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1 Introduction
The effectiveness of educational interventions is often evaluated using clustered randomized trials

(CRTs) in which random assignment occurs at the level of the group rather than at the level of the

individual student (Raudenbush 1997; Hedges and Hedberg 2007). Given the natural groupings of

students within classrooms and schools as well as the practical and political challenges associated

with individual-level random assignment in educational settings, CRTs are a common tool for

drawing causal inferences about educational policies, practices, and innovations.

When an intervention is randomly assigned, differences in outcomes between groups which are

and are not treated can be causally attributed to the intervention. However, randomized trials,

even with assignment at the group level, are not always feasible for political, cost, ethical or

other reasons. In such cases, researchers must turn to observational analyses. One alternative

to a CRT is a clustered observational study (COS). In a COS, treatment assignment occurs at

the group level; for example, whole schools are selected for treatment, but treatment assignment

occurs through some uncontrolled process.

Whereas the literature on observational studies for deriving causal inferences when treatment

selection occurs at the individual level is robust and well developed (Rubin 2007, 2008), the

same is not true with regard to COSs. In fact, the literature on COSs remains underdeveloped,

with no consensus on best practices. This is particularly surprising in the sphere of educational

research, where treatment selection often occurs at the cluster level. In this paper, our aim is to

outline comprehensively the key considerations and steps in the design and conduct of a COS. We

highlight important ways in which COSs are different from observational studies where treatment

is assigned at the individual level, and we propose a framework for the design of COSs. In doing

so, we review aspects of study design for observational studies and highlight how the analyst

must alter standard principles to handle clustered treatment assignment.

Our framework is built on the counterfactual model for causal inference. We begin our discussion

2



in the following section by advocating that COSs should be designed following the principle of

target trial emulation, meaning that they are designed according to the cluster randomized trial

that the analyst would have ideally carried out. Although the idea of target trial emulation is

not new, we highlight considerations that are unique to the context of a COS and associated

hierarchical data.

Next, we discuss the importance of understanding the process through which sites were selected

into the treatment condition under study. We discuss why cluster—rather than individual-level—

treatment assignment is often preferable for deriving causal inferences, as it can protect against

selection bias even when selection for treatment is non-random. We then introduce notation,

articulate assumptions that must hold for making causal inferences in the context of a COS,

and argue for the central role of sensitivity analysis to understand whether conclusions might be

sensitive to the presence of an unobserved confounder. Next, we highlight possible approaches to

and general considerations regarding statistical analysis. In this section of the paper, we discuss

a new form of matching designed explicitly for COSs. In sum, the goal of our paper it to make

a methodological contribution with respect to design rather than analysis. That is, we are not

introducing a new statistical model—instead, we are introducing readers to critical aspects of

COSs related to their design.

We illustrate concepts with an evaluation of a summer reading intervention in Wake County,

North Carolina. We introduce this application in more detail below, and use it throughout as an

example of the ways in which the study design process is important. In particular, much of the

design process for a COS requires that the investigator gather information on how the treatment

was assigned and structure the analysis to reflect this assignment process. Although we find no

evidence that this reading intervention led to improved student outcomes, all of the key elements

of study design occur prior to the examination of study impacts. Further, careful study design

should lead the policymaker to place more stock in the results, even if the magnitudes are not

educationally meaningful.
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2 Research Design Principles for Clustered Observational

Studies
Here, we outline key considerations in the design of clustered observational studies. We begin by

discussing the concept of target trial emulation.

2.1 Target Trial Emulation

Target trial emulation calls for using design principles from randomized trials and applying them

to the analysis of observational data (Hernán and Robins 2016). Under the target trial approach,

the investigator explicitly ties the design and analysis of the observational study to the experi-

mental trial it is emulating, and causal estimands of interest are derived from the hypothetical

target trial. Whether the causal effect from this target trial can be estimated consistently using

observational data depends on certain assumptions, known as identification assumptions. In the

case of observational studies, investigators typically assume that any differences between treated

and control groups are observable—that there are no unobserved differences between the two

groups—and that any observable differences can be handled through covariate adjustment. We

return to the concepts of identification assumptions and covariate adjustment in more detail

below.

The purpose of target trial emulation is to improve the quality of observational studies through

the application of trial design principles. For example, in an experimental study, the sample and

study design are clearly delineated to enable randomization. In contrast, observational studies,

particularly those conducted after program implementation, often necessitate some level of in-

vestigation to inform decisions about and articulation of sample construction and study design.

Imagining the hypothetical randomized experiment that would generate observational data under

study (Rubin 2008; Cochran and Rubin 1973) appears simple at first. However, this consideration

can be a difficult exercise in practice since the analyst might conceive of several different hypo-

thetical experiments that generate a specific dataset. Here, we outline two possible target cluster
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randomized trials that are common in the context of educational interventions. Specifically, we

introduce two study designs that correspond to situations where (1) whole groups are assigned to

a given treatment and (2) subsets of larger groups are assigned to a given treatment according

to certain qualifying characteristics.

2.1.1 Design 1: Clustered Treatment Assignment

Design 1 pertains to circumstances where complete clusters (e.g., whole classrooms or schools)

are selected for treatment, and all units within a given cluster either receive or do not receive

treatment. Under Design 1, we seek to mimic a clustered randomized trial in which treatment

assignment occurs at the cluster level, and all units within selected clusters receive (or at least

are intended to receive) treatment. Under the COS analogue for this design, cluster-level co-

variates are critical, given that the assignment mechanism is at the cluster level, and assignment

is presumed to have been made on the basis of cluster-level characteristics alone. Such a de-

sign would be appropriate for assessing the impact of any intervention that is applied to entire

schools or schoolwide reform efforts, such as the Success for All reading program (Borman et al.

2007).

