice of estimating the 

learning that takes place between a spring achievement test administration and the end of the 

school year using linear extrapolation often may lead to overestimates of summer learning loss.  

Further, results could be even more sensitive to the linearity assumption if the learning that 

occurs after testing finishes slows even more precipitously than prior to testing in ways that 

cannot be captured with our data (i.e., we do not have test scores on the last day of the school 

year that would enable such inferences). 

 Finally, we show that the rate of deceleration is associated with race and gender after 

controlling for school-level socioeconomic status.  For Black and Hispanic students, deceleration 

is less pronounced in early grades but more pronounced in later grades.  This finding has 

implications for understanding achievement gaps and how they develop as students move 

through school.  Specifically, though not entirely consistent by grade and race, our results 

indicate that gaps increase somewhat towards the end of the school year during middle school, 

when growth slows more for racial minority students than for White students.  We also find that, 

for virtually every grade, growth decelerates more for males than females.  While our results are 

in no way causal, they are commensurate with a theory that the progression of achievement gaps 

may be slowed by reducing declines in learning that occur at the end of the school year for male 

and racial minority students. 
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 In sum, we show that assuming linear within-year growth may be a threat to many 

inferences researchers want to make about how certain programs and policies shape students’ 

reading development.  Given these findings, there are at least a couple of options for applied 

researchers interested in such inferences.  First, studies that involve questions about how much 

learning occurs during the school year would ideally use scores from tests administered three or 

more times per year.  While such tests are not currently the norm, they are expanding due to the 

growing prevalence of commercial benchmark assessments like MAP Growth and consortia tests 

like the Smarter Balanced Assessment Consortium (SBAC) assessments, which include an 

interim assessment option.  Second, if more than two test scores per year are not available, then 

researchers should at minimum be aware that their estimates of summer loss and the benefits of 

extending the school year are likely overstatements for certain subject-grade combinations.  

Thus, researchers may wish to indicate that results assuming linear growth represent upper 

bounds on effects related to summer loss and changing the length of the school year. 

Limitations 

 There are a few limitations to our study that bear mention.  For one, our results are based 

on only a single assessment.  While MAP Growth is currently utilized by roughly one in four 

public schools serving kindergarten to 8th grade, one cannot be certain results would generalize 

to other tests.  Thus, replication of our findings with other measures is warranted (while noting 

that part of the reason there is so little evidence on the within-year linearity assumption is that 

few such tests/datasets exist).   

 Another limitation is that, while we do have three tests per year for most students, we do 

not have tests offered at the very beginning or end of the school year.  That is, one might ideally 

have five tests: the three that we base our results on, and tests administered right when students 
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arrive at school in the fall and just before they leave for summer.  However, this limitation of our 

data could very well mean that our findings are understated, not overstated.  For example, if 

schools greatly reduce instruction immediately following spring testing, then deceleration in 

learning would be even greater, and occur in ways we cannot examine with our data.  

Finally, school districts set their own testing calendars due to potentially idiosyncratic 

reasons. Further research should investigate whether observed student and school characteristics 

explain the large variability observed in testing dates (and correspondingly months of 

instruction).  Such research could also consider whether these differences impact our 

understanding of students’ within-year growth trajectories on MAP Growth and other 

assessments. 

Conclusion 

A wide range of studies provide evidence to inform policy and practice decisions like 

whether to extend the school year and how best to reduce achievement gaps.  Many such studies 

rely on estimates of how much learning occurs during the school year, and typically assume that 

learning occurs at a constant rate throughout the school year.  However, our findings indicate 

that this assumption is often not justifiable, particularly in reading.  In some cases, fall to winter 

gains are much larger than winter to spring gains.  Further, we show that estimates of summer 

learning loss, changes in achievement gaps, and the effect of extending the school year can be 

quite sensitive to the assumption of within-year linearity.  Thus, much of what we know on 

related topics may rely on a faulty assumption about how learning occurs during the year.   
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Table 1 

Descriptive Statistics for the Analytic Sample 

    Race/ethnicity   

Male Grade N White Black Asian Hispanic 

Other 

race 

K 582,680 0.45 0.18 0.04 0.17 0.17  0.51 

1 687,784 0.46 0.18 0.04 0.17 0.16  0.51 

2 845,006 0.46 0.18 0.04 0.17 0.15  0.51 

3 911,229 0.46 0.17 0.04 0.18 0.15  0.51 

4 900,093 0.47 0.17 0.04 0.17 0.14  0.51 

5 916,657 0.48 0.17 0.04 0.18 0.14  0.51 

6 884,316 0.47 0.17 0.04 0.17 0.14  0.51 

7 858,296 0.48 0.16 0.04 0.18 0.14  0.51 

8 842,298 0.48 0.16 0.04 0.18 0.14   0.51 

Note. N=the number of unique students within each grade in 2017-18.  
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Table 2 