2.1.2 Design 2: Clustered Treatment Assignment for Student Subsets

CRTs often rely on the assumption that the data are either based on all units in the cluster

or a random sub-sample of the cluster, such that the selected units are representative of the

cluster as a whole (Torgerson 2001; Donner and Klar 2004). However, educational interventions

are often allocated in a purposeful, targeted (e.g., non-random) fashion within clusters. Under

Design 2, the target trial is a CRT with non-random, student-level selection into the treatment

within schools. That is, clusters are assigned to treatment and control, but within the selected

clusters only some units are targeted for treatment. This would be the case if the intervention

were designed for students who were struggling academically, for example. As such, the causal

estimand is a group-level contrast for a set of students within the school who are at risk for the

treatment.
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The critical distinction between Designs 1 and 2 is that under Design 2, final treatment assignment

of an individual depends on both school- and student-level characteristics. The selection of units

for treatment within the cluster is analogous to non-random attrition. In a CRT, the investigator

would need to correct for this selection bias. The same is true in a COS. That is, while schools

or classrooms might be selected for treatment, if the treatment is only applied to a subset of

students within those clusters, the analyst may need to model a second selection mechanism.

This implies that in the context of a COS, our procedures for covariate adjustment must account

for data at both the school and student levels. Next, we introduce our motivating example and

consider the target CRT with which it most closely aligns.

2.2 Motivating Application: A Summer School Reading Intervention

In 2012, the North Carolina state legislature required that students who did not meet state

standards at the end of third grade participate in summer reading instruction or risk grade re-

tention.1 In summer 2013, the Wake County Public School System (hereafter, Wake County)

selected myON, a type of computer-aided instruction (CAI) for implementation at selected sum-

mer school sites. The goal of introducing myON was to boost reading comprehension among

summer school attendees, the majority of whom were from low-income backgrounds. myON, a

product of Renaissance Learning, is a web-based product that serves primarily as an electronic

reading device. The software provides students with access to a library of thousands of books

and suggests titles to students based on their preferences and reading ability. Students at sites

selected to implement myON used the program for up to one-half hour during the daily summer

school literacy block and could continue using the program at home if they had a device and

internet connection. At the time of its launch in Wake County, the developers claimed that

students using myON would improve comprehension through access to more than 10,000 digital

books that include “multimedia supports, real-time reporting and assessments and embedded

close reading tools” (Corp 2015). Given the prevalence and cost of such supplementary curric-

ular programs, rigorous, independent assessment of these tools is critical to sound investment
1North Carolina General Assembly, § 115C-83, Part 1A. North Carolina Read to Achieve Program.
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decisions by school districts and other educational agencies.

The study sample includes 3,434 summer school students from 49 different Wake County el-

ementary schools who attended summer school at one of 19 different sites. Due to technical

constraints, some summer school sites used myON, while other sites did not. As such, all stu-

dents in a school were exposed to the myON treatment if they attended summer school at a

selected site. In a COS designed to study the effects of myON, Design 2 would appear to be

the most relevant target trial. This is because myON was assigned to schools but only students

required to attend summer school by virtue of their performance on the state summative reading

exam score were exposed to the treatment. Therefore, we are most interested in contrasting

outcomes for groups of summer school students who were and were not exposed to myON. In

any observational study, a key step in the design process is to understand the process through

which individuals or groups were selected into treatment. We next discuss the general benefit of

cluster-level selection with the goal of deriving causal inferences and more explicitly investigate

the process by which certain summer school sites were selected to receive myON.

2.3 Notation

The principle of target trial emulation applies to study design, broadly, as well as analytic notation,

more specifically. Here, we apply this principle to structure our notation which is applicable to

both CRTs and COSs. A defining feature of a clustered study is that individual units (e.g.,

students) are organized within clusters (e.g., schools) and assigned to a treatment or control

condition at the cluster level rather than the individual unit level. Generally, for applications

in which students are nested within schools, each school j contains nj > 1 students, and we

enumerate these students i = 1, . . . , nj. In the myON application, we take treatment assignment

as occurring at the school level (rather than the summer school site level) for reasons discussed

below. For the jth school that receives the treatment, we write Zj = 1. If the school is assigned to

control, and students are not given myON readers, we write Zj = 0. For each student within each

school, we typically have observed, pretreatment covariates, xji, including variables measured at
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the student level and variables measured at the school level. For example, in the myON data,

xji contains a measure of student gender for each student i. It also includes the percentage of

students in school j who are proficient in reading based on test scores; this proficiency measure

takes the same value for all students in the same school. Each student i in school j is described

by both observed covariates and possibly an unobserved covariate uji. Note that data of this

form is often referred to as multilevel data, since we have data on both units and the clusters

within which the units are nested. In the context of a CRT, we are able to assess balance on

observed pretreatment characteristics, xji, at the time of randomization. Moreover, due to the

properties of randomization, we can assume balance on the unobserved covariate uji due to the

design.

Next, we define causal effects using the potential outcomes framework (Neyman 1923; Rubin

1974). Prior to treatment, each student has two potential responses: (yTji, yCji), where yTji

is observed for student i in school j under Zj = 1, and yCji is observed for this student under

Zj = 0. Note that this notation is the same across the two possible designs that we consider. In

the myON application, yTji is the reading test score that student i in school j would exhibit if

her school were assigned to implement myON, and yCji is the test score she would exhibit if her

school were not assigned to implement myON. Writing the potential outcomes this way allows

for arbitrary patterns of interference among students in the same school but not across schools.

The outcomes that we actually observe are a function of potential outcomes and cluster-level

treatment assignment:

Y obs
ji = ZjyTji + (1− Zj)yCji.

With potential outcomes defined, we can define the causal estimand, which is the target coun-

terfactual quantity of interest in the study. In a COS in an educational setting, one reasonable

estimand is the following student-level contrast: yTji− yCji. In the context of myON, this is the

change in test scores for student i caused by school-level assignment to the reading program. If

we assume the existence of an appropriate superpopulation, it would be natural to focus on the
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average causal effect of the form E[yTji−yCji] or the average causal effect for the treated of the

form E[yTji − yCji|Zj = 1]. With either of these focal estimands, the expectation is taken with

respect to the superpopulation. Of course, given the counterfactual nature of these quantities,

they are estimable with data only under a set of assumptions.

2.4 Assumptions

The first key assumption in a COS is the Stable Unit Treatment Value Assumption (SUTVA)

(Rubin 1986). SUTVA is assumed to hold implicitly in the notation we outlined above. This is

true for both Designs 1 and 2. Here, we elaborate on what SUTVA implies in a COS. SUTVA

includes two components: (1) the treatment levels of Zj (1 and 0) adequately represent all

possible versions of the treatment, and (2) one student’s outcomes are not affected by other

students’ exposures. Under the first component of SUTVA and in the context of the myON

intervention, we must assume that while there may be some variation in the process that leads

to students receiving exposure to the myON program, the variation in this process corresponds

to the same potential outcomes.

The second component of SUTVA assumes that the treatment for one student doesn’t spillover

to any control student. A benefit of clustered treatment assignment (as opposed to assignment

at the individual level) is that it increases the plausibility of the second component of SUTVA.

In the context of a COS, just like in a CRT, spillover that would violate SUTVA would need

to occur across treated and control schools. For example, SUTVA would be violated if a stu-

dent in a treatment school gave her myON account information to a control school student who

subsequently used the tool. Although possible, this seems unlikely on a large scale. In general,

judging the plausibility of the no-spillover assumption requires that the investigator gather quali-

tative information about the intervention’s implementation. Throughout, we assume that SUTVA

holds.

One might wonder whether SUTVA violations would be a concern under Design 2. That is, since

only a fraction of the students within a school are treated, there might be spillovers from treated
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to untreated students in the treated school. Although such spillovers are possible, and even likely

in some cases, a SUTVA violation is still not a concern. Why? The causal effect of interest

is between treated and control schools. For that causal effect, the spillover that is relevant is

between treated and controls schools even if only a subset of students are treated within a school.

When Design 2 is the target trial, one might also be interested in how the treatment spills over

within a school, but that is a different causal question. The analysis of treatment effects under

interference is the focus of much recent methodological work. See Aronow et al. (2017) and

Basse and Feller (2018) for examples. In our context, we may be interested in whether students

not assigned to the myON intervention improve their reading skills. Here, that is unlikely, since

untreated students in treated schools are not attending summer school. However, even if such

spillover did occur, it is irrelevant to whether SUTVA is reasonable to assume.

The next key assumption focuses on the process of treatment assignment. In a CRT, because of

random assignment, the treatment assignment probabilities do not depend on potential outcomes,

baseline covariates, or unobservables. We can write this assumption formally as:

πj = Pr(Zj = 1|yTji,yCji,xji,uji) = Pr(Zj = 1).

Here, yTji, yCji, xji, and uji represent vector versions of these terms defined above. In a

CRT, we can assert that this assumption holds by design due to the properties of randomization.

Critically, randomization ensures that, in expectation, treatment assignment does not depend

on unobservable quantities such as uji. Under this assumption, the analyst can estimate the

average causal effect of offering the myON tool (the intent-to-treat effect) using a straightforward

difference-in-means estimator.

In a COS, we are unable to invoke this assumption. Instead, we must apply a set of assumptions

that we describe as “selection on observables.” There are two parts to this assumption. First,

under the selection on observables assumption, the analyst asserts that there is some set of

covariates such that treatment assignment is random conditional on these covariates (Barnow
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et al. 1980). Formally:

πj = Pr(Zj = 1|yTji,yCji,xji,uji) = Pr(Zj = 1|xji).

Said another way, after conditioning on observed characteristics, xji, a given school’s probability

of assignment to the treatment is related neither to the potential outcomes of its students

(yTji,yCji) nor to unobservables (uji). That is, we assume there are no unobservable differences

between the treated and control groups. Different fields refer to this assumption with different

nomenclature, including “conditional ignorability” and “no omitted variables.” This assumption

requires investigators to ask themselves: How could it be that two schools that are identical on

all meaningful background characteristics nonetheless receive different treatments? Critically, the

selection on observables assumption is nonrefutable in that it cannot be verified with observed data

(Manski 2007). Therefore, we advocate that sensitivity analysis should be a component of any

COS. A sensitivity analysis allows the analyst to consider the sensitivity of results to the possibility

of an unobserved confounder. We discuss sensitivity analysis in Section 3.5, below. Although this

assumption often may appear implausible, there are many examples where treatment assignment

has been shown to only depend on observed data (Dehejia and Wahba 1999; Wong et al. 2017;

Keele et al. 2019; Fralick et al. 2018; Hernán and Robins 2016). Further, as Stuart (2010) points

out, conditioning on observables also helps to account for unobserved variables to the extent that

observed and unobserved measures are correlated.

The second part of the selection on observables assumption is often referred to as the assumption

of common support. Formally, we assume that all clusters (e.g., schools) have some probability

of being either treated or untreated such that 0 < πj < 1. That is, there are no clusters for

which assignment to treatment is either guaranteed or prohibited, such that all clusters have

some positive probability of receiving or not receiving treatment. In practice, large pre-treatment

covariate imbalances between treated and untreated clusters and/or units is a telltale signal of

problems with common support. Such imbalances often arise due to treated units that are very
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dissimilar from any control units. When this occurs, it may be necessary for the investigator to

trim (e.g., remove some observations from the analytic sample) the data, either at the student

or school level, to enforce common support and improve balance.