Comparison of the NWEA Sample of Schools and the Population of US Public Schools Serving 

Kindergartners through 8th Graders 

  NWEA Schools   

Population of Schools 

Serving K-8 

  N M SD   N M SD 

Kindergarten  11,832 68.30 41.66  43,189 66.52 45.72 

1st grade  11,960 69.19 40.94  43,533 67.23 44.12 

2nd grade 12,016 69.63 40.92  43,601 67.49 44.07 

3rd grade  12,042 72.21 43.12  43,599 69.83 46.37 

4th grade  11,951 73.71 46.25  43,364 71.22 48.90 

5th grade  11,552 76.66 55.92  42,142 73.54 58.40 

6th grade  7,674 105.64 108.96  30,568 99.51 113.28 

7th grade  6,394 123.10 122.23  27,323 109.86 125.60 

8th grade  6,305 124.44 124.44  27,372 109.58 126.78 

Percent FRPL 16,824 0.49 0.30  62,576 0.50 0.31 

Percent Hispanic 16,824 0.17 0.22  62,597 0.20 0.24 

Percent Black 16,824 0.18 0.26  62,597 0.16 0.25 

Percent White 16,824 0.55 0.33  62,597 0.55 0.33 

Percent Asian 16,824 0.04 0.07  62,597 0.03 0.07 

City 16,824 0.27 0.45  62,601 0.25 0.43 

Suburb 16,824 0.34 0.47  62,601 0.32 0.47 

Town 16,824 0.12 0.33  62,601 0.13 0.34 

Rural 16,824 0.27 0.44   62,601 0.30 0.46 

Note. N=count of the number of schools with observed data for a given variable, M=mean, 

SD=standard deviation, FRPL=free or reduced priced lunch. The enrollment variables 

(kindergarten through 8th grade) report the number of students enrolled in each grade, and the 

associated counts represent the number of schools enrolling students in that grade within the 

sample and population. All school characteristics are from the 2017-18 Common Core of Data 

from the National Center of Education Statistics. 
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Table 3 

Descriptive Statistics for Students’ Months of Exposure and MAP Growth Test Scores by Subject, 

Grade, and Term 

Grade Term 

Math   Reading 

N 

 

Months of 

School  RIT  

N 

 