Trimming treated units is not without consequence, however, as it changes the causal estimand.

Once units are trimmed, the causal estimand describes the causal effect for the population of units

for which the effect of treatment is marginal: units that may or may not receive the treatment.

Changing the estimand in this way may be unproblematic if the data do not represent a well-

defined population (Rosenbaum 2012). Under these assumptions, we use one or more statistical

adjustment methods, such as regression, matching, or weighting, to estimate treatment effects.

We discuss such adjustment methods in Section 3.1, below.

2.5 Explicating the Assignment Process

The role of the treatment assignment mechanism is a point of emphasis in the modern literature

on observational studies (Rubin 2008). We agree that the assignment mechanism is critical to

the design of COSs. That is, since the key assumption in an observational study is about whether

treatment assignment is based on observed data, understanding how treatment assignment oper-

ates is key. Next, we review important aspects of clustered treatment assignment, including the

fact that clustering of treatment assignment is generally advantageous compared to selection at

the individual level in observational studies.

Critically, investigators should clearly understand and explicate the treatment assignment pro-

cess. In the process of treatment assignment explication, we recommend the following steps.

First, investigators should understand whether their application can be described as a “natu-

ral experiment.” Non-experimental, but haphazard or arbitrary treatment assignments are often

characterized as natural experiments—the hope being that natural circumstances give rise to

a setting resembling as-if randomized treatment assignment (Murnane and Willett 2010). Al-

though haphazard treatment assignment often requires considerable judgment and contextual

knowledge to justify, the goal is to at least partially reduce the bias associated with self-selection
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of treatment. For many natural experiments, analysts often still rely on covariate adjustment.

When such covariate controls are introduced, the analyst is still relying, at least in part, on the

selection-on-observables assumption needed in any observational study. In this way, observational

studies and natural experiments are related. In fact, all of the principles we outline for COSs

apply to natural experiments.

If a study cannot be described as a natural experiment, the investigator should identify both

the decision-makers responsible for treatment allocation and any factors used in determining

treatment assignment (Rubin 2008). In particular, analysts should try to identify whether the

assignment mechanism is one where a set of decision-makers controlled the treatment allocation

for others within some defined population. In education applications with grouped treatments,

this is common and preferable. Why is this preferable to self-selected treatments? The advantage

of assignment by an outside decision-maker is that the treatment selection process is more likely

to be made based on observed information. While self-selected treatment assignment may reflect

observed factors, it is also more likely to be driven, at least in part, by factors unobserved by

the analyst, such as a child’s motivation or a family’s expectation regarding the benefits of the

treatment.

For COSs in educational settings, it is more likely that treatment assignment will be controlled

by outside decision-makers who are not directly exposed to the treatment. For example, district

officials and principals will often be the people deciding to expose teachers or students to treat-

ments. This selection structure offers a key advantage. In any observational study, investigators

should carefully describe how treatments were assigned and outline the factors used to determine

treatment allocation. Qualitative information typically is critical in this process. In a COS, it

should generally be possible to identify whether district officials or principals participated in the

assignment of treatment and to discover what factors they used in that decision. For example,

Wake County centrally allocated myON to selected summer school sites based on a mix of fac-

tors including internet bandwidth, computer access, and regional distribution.2 Thus, all summer
2District personnel responsible for implementing the Title I program, which included myON, provided the
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school students who attended an elementary school close to a myON summer school site used

the myON program during summer school. Principals and teachers had no input into program

allocation. As such, it is more likely that the treatment assignment process was a function of the

school-level data available to district administrators, rather than, for example, principals’ assess-

ments of teachers’ appetite for or interest in using the tool. Thus, the selection-on-observable

assumption may be reasonable in this context.

Next, analysts need to understand the assignment process to select between Designs 1 and 2. For

example, in our application, beyond the selection of schools for myON, a secondary, student-level

selection process occurred, whereby students were identified for summer school based on their

standardized test performance, as mandated by state policy. Thus, we need to also understand

this second assignment mechanism. Because student-level selection was governed by district rules,

student populations should not differ systematically across treatment and comparison schools.

Therefore, while there may be school-level differences related to selection for myON, it would be

reasonable to expect that the set of summer-school eligible students looks similar across schools

or at least that the variation in student-level characteristics is not systematically related to school-

level selection into myON. Taken together, we should expect imbalances in school-level but not

necessarily student-level covariates when we compare baseline characteristics between treatment

and comparison schools. As we illustrate in the case below, our data follow this pattern.

Next, recent work in statistics has demonstrated that treatment assignment at the group level

is advantageous in observational studies (Hansen et al. 2014). In a COS, group-level treatment

assignment can reduce the effects of selection bias compared to individual-level treatment selec-

tion. For technical details, we refer readers to Hansen et al. (2014), but, here, we convey the

intuition using the myON application. The myON resource is a commercial product, and one

might imagine a salesperson motivated to bias evidence in favor of the product. The most effec-

tive way to do so would be to select individual students into the treatment group—specifically, to

research team with documentation related to myON’s site-selection process and launch during the two-year
period following implementation.
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form a treatment group of high-performing students who will exhibit strong reading performance

regardless of whether they used myON or not. However, if the salesperson is forced to select

entire schools for the intervention, the mix of students within schools will make it more difficult

to guarantee more favorable outcomes under myON. By selecting classrooms or entire schools,

the salesperson is less able to target high performers who would bias results in favor of myON.

Therefore, selecting groups for treatment is one way to limit bias from purposeful treatment

selection. Of course, the limitation is that the analyst will never fully know how much bias is

eliminated. Next, we turn to a discussion of statistical analysis.

3 Statistical Analysis
Whatever the advantages of clustered observational studies (compared to observational studies

with individual-level selection), they remain observational studies. As such, investigators generally

will find that treated and control groups differ on baseline covariates and therefore will need to

increase comparability using a method of statistical adjustment to remove overt bias. Here, we

highlight conventional and more modern approaches to statistical adjustment in the context of a

COS.

3.1 Statistical Adjustment Methods

3.1.1 Regression

In education, random-effects regression models are frequently used to analyze data from cluster

randomized trials. These models handle the multilevel structure of the data by introducing error

terms at both the unit and cluster levels (Murnane and Willett 2010). In the event that we were

assessing the myON tool in the context of a clustered randomized trial, the basic structure of

the random-effects regression model would be as follows:

Yji = γ0 + γ1Zj + υj + εji,
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where the model includes separate error terms at the school (υj) and student (εji) levels. The

simplicity of this model is due to the fact that randomization ensures that school-level treatment

assignment is uncorrelated with the school- and student-level error terms. Of course, we can make

this model more complex by including additional baseline (e.g., pre-randomization) covariates at

the unit level, the cluster level, or both. In the context of a clustered randomized trial, the primary

purpose of adding such covariates is to improve the precision of our treatment effect estimate by

explaining residual variation attributable to these baseline characteristics.

The same type of regression model is also used for statistical adjustment in cluster observational

studies. In the context of a COS, where the analyst relies on the selection on observables

assumption, covariates are added to the model to remove overt biases—the observable differences

between the treated and untreated clusters. For a COS, the analyst may tend to prefer more

complex rather than parsimonious model specifications in order to reduce the potential for bias

from omitted variables.

A general limitation of relying on regression-based strategies alone for analyzing data from a

COS is that they can elide over the fact that there is little actual overlap in the distribution of

covariates in the treatment and comparison schools. Areas outside of common support can be

particularly problematic, since they require extrapolation, which can generate considerable model

dependence. That is, the study conclusions will depend on the functional form of the regression

model. Indeed, the farther the extrapolation is from the data, the larger the model dependence

can become. In short, if we must depend on extrapolation, our inferences depend on our model

and not the data, since the relevant empirical observations from the data do not exist.

This is not to say that regression-based analysis is not a useful tool for conducting COSs. Rather

than turning directly to covariate-controlled regressions for assessing treatment effects, we ad-

vocate first taking steps to ensure balance and common support between treatment and control

groups. Then, having obtained an analytic sample where balance and common support hold,

regression-based tools can be used for treatment effect estimation. We discuss this possibility in

16



more detail below.

3.1.2 Propensity Score Adjustment

One alternative to regression modeling is the use of propensity score methods. Here, the analyst

first models selection into treatment (the propensity score) as a function of observable data. Then,

the estimated propensity score is used in the analysis through matching or weighting (Rosenbaum

and Rubin 1983). The fundamental idea is that after adjusting for the propensity score, actual

selection into treatment is as good as random. Several papers (e.g., Lalonde (1986); Diaz and

Handa (2006)) have explored the conditions under which propensity score methods are likely to

reproduce experimentally-derived causal effects in the case of unit-level selection.

In a COS, the statistical adjustment strategy needs to account for the multilevel structure of the

data. Under propensity score approaches, this is done by estimating the propensity score using,

for example, a random effects logistic regression model (Hong and Raudenbush 2006; Arpino

and Mealli 2011; Li et al. 2013). However, these models suffer from drawbacks, such as lack

of model convergence, which occurs when the estimating model fails to reach the best-fitting

parameter estimates. For example, Zubizarreta and Keele (2016) find that multilevel models

often fail to converge when used to estimate propensity scores. Therefore, although propensity

score methods are a reasonable alternative to regression methods when the focal treatment is

allocated at the individual level, in practice, the same is not always true in the context of a COS.

This is because issues of model convergence often hamper fitting propensity score models with

hierarchical education data. When this happens, little can be done.

3.1.3 Matching

Matching serves as another method of adjustment designed to mimic a randomized trial by con-

structing a set of treated and control units that are highly comparable on observed, pretreatment

characteristics. While some matching methods rely on estimated propensity scores, many match-

ing algorithms match on covariates directly and, in this way, eliminate the need for propensity

scores. Matching methods primarily have been developed to handle individual level treatment as-
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signment, and a large body of research has articulated best practice in this context (Rosenbaum

2020). Matching studies also have been used to evaluate a host of socially-relevant interventions

(Stuart 2010), and methodological research has investigated the extent to which matching stud-

ies yield impact estimates similar to those achieved through experimental design (Dehejia and

Wahba 1999; Cook et al. 2008).

Just as we can use individual-level matching to mimic an individual-level randomized trial, we

can conceive of matching to mimic a CRT by creating comparable treatment and comparison

clusters. Despite COSs being a natural analogue to the analytic workhorse of CRTs in the

context of educational research, strategies for matching with grouped treatments are much less

well developed. Extant work has focused on multilevel data structures, but mostly focused

on applications where clusters are relevant in some way but not for grouped treatments. For

example, Steiner et al. (2013) consider matching with multilevel data structures but assume that

treatment assignment occurs at the student rather than the school level. Stuart and Rubin (2008)

also focus on matching with multilevel data. They advocate building a comparison group from

multiple sources when a single comparison site is not a sufficient match for a given treated group

(Stuart and Rubin 2008). This approach considers matching only on student-level characteristics

and disregards cluster-level measures—which renders it inapplicable to a COS where school-level

covariates should be critical.

More recently, authors (2016a, 2016b) have developed matching methods designed specifically

for a COS. The resulting matching method mimics a CRT by creating comparable treated and

control clusters and units within clusters to remove overt bias at both the individual and group

levels. Furthermore, these methods rely on matching procedures that produce an “optimal”

match solution, meaning that the matching algorithm selects a mapping to minimize the sum of

the distances between treatment and control observations (Rosenbaum 1989).