Months of 

School  RIT 

  M SD   M SD     M SD   M SD 

K 

F17 473,238  0.95 0.50  141.13 10.44  445,460  0.87 0.50  138.41 9.71 

W18 516,842  4.66 0.75  151.26 12.15  499,713  4.60 0.77  147.43 11.33 

S18 575,289   8.52 0.60   160.20 12.70   550,741   8.46 0.63   155.48 12.67 

1 

F17 666,922  0.86 0.50  160.11 12.82  626,080  0.77 0.47  156.27 13.11 

W18 618,445  4.63 0.75  169.74 13.01  593,025  4.55 0.76  165.46 14.01 

S18 691,573   8.53 0.62   177.45 13.73   655,040   8.45 0.64   172.53 14.28 

2 

F17 800,435  0.82 0.49  175.69 13.78  772,175  0.74 0.46  172.88 16.25 

W18 736,288  4.60 0.77  183.42 13.42  728,549  4.52 0.77  180.89 16.33 

S18 817,522   8.52 0.64   190.13 13.97   796,421   8.43 0.68   186.44 16.07 

3 

F17 845,222  0.77 0.50  188.77 13.64  842,241  0.71 0.48  187.37 17.02 

W18 769,286  4.55 0.77  195.70 13.48  787,117  4.48 0.76  193.72 16.42 

S18 801,432   8.46 0.70   201.79 14.35   811,509   8.39 0.72   197.72 16.38 

4 

F17 831,191  0.74 0.49  200.63 14.27  828,996  0.68 0.46  197.53 16.69 

W18 763,519  4.54 0.77  205.85 14.34  773,219  4.47 0.75  202.22 15.99 

S18 788,121   8.47 0.72   211.80 15.82   794,897   8.39 0.75   205.17 16.08 

5 

F17 843,864  0.73 0.51  210.13 15.69  839,039  0.68 0.49  204.92 16.47 

W18 770,486  4.53 0.78  214.76 16.12  776,493  4.46 0.75  208.77 15.73 

S18 791,055   8.45 0.72   220.03 17.65   794,579   8.38 0.75   211.02 15.82 

6 

F17 814,015  0.73 0.49  214.87 16.14  809,928  0.70 0.47  210.30 16.39 

W18 698,556  4.53 0.78  218.50 16.69  705,254  4.49 0.77  212.91 15.97 

S18 746,959   8.41 0.74   222.82 17.73   747,312   8.34 0.76   214.93 16.01 

7 

F17 772,057  0.75 0.51  221.47 17.76  773,826  0.72 0.49  214.65 16.48 

W18 642,492  4.54 0.80  224.10 18.21  648,762  4.50 0.78  216.49 16.27 

S18 704,094   8.41 0.75   228.10 19.01   702,326   8.33 0.78   218.47 16.30 

8 

F17 739,820  0.75 0.51  226.90 18.91  752,177  0.72 0.48  218.44 16.54 

W18 620,204  4.52 0.79  229.09 19.15  638,877  4.49 0.79  220.17 16.22 

S18 660,222   8.39 0.75   232.53 20.21   666,113   8.30 0.77   221.69 16.33 

Note. F17=fall of 2017, W18=winter of 2018, S18=spring of 2018, N=count of the number of 

schools with observed data for a given variable, M=mean, SD=standard deviation. 
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Table 4 

Effect Sizes and Average Monthly Learning Gains by Subject and Grade  

Subject Grade N 

  

Months Between 

Test Dates   

Growth Effect 

Sizes    

Average Monthly 

RIT Gains 

  

Fall-

Winter 

Winter-

Spring   

Fall-

Winter 

Winter-

Spring   

Fall-

Winter 

Winter-

Spring 

Math 

K 380,431   3.69 3.90   0.93 0.76   3.18 2.74 

1 535,379  3.79 3.91  0.78 0.59  2.88 2.33 

2 619,387  3.80 3.95  0.61 0.49  2.54 2.13 

3 614,560  3.77 3.98  0.56 0.44  2.35 1.99 

4 602,242  3.78 4.00  0.40 0.39  2.02 2.00 

5 597,556  3.79 4.00  0.33 0.31  1.96 1.97 

6 534,229  3.77 4.00  0.27 0.24  1.87 1.78 

7 466,753  3.77 3.98  0.20 0.18  1.80 1.71 

8 438,221   3.76 3.98   0.17 0.13   1.79 1.68 

Reading 

K 361,805  3.70 3.91  0.90 0.72  3.03 2.69 

1 514,473  3.80 3.91  0.71 0.51  2.91 2.34 

2 610,337  3.81 3.92  0.53 0.34  2.83 2.16 

3 627,460  3.77 3.96  0.41 0.24  2.60 2.02 

4 608,889  3.78 3.98  0.32 0.18  2.29 1.85 

5 601,848  3.78 3.98  0.27 0.14  2.13 1.74 

6 531,326  3.77 3.95  0.20 0.11  2.01 1.75 

7 467,379  3.76 3.93  0.16 0.08  1.96 1.76 

8 445,427   3.75 3.92   0.15 0.06   1.95 1.73 

Note. The months between tests is reported as the average number of months between a student’s 

fall and winter (or winter and spring) tests.   Growth effect sizes and the projected additional 

gains are reported in standard deviation units.  
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Table 5 

Parameter Estimates from the Unconditional Multilevel Growth Models 

Grade Parameter 

Math   Reading 

Linear Model 

Quadratic 

Model 

Piecewise 

Model 
  

Linear Model 

Quadratic 

Model 

Piecewise 

Model 

K 

Intercept 139.09 (0.06) 138.15 (0.06) 127.53 (0.07)  136.78 (0.05) 136.11 (0.05) 126.46 (0.06) 

Linear   2.52 (0.01)   3.13 (0.02)     2.25 (0.01)   2.71 (0.02)  
Quadratic   -0.06 (0.00)     -0.05 (0.00)  
Linear – Fall     2.81 (0.01)      2.48 (0.01) 

Linear – Spring       2.28 (0.01)         2.06 (0.01) 

1 

Intercept 158.49 (0.06) 157.45 (0.06) 148.86 (0.07)  155.00 (0.07) 154.02 (0.06) 146.13 (0.07) 

Linear   2.26 (0.00)   3.07 (0.01)     2.12 (0.00)   2.92 (0.01)  
Quadratic   -0.09 (0.00)     -0.09 (0.00)  
Linear – Fall     2.65 (0.01)      2.50 (0.01) 

Linear – Spring       1.87 (0.01)         1.72 (0.01) 

2 

Intercept 174.16 (0.06) 173.46 (0.06) 166.11 (0.07)  171.84 (0.07) 170.57 (0.07) 165.06 (0.08) 

Linear   1.89 (0.00)   2.47 (0.01)     1.78 (0.00)   2.84 (0.01)  
Quadratic   -0.06 (0.00)     -0.12 (0.00)  
Linear – Fall     2.17 (0.01)      2.28 (0.01) 

Linear – Spring       1.59 (0.01)         1.23 (0.01) 

3 

Intercept 187.39 (0.06) 186.74 (0.06) 180.12 (0.06)  186.54 (0.07) 185.42 (0.07) 181.57 (0.08) 

Linear   1.71 (0.00)   2.23 (0.01)     1.39 (0.00)   2.34 (0.01)  
Quadratic   -0.06 (0.00)     -0.10 (0.00)  
Linear – Fall     1.95 (0.01)      1.84 (0.01) 

Linear – Spring       1.43 (0.01)         0.87 (0.01) 

4 

Intercept 199.11 (0.07) 199.09 (0.07) 192.32 (0.07)  196.87 (0.07) 196.00 (0.07) 193.32 (0.08) 

Linear   1.45 (0.00)   1.47 (0.01)     1.02 (0.00)   1.77 (0.01)  
Quadratic    0.00 (0.00)     -0.08 (0.00)  
Linear – Fall     1.46 (0.01)      1.38 (0.01) 

Linear – Spring       1.42 (0.01)         0.61 (0.01) 

5 

Intercept 208.53 (0.08) 208.46 (0.08) 202.52 (0.07)  204.19 (0.07) 203.39 (0.08) 201.46 (0.08) 

Linear   1.29 (0.00)   1.35 (0.01)     0.82 (0.00)   1.51 (0.01)  
Quadratic   -0.01 (0.00)     -0.08 (0.00)  
Linear – Fall     1.32 (0.01)      1.15 (0.01) 

Linear – Spring       1.25 (0.01)         0.45 (0.01) 

6 

Intercept 212.72 (0.10) 212.56 (0.10) 207.98 (0.10)  208.92 (0.10) 208.36 (0.10) 206.69 (0.10) 

Linear   1.06 (0.00)   1.20 (0.01)     0.65 (0.00)   1.13 (0.01)  
Quadratic   -0.02 (0.00)     -0.05 (0.00)  
Linear – Fall     1.14 (0.01)      0.88 (0.01) 

Linear – Spring       0.97 (0.01)         0.38 (0.01) 

7 

Intercept 219.10 (0.12) 219.06 (0.12) 215.23 (0.12)  213.22 (0.10) 212.77 (0.10) 211.32 (0.11) 

Linear   0.86 (0.01)   0.91 (0.01)     0.53 (0.00)   0.91 (0.02)  
Quadratic   -0.01 (0.00)     -0.04 (0.00)  
Linear – Fall     0.89 (0.01)      0.69 (0.01) 

Linear – Spring       0.81 (0.01)         0.34 (0.01) 

8 

Intercept 224.69 (0.13) 224.42 (0.13) 221.64 (0.13)  217.03 (0.10) 216.57 (0.11) 215.63 (0.11) 

Linear   0.73 (0.01)   0.96 (0.02)     0.46 (0.01)   0.86 (0.02)  
Quadratic   -0.03 (0.00)     -0.05 (0.00)  
Linear – Fall     0.82 (0.01)      0.65 (0.01) 

Linear – Spring       0.61 (0.01)         0.22 (0.01) 

Note. All parameters reported in this table are statistically significant (p<.001). 
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Table 6(a) 

Results from the Conditional Growth Model Predicting Math Score Deceleration Based on Student and School Characteristics  

Parameter K 1st Grade 2nd Grade 3rd Grade 4th Grade 5th Grade 6th Grade 7th Grade 8th Grade 

Intercept 140.272 (0.054) 159.841 (0.058) 175.485 (0.058) 188.619 (0.056) 200.962 (0.060) 210.726 (0.068) 215.272 (0.093) 222.600 (0.112) 228.483 (0.124) 

 Percent FRPL  -6.383 (0.172)  -7.534 (0.186)  -7.526 (0.188)  -8.578 (0.193)  -8.683 (0.212)  -9.258 (0.237)  -9.488 (0.316)  -9.009 (0.383)  -9.762 (0.425) 