Although other methods of statistical adjustment are available, in the context of COSs specifically,

we endorse matching methods for several reasons. First, matching tends to be more robust to a
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variety of data configurations—especially when treated and control covariate distributions do not

have good overlap (Imbens 2015). Second, matching methods allow for covariate prioritization

through which the analyst can choose to increase treated-control comparability on covariates

deemed to be of critical importance from a scientific standpoint. For example, an investigator

can use matching to balance baseline test scores more closely relative to other covariates such as

school size. Third, the investigator can trim the sample to yield the set of units with the highest

levels of comparability. While our primary goal in this paper is to consider the design of COSs, we

refer the interested reader to authors (2019) for a nontechnical overview and evaluation of these

matching methods that are specifically designed for a COS. See authors (2015, 2016a, 2016b)

for more technical treatments of the topic. In the case study below, we illustrate how we apply

multilevel matching to the myON application.

While random effects regression models alone are not our preferred method for the analysis of

COSs, they can be fruitfully combined with matching. Once matching is complete, the analyst can

regress the outcome on the treatment indicator using a random-intercepts model with the matched

data. Using a regression model is also useful in that post-matching covariate adjustment with

regression can account for imbalances that may remain after matching. That is, any covariates

that are not fully balanced can also be included in the post-match regression model to further

reduce bias (Imbens 2015). As such, regression models are a useful tool for analysis once matching

is complete.

3.2 Overlap

As we noted above, one of the key assumptions for a COS is common support or overlap of

baseline covariate distributions. When there is little overlap between treated and control covariate

distributions, trimming units via matching is one method to enforce overlap. However, analysts

should take care when trimming in a COS. After trimming, the causal estimand is considered to

be more local, since it applies to only a subset of the treated units. In a COS, trimming even a

small number of treated schools may mean that a large percentage of treated units are lost. In
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other words, trimming even a small number of clusters may make the treatment effect estimate

very local. When this happens, there is not a good solution, since we do not want to estimate

treatment effects using treated and control observations that are not comparable.

3.3 Correcting Standard Errors for Clustered Structure of Data

Another important principle from CRTs that also applies to COSs is that the analyst needs to

correct estimates of statistical uncertainty to account for the clustering of students. Failure to

do so will result in standard error estimates that are, at times, grossly underestimated given that

the correlation among students in the same cluster has not been properly accounted for in the

estimates of statistical uncertainty (Hayes and Moulton 2009; Angrist and Pischke 2009). In

general, the investigator should account for clustering at the level at which the treatment has

been assigned (Abadie et al. 2017). Thus when treatments are assigned to schools, schools

become the relevant cluster in terms of standard error estimates. Typically, adjustments for the

standard errors are done in one of two ways both based on regression models. One correction is

to use robust variance estimators that take into account intra-cluster correlations. This method

uses standard errors based on a generalization of clustered standard errors developed by Liang

and Zeger (1986). Alternatively, random-effects regression models also correct for within-cluster

correlations.

With matching methods, statistical adjustment is separate from the estimation of treatment

effects, since outcome information is not used in the match. Therefore, adjusting for clustering

occurs after the match is completed. When matching methods are used, there are two ways to

account for clustering when estimating the treatment effects. First, if one uses regression models

with the matched data to estimate treatment effects, then regression-based corrections can be

used to account for clustering. Spiess and Abadie (2019) find that if matching is done without

replacement, using post-matching regression models that account for pair clustering produces

valid standard errors. As such, after creating matched pairs, the analyst should also include

in the outcome model a random effect for paired school clusters. This approach accounts for
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both clustering within schools and within matched school pairs. The only difficulty is that this

method assumes that there is a sufficiently large number of clusters for valid inferences. The

second approach for adjusting for clustering is based on randomization inference, which we review

next.

3.4 Randomization Inference

To account for clustering while avoiding the large sample assumptions on which regression relies,

one can alternatively use randomization inference methods. Hansen et al. (2014) outline ran-

domization inference methods for COSs that are valid when units within clusters have correlated

outcomes. Randomization inference methods are often referred to as permutation methods, since

inferences are based on permuting the data consistent with the implied randomization. For ex-

ample, within matched pairs, the analyst randomly reassigns treatment status and then estimates

a treatment effect. Doing this repeatedly allows the generation of a null distribution of treatment

effects against which to evaluate the treatment effect estimated based on actual assignment. The

resulting inferences are valid for any sample size. Randomization inference also allows the inves-

tigator to use rank-based statistics which are robust in the presence of heavy-tailed distributions.

However, randomization inference methods test the sharp null hypothesis which asserts that the

treatment effect is zero for all schools and students. This is rather different from the more usual

null hypothesis which asserts that the average effect is zero. In general, when sample sizes are

small (e.g., 20 to 30 total clusters), it is useful to use randomization inference methods so one

can understand whether inferences are dependent on the assumption of large sample sizes. For

example, the analyst could conduct hypothesis testing through both regression and randomiza-

tion inference approaches and examine whether conclusions are robust to method. When p-values

derived from regression-based methods are far from standard thresholds, using both methods is

likely unnecessary, even with a modest number of clusters. Nevertheless, as we discuss next,

randomization inference is extremely useful for conducting sensitivity analyses.
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3.5 Sensitivity Analysis

We advocate that all observational studies include a sensitivity analysis. Many sensitivity analyses

are based on a partial identification strategy, where bounds are placed on quantities of interest

while a key assumption is relaxed. A sensitivity analysis is designed to quantify the degree to

which a key identifying assumption must be violated in order for a researcher’s original conclusion

to be reversed. If a causal inference is sensitive, a slight violation of the assumption may lead to

substantively different conclusions. The first sensitivity analysis explored whether it was possible

for an unobserved confounder to explain the variation in lung cancer rates that remained after

accounting for the association with smoking (Cornfield et al. 1959).