 Black  -3.776 (0.067)  -5.622 (0.073)  -5.860 (0.077)  -6.351 (0.072)  -6.961 (0.077)  -8.086 (0.086)  -8.630 (0.117)  -9.617 (0.130) -10.335 (0.149) 

 Asian  -1.044 (0.136)  -0.011 (0.139)   2.647 (0.121)   2.968 (0.120)   3.832 (0.129)   4.466 (0.144)   4.626 (0.200)   5.517 (0.247)   5.837 (0.266) 

 Hispanic  -4.700 (0.073)  -5.518 (0.077)  -5.015 (0.077)  -4.910 (0.076)  -5.105 (0.081)  -5.808 (0.086)  -6.472 (0.122)  -7.382 (0.142)  -8.271 (0.163) 

 Other Race  -1.922 (0.075)  -2.389 (0.079)  -2.061 (0.078)  -2.163 (0.079)  -2.440 (0.081)  -3.068 (0.089)  -3.100 (0.111)  -3.775 (0.144)  -4.091 (0.154) 

 Male  -0.742 (0.031)  -0.316 (0.034)   0.014 (0.034)   0.437 (0.033)   0.694 (0.034)   0.758 (0.036)   0.414 (0.042)  -0.320 (0.047)  -0.756 (0.050) 

Linear Slope   3.236 (0.019)   3.024 (0.014)   2.416 (0.014)   2.171 (0.014)   1.381 (0.012)   1.265 (0.012)   1.178 (0.014)   0.881 (0.015)   0.897 (0.018) 

 Percent FRPL  -0.222 (0.055)  -0.071 (0.041)  -0.135 (0.040)   0.191 (0.036)   0.056 (0.035)   0.074 (0.035)  -0.117 (0.044)  -0.240 (0.049)   0.053 (0.056) 

 Black  -0.459 (0.024)  -0.183 (0.019)  -0.145 (0.018)  -0.027 (0.021)   0.027 (0.016)  -0.030 (0.017)  -0.127 (0.018)  -0.053 (0.019)  -0.052 (0.028) 

 Asian  -0.003 (0.041)  -0.042 (0.032)  -0.203 (0.027)  -0.163 (0.027)  -0.011 (0.024)   0.114 (0.025)   0.060 (0.025)   0.035 (0.030)  -0.016 (0.034) 

 Hispanic  -0.360 (0.025)  -0.083 (0.019)  -0.114 (0.017)   0.003 (0.021)   0.028 (0.016)   0.049 (0.016)  -0.065 (0.017)  -0.033 (0.019)   0.071 (0.029) 

 Other Race  -0.141 (0.026)  -0.037 (0.021)  -0.072 (0.019)  -0.011 (0.022)  -0.009 (0.017)   0.016 (0.018)  -0.013 (0.019)  -0.036 (0.022)   0.001 (0.031) 

 Male   0.087 (0.013)   0.201 (0.010)   0.231 (0.009)   0.151 (0.009)   0.161 (0.008)   0.151 (0.009)   0.126 (0.010)   0.125 (0.010)   0.127 (0.012) 

Quadratic Slope  -0.071 (0.002)  -0.086 (0.001)  -0.059 (0.001)  -0.050 (0.001)   0.008 (0.001)   0.009 (0.001)  -0.005 (0.002)   0.003 (0.002)  -0.014 (0.002) 

 Percent FRPL   0.022 (0.005)  -0.005 (0.004)   0.011 (0.004)  -0.018 (0.004)  -0.019 (0.004)  -0.024 (0.004)   0.005 (0.005)   0.019 (0.005)  -0.003 (0.006) 

 Black   0.026 (0.002)   0.005 (0.002)   0.002 (0.002)  -0.010 (0.002)  -0.020 (0.002)  -0.016 (0.002)  -0.001 (0.002)  -0.004 (0.002)  -0.005 (0.003) 

 Asian   0.004 (0.004)   0.016 (0.003)   0.020 (0.003)   0.024 (0.003)   0.013 (0.003)   0.005 (0.003)   0.010 (0.003)   0.013 (0.003)   0.018 (0.004) 

 Hispanic   0.028 (0.002)   0.005 (0.002)   0.008 (0.002)  -0.002 (0.002)  -0.010 (0.002)  -0.014 (0.002)   0.000 (0.002)  -0.001 (0.002)  -0.011 (0.003) 

 Other Race   0.007 (0.003)   0.000 (0.002)   0.003 (0.002)  -0.005 (0.002)  -0.005 (0.002)  -0.009 (0.002)  -0.004 (0.002)  -0.001 (0.002)  -0.005 (0.003) 

  Male   0.002 (0.001)  -0.005 (0.001)  -0.014 (0.001)  -0.010 (0.001)  -0.012 (0.001)  -0.018 (0.001)  -0.021 (0.001)  -0.020 (0.001)  -0.017 (0.001) 

Note. Gray text represents parameters that are not statistically significant at a .05 level. 
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Table 6(b) 

Results from the Conditional Growth Model Predicting Reading Score Deceleration Based on Student and School Characteristics  

Parameter K 1st Grade 2nd Grade 3rd Grade 4th Grade 5th Grade 6th Grade 7th Grade 8th Grade 

Intercept 138.117 (0.053) 156.992 (0.062) 173.883 (0.070) 189.225 (0.069) 199.934 (0.069) 207.503 (0.069) 212.718 (0.091) 217.461 (0.101) 221.510 (0.107) 

 Percent FRPL  -4.851 (0.164)  -7.172 (0.194)  -9.120 (0.222) -10.131 (0.228) -10.112 (0.231)  -9.826 (0.238)  -8.911 (0.313)  -7.992 (0.348)  -7.314 (0.368) 

 Black  -2.601 (0.065)  -4.467 (0.075)  -4.743 (0.090)  -5.863 (0.091)  -6.440 (0.094)  -6.885 (0.096)  -7.035 (0.125)  -7.135 (0.140)  -7.458 (0.138) 

 Asian  -0.963 (0.129)  -0.660 (0.153)   2.207 (0.144)   1.847 (0.135)   1.637 (0.135)   1.335 (0.133)   1.408 (0.167)   1.608 (0.177)   1.611 (0.183) 

 Hispanic  -3.742 (0.074)  -5.319 (0.081)  -5.718 (0.092)  -6.282 (0.094)  -6.443 (0.099)  -6.492 (0.094)  -6.736 (0.127)  -6.962 (0.137)  -7.236 (0.147) 

 Other Race  -1.410 (0.074)  -2.067 (0.082)  -1.794 (0.091)  -2.070 (0.095)  -2.491 (0.095)  -2.671 (0.095)  -2.660 (0.113)  -2.964 (0.136)  -2.991 (0.144) 

 Male  -1.501 (0.032)  -2.096 (0.035)  -2.795 (0.039)  -3.073 (0.039)  -3.001 (0.039)  -2.997 (0.039)  -3.272 (0.041)  -3.724 (0.043)  -4.026 (0.045) 

Linear Slope   2.835 (0.020)   2.991 (0.015)   2.954 (0.015)   2.322 (0.014)   1.662 (0.013)   1.366 (0.012)   0.995 (0.016)   0.803 (0.018)   0.736 (0.018) 

 Percent FRPL  -0.325 (0.055)  -0.362 (0.041)  -0.387 (0.039)  -0.069 (0.037)  -0.033 (0.036)   0.114 (0.037)  -0.162 (0.051)  -0.099 (0.060)  -0.168 (0.059) 

 Black  -0.336 (0.025)  -0.233 (0.021)  -0.335 (0.020)  -0.123 (0.020)   0.025 (0.019)   0.085 (0.019)   0.084 (0.022)   0.034 (0.031)   0.112 (0.024) 

 Asian  -0.153 (0.045)  -0.014 (0.035)  -0.363 (0.031)  -0.314 (0.028)  -0.218 (0.027)  -0.094 (0.025)   0.031 (0.028)  -0.044 (0.032)   0.023 (0.031) 

 Hispanic  -0.282 (0.027)  -0.240 (0.022)  -0.239 (0.020)  -0.036 (0.020)   0.077 (0.019)   0.115 (0.019)   0.091 (0.022)   0.088 (0.032)   0.089 (0.025) 

 Other Race  -0.133 (0.027)  -0.105 (0.022)  -0.105 (0.022)  -0.080 (0.021)   0.003 (0.021)   0.024 (0.021)   0.035 (0.024)   0.025 (0.032)   0.008 (0.026) 

 Male  -0.006 (0.014)   0.038 (0.012)   0.016 (0.011)   0.145 (0.011)   0.199 (0.011)   0.220 (0.010)   0.207 (0.012)   0.170 (0.013)   0.197 (0.013) 