Although a sensitivity analysis may focus on any assumption, most sensitivity analyses focus on

the selection on observables assumption (Imbens 2003; Rosenbaum 1987). In the context of a

COS, the key assumption is that there are no unobserved confounders. Here, we briefly outline

a form of sensitivity analysis based on randomization inference that probes the assumption of no

unobserved confounders and is designed to be compatible with a matched study. Other related

forms of sensitivity analysis tend to use regression models (Altonji et al. 2005).

Rosenbaum (2002, ch. 4) developed a method of bounds to understand whether the selection

on observables identification assumption is sensitive to the presence of a hidden confounder.

To begin, recall that under selection on observables, we assume that any two clusters that

we have matched have the same underlying probability of exposure to treatment. This means

that when we use randomization inference methods, the flip of the coin is fair within this pair.

Of course, selection on observables is a strong assumption, and it remains possible that our

matched treatment and control clusters still differ on an unobserved confounder, uji, that drives

selection into treatment. Sensitivity analyses allow us to quantify how strong an influence such

an unobserved confounder would need to have on treatment selection to alter our substantive

conclusions.

For example, the analyst might hypothesize that, despite matching, there remains an unobserved
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covariate such that selection probabilities are unequal. If that hypothesized inequality (which

Rosenbaum denotes with the parameter Γ) were by a factor of two, then in our randomization

inference, we would permute treatment assignment with probabilities 1
3 and 2

3 within each matched

pair. By first considering treated clusters to be twice as likely to receive treatment and then half

as likely to receive treatment, one can calculate bounds on quantities such as the treatment effect

point estimate or associated p-value based on a conjectured level of confounding.

Consider bounds on the treatment effect estimate, for example. If zero were included in those

bounds, it means that a failure of the key assumption for that level of confounding would reverse

the study conclusions. More generally, one can vary the Γ parameter to ask what level of

confounding would reverse study conclusions. We can observe at what value of Γ the upper

bound on something like a p-value exceeds the conventional 0.05 threshold for each test. One

way to summarize the sensitivity analysis is to determine the Γ changepoint—the value of Γ at

which the estimate is no longer statistically significant at the 0.05 level. If this Γ value is relatively

large, we can be confident that our inferences are insensitive to hidden bias from non-random

treatment assignment related to unobserved characteristics. However, if the Γ value is small, that

suggests that our inferences are vulnerable to hidden confounders.

Although our discussion here focused on the level of Γ that would negate a significant treatment

effect, note that this flexible procedure also can be used to consider the level of confounding that

would need to be present to mask a treatment effect from being detected. In fact, this is how

we apply this tool for sensitivity analysis in the case study that follows.

4 Case Study
Next, we conduct an analysis of the myON data to demonstrate the concepts discussed above.

Our data contain 3,434 summer school students from 49 schools. When introducing this appli-

cation, we noted that these 49 elementary schools were grouped into 19 different summer school

sites, eight of which were selected to receive myON. Therefore, one analytic decision relates to

whether we define clusters as elementary schools or summer school sites.
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For several reasons, we opt to treat intact elementary schools as our clusters. First, we can

reasonably infer that while summer school sites were selected for myON use, this process explicitly

assigns schools to treatment or control. Second, defining clusters at the elementary school level

leads to a larger number of clusters for our analysis, and this helps to improve statistical power.

Finally, as we advocated above, we take a matching approach to statistical adjustment. For

a matching estimator, we benefit from having a greater number of treatment and comparison

clusters, as this helps to increase the likelihood of obtaining good cluster-level matches. Thus,

our treatment-comparison contrast is between assigning groups of students to summer school

sites that use the myON software versus those that do not, under the assumption that schools

were otherwise comparable. In this application, students from 20 schools (containing a total of

1,371 summer school students) used the myON reading program.

Our next step is to consider which target trial is appropriate. Based on qualitative information

about the intervention, we know that while entire schools were selected for treatment, within each

treated school, the intervention applied only to the subset of students required to attend summer

school. While control schools were not selected for using the program, the process for identifying

students for summer school was identical across all schools in the district. In theory, then, summer

school students within treated and control schools should be similar. Nevertheless, the student-

level selection process points to Design 2 as the more relevant target trial. Therefore, we will need

to assess empirically the extent to which treated and control students are observationally similar.

For example, some schools may serve a set of students who are relatively high performing, among

those required to participate in summer school, whereas another school may serve summer school

participants who are further down in the distribution of achievement.

Given this, we investigate balance at both the school and student levels. Table 1 contains means

for the treated and control groups as well as the standardized difference before applying any

statistical adjustments.3 In Table 1 we first note that the imbalances for all the student-level
3The standardized difference for a given variable here is computed by taking the mean difference between

treatment and comparison schools or students and dividing by the pooled standard deviation (Silber et al. 2001;
Rosenbaum and Rubin 1985; Cochran and Rubin 1973). A standardized difference of less than one-tenth of a
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covariates, including pre-treatment test scores, are small. We view this as indicative of the fact

that the summer school selection process is uniform across treated and control schools. This is

not surprising given that the summer school criteria are constant across the district.

Table 1 also contains balance statistics for school-level covariates. All of these measures were

calculated by the school district and thus are based on all enrollees from the previous school

year—not just the students who attended summer school. For school-level covariates, there are

clear differences between treated and control schools even though students selected into summer

school are more similar. We see that treated schools, on average, have higher test scores, lower

staff turnover, and a lower percentage of teachers who are nonwhite. Treated schools also have

a higher share of teachers who are novices (i.e., three or fewer years of experience).

We should note that when comparing the student- and school-level covariates in Table 1, mean

differences of a similar magnitude translate to very different standardized mean differences at

the student level and the school level. This is, in part, a function of the fact that the standard

deviations used to scale mean differences are larger at the student level than at the school

level. This is another way of saying that there is more variation within than across schools.