Quadratic Slope  -0.052 (0.002)  -0.090 (0.001)  -0.126 (0.001)  -0.104 (0.001)  -0.074 (0.001)  -0.062 (0.001)  -0.039 (0.002)  -0.030 (0.002)  -0.032 (0.002) 

 Percent FRPL   0.016 (0.005)   0.021 (0.004)   0.037 (0.004)   0.013 (0.004)   0.011 (0.004)  -0.002 (0.004)   0.025 (0.005)   0.021 (0.006)   0.028 (0.006) 

 Black   0.013 (0.003)   0.011 (0.002)   0.023 (0.002)   0.006 (0.002)  -0.007 (0.002)  -0.010 (0.002)  -0.010 (0.002)  -0.004 (0.003)  -0.013 (0.003) 

 Asian   0.016 (0.004)   0.003 (0.004)   0.025 (0.003)   0.028 (0.003)   0.022 (0.003)   0.014 (0.003)   0.004 (0.003)   0.015 (0.003)   0.005 (0.003) 

 Hispanic   0.012 (0.003)   0.017 (0.002)   0.022 (0.002)   0.006 (0.002)  -0.004 (0.002)  -0.007 (0.002)  -0.005 (0.002)  -0.004 (0.003)  -0.004 (0.003) 

 Other Race   0.005 (0.003)   0.008 (0.002)   0.005 (0.002)   0.003 (0.002)  -0.003 (0.002)  -0.004 (0.002)  -0.005 (0.003)  -0.003 (0.003)  -0.003 (0.003) 

  Male   0.000 (0.001)  -0.004 (0.001)   0.002 (0.001)  -0.009 (0.001)  -0.016 (0.001)  -0.021 (0.001)  -0.024 (0.001)  -0.021 (0.001)  -0.023 (0.001) 

Note. Gray text represents parameters that are not statistically significant at a .05 level. 
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(A) Distribution of Testing Dates 

 

 
 

 

(B) Distribution of Months of Exposure to School 

 
Figure 1. Distribution of test dates and months of exposure to school (e.g., months elapsed 

between the school start date and each student’s testing date) during the 2017-18 school year. In 

this figure, we have pooled all students who tested in math at least once during the school year 

across grade levels. 
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Figure 2. Estimated growth trajectories by grade, subject, and model type, where the solid line represents the linear growth model, the 

dashed line is the quadratic model, and the dotted line is the piecewise model. RIT is the metric of the MAP Growth assessments.
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Figure 3. Expected gains from extending the school year by one month depending on whether 

growth is assumed to be linear or quadratic during the school year. The model-based additional 

gains estimates are the projected difference between students’ average gains at nine or ten 

months of school exposure depending on whether student growth is modeled as a linear or 

quadratic function of time.   Note that we are not comparing schools that actually have nine 

versus ten-month school years; we are comparing model-based estimates of gains associated with 

going from a nine to a ten-month school calendar.  
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Figure 4. Estimated average summer learning loss by grade and subject under linear and 

quadratic test score projection. Results display the summer following each grade (e.g., K 

corresponds to the summer following kindergarten). Ninety-five percent confidence intervals are 

shown as black lines at the top/bottom of each bar. Summer loss estimates are reported in the 

unit of the spring 2018 standard deviation. 
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Supplemental Materials 

Appendix A. Multilevel growth model fit comparison 

 

Table A1 

Sample Sizes and Model Fit Estimates for the Multilevel Growth Models 

Subject Grade 

Sample sizes   Deviance Estimates   

Model Comparison 

Significance 

Level-1 Level-2 Level-3   

Model 1 - 

Linear 

Model 2 -

Quadratic  

Model 3 - 

Piecewise    

Model 1 

vs. 2 

Model 1 

vs. 3 

Math K 1,401,587 550,344 8,098  9929541.64 9912482.82 9908623.96  *** *** 

Math 1 1,747,753 652,742 9,507  12401200.08 12366245.97 12372883.08  *** *** 

Math 2 2,070,194 775,979 11,141  14726559.96 14689820.73 14694990.25  *** *** 

Math 3 2,134,882 810,726 11,414  15064166.53 15050627.11 15043689.70  *** *** 

Math 4 2,092,991 796,297 11,124  14824736.34 14806664.00 14826894.24  ***  
Math 5 2,107,617 811,690 10,883  15196860.76 15182482.66 15206248.12  ***  
Math 6 1,961,641 770,209 7,176  14204916.50 14193919.78 14206780.42  ***  
Math 7 1,834,926 743,387 6,038  13538369.52 13529683.62 13537146.35  *** *** 

Math 8 1,754,261 720,415 5,967   13120900.13 13119370.11 13118169.21   *** *** 

Reading K 1,336,591 521,697 7,835  9539869.54 9529108.18 9533990.18  *** *** 

Reading 1 1,653,637 609,917 9,072  11975847.98 11950700.11 11950775.78  *** *** 

Reading 2 2,020,153 746,052 10,973  15046502.68 15002087.80 15005958.93  *** *** 

Reading 3 2,160,991 808,115 11,456  16182670.03 16144692.70 16147461.41  *** *** 

Reading 4 2,105,126 792,252 11,115  15635832.38 15609990.67 15610007.92  *** *** 

Reading 5 2,112,212 805,117 10,881  15618657.34 15595638.20 15595549.41  *** *** 

Reading 6 1,966,038 768,734 7,173  14617404.99 14603371.68 14603688.49  *** *** 

Reading 7 1,841,210 743,356 5,984  13787809.15 13784343.48 13778632.64  *** *** 

Reading 8 1,785,931 729,023 5,929   13394487.53 13382494.90 13383111.64   *** *** 

Note. Deviance is equal to -2 times the estimated model log-likelihood.  

*** p<0.001, ** p<0.01, * p<0.05  
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Appendix B. Calculation of Summer Learning Projections 

 

For student i in school j in each subject/grade, the projected spring 2018 test score based 

on the linear model is (RIT𝑃𝐿𝑖𝑛
𝑆𝑖𝑗) is calculated as  

RIT𝑃𝐿𝑖𝑛
𝑆𝑖𝑗 = RIT𝑆𝑖𝑗 + (𝛾100 + 𝑢̂10𝑗 + 𝑟̂1𝑖𝑗) ∗ SpringMonthsij, 

where RIT𝑆𝑖𝑗  is the observed spring test score student i in school j,  𝛾100  is the estimated linear 

growth fixed effect from the multilevel growth model, 𝑢̂10𝑗 is a school-level empirical Bayes 

(EB) estimate of the linear growth random effect, and  𝑟̂1𝑖𝑗 is student-level EB estimate of the 

linear growth random effect. SpringMonthsij represents the months of school remaining in the 

2017-18 school year when the student tested and is calculated by comparing the student’s test 

date to the reported last day of school in the student’s district. Under the quadratic model, the 

projected spring score is calculated as  

RIT𝑃𝑄𝑢𝑎
𝑆𝑖𝑗 = RIT𝑆𝑖𝑗 + (𝛾100 + 𝑢̂10𝑗 + 𝑟̂1𝑖𝑗) ∗ SpringMonthsij + (𝛾200 + 𝑢̂20𝑗 +

𝑟̂2𝑖𝑗) ∗ SpringMonthsij
2, 

where 𝛾200  is the estimated quadratic growth fixed effect, 𝑢̂20𝑗  is a school-level quadratic growth 

EB estimate, and  𝑟̂2𝑖𝑗 is student-level quadratic growth EB estimate.  

Given that we did not observe students’ trajectories across the 2018-19 school year, we 

did not have a similar model-based set of parameter estimates to project students’ fall 2019 

score. Given this limitation, we just make the naïve assumption that students’ 2017-18 growth 

rate can be used as an approximation of expected growth during the first months of the 
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subsequent school year. Therefore, the projected fall score (RIT𝑃
𝐹𝑖𝑗) that is used in the summer 

loss calculations for both models was estimated as 

RIT𝑃
𝐹𝑖𝑗 = RIT𝐹𝑖𝑗 + (𝛾100 + 𝑢̂10𝑗 + 𝑟̂1𝑖𝑗) ∗ FallMonthsij, 

where RIT𝐹𝑖𝑗  is the observed fall RIT score and FallMonthsij is the number of months that the 

student has been in school during the 2018-19 school prior to his or her fall test.  

The projected summer loss for student i in school j under the linear growth projection is 

therefore  

Δij
Lin = RIT𝑃

𝐹𝑖𝑗 − RIT𝑃𝐿𝑖𝑛
𝑆𝑖𝑗 , 

whereas the projected summer loss under the quadratic growth projection is 

Δij
Qua

= RIT𝑃
𝐹𝑖𝑗 − RIT𝑃𝑄𝑢𝑎

𝑆𝑖𝑗 . 

Estimates for each projection approach are averaged within each grade/subject and then 

standardized by the spring 2018 standard deviation corresponding to the grade/subject 

combination.  

 