In Table 1, given that, for example, there is little school-level variation in the share of English

language learners students served by each school, the mean difference of just 2 percentage points

translates to a standardized mean difference of -0.29. This is also a function of the fact that

selection for the intervention is truly occurring at the school level, whereas the student-level

selection is similarly defined across all school sites.

Next, we use matching to address these baseline imbalances through statistical adjustment.

The matching process is typically iterative; the analyst performs a match, assesses the resulting

balance in baseline measures, and then fine-tunes the matching procedure to further improve

balance until it is deemed acceptable. Just as outcome measures are not available at the time

standard deviation is often considered an acceptable discrepancy, since we might expect discrepancies of this
size from a randomized experiment (Silber et al. 2001; Rosenbaum and Rubin 1985; Cochran and Rubin 1973;
Rosenbaum 2010).
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Table 1: Balance on student and school level covariates before matching.

Student Covariates Treated Mean Before Control Mean Before Std. Difference
Reading pretest score 437.00 437.90 -0.02
Math pretest score 60.25 60.56 -0.02
Male (0/1) 0.36 0.40 -0.09
Special education (0/1) 0.47 0.43 0.09
Hispanic (0/1) 0.53 0.52 0.02
African-American (0/1) 0.22 0.22 0.00
School Covariates
Composite proficiency 60.74 58.56 0.21
Proficient in reading 58.48 57.27 0.11
Proficient in math 60.68 58.41 0.20
Free/reduced lunch eligible 0.50 0.51 -0.10
English language learners 0.13 0.15 -0.29
Novice teachers 0.19 0.17 0.28
Staff turnover 0.11 0.12 -0.28
Nonwhite teachers 0.14 0.18 -0.26
Title 1 school 0.90 0.93 -0.11
Title 1 focus school 0.25 0.24 0.02
Schools 20 29
Summer school students 1,371 2,063

Note: Standardized difference for a given variable is computed as the mean difference be-
tween treatment and comparison schools or students and dividing by the pooled standard
deviation.

of randomization in an experimental study, at no time should the analyst examine outcomes

when implementing matching procedures. The CRT analogue to this process is conducting a

randomization, assessing balance on baseline measures, and re-randomizing if baseline equivalence

on observable characteristics is not satisfied (Morgan et al. 2012).

Instead of presenting results only from the final match that we judged to have the best balance,

we present a series of matches to illustrate the iterative nature of the matching process. In doing

so, we demonstrate additional tools that we use to improve balance. These tools are balance

prioritization, calipers, and subsetting. For a more detailed descriptions of these tools, we refer

the interested reader to authors (2019) , which as previously noted serves as a more technical

companion to this paper. To perform these matches, we use the R package matchMulti which
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members of our team have built specifically for matching with COS designs (authors).

The first match we present is based on the match algorithm defaults. At the defaults, no covariate

is given priority in terms of balance, and no treated schools are dropped from the match. The

resulting sample size includes 40 schools, with 20 treatment schools each pair-matched to a

control school without replacement. The second column of Table 2 contains the results from

this match. Here, some but not all of the standardized differences improve. In Match 2, we

add covariate prioritization. With covariate prioritization, the investigator is able to select sets of

covariates for the match to prioritize in terms of balance. Such prioritization is useful, because

science and contextual understanding may motivate the investigator to prefer closer balance on

some covariates over others. We add covariate prioritization by defining two covariate sets. The

first set includes the three school-level test score measures. The second covariate set includes the

proportion of English language learners and the proportion of nonwhite teachers. Under balance

prioritization, the matching algorithm first seeks to balance the covariates in set 1, and then seeks

to balance the covariates in set 2. The remaining covariates are then given the lowest priority for

balance. In Match 2, balance on the test score measures is much improved, as we would expect.

However, the improvements in the other two covariates we set for prioritization are minimal. In

Match 2, we again have a resulting sample of 20 treatment and 20 control schools.

Next, we applied a school-level caliper to the match. The matchMulti package includes a

function that calculates a school-level propensity score, which is the estimated probability of

being selected for treatment based on the vector of baseline measures. Then we impose a caliper

on this estimated propensity score as another tool to improve balance. We set the caliper to 0.20,

which forbids any school-level matches that differ by more than 0.20 of a standard deviation on

the estimated propensity score. We also add a third covariate balance prioritization set which

includes the proportion of novice teachers and the staff turnover rate. Match 3 in Table 2 contains

the results from this match. Match 3 is generally better, although balance is worse with regard to

the proportion of novice teachers. Critically, this match discarded some treated schools because
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Table 2: Balance on school level covariates for four different sets of match parameters.

Match 1 Match 2 Match 3 Match 4
Default Covariate School Optimal

Unmatched Settings Prioritization Caliper Subsetting
Composite proficiency 0.21 0.27 0.12 -0.01 -0.06
Proficient in reading 0.11 0.18 0.04 0.08 -0.01
Proficient in math 0.20 0.28 0.13 -0.01 -0.06
Free/reduced lunch eligible -0.10 -0.05 -0.03 -0.03 0.14
English language learners -0.29 -0.14 -0.14 -0.02 0.13
Novice teachers 0.28 0.12 0.21 0.30 0.15
Staff turnover -0.28 -0.16 -0.25 0.11 0.03
Nonwhite teachers -0.26 -0.38 -0.30 -0.02 0.05
Title 1 school -0.11 -0.18 0.00 0.00 0.00
Title 1 focus school 0.02 0.00 0.00 0.00 0.14
Schools 49 40 40 30 32
Summer school students 3,434 2,888 2,751 1,210 1,378

Note: Cell entries are standardized differences.

for these schools, the caliper constraint could not be satisfied. Once the use of a caliper discards

schools, it is better to use optimal subsetting of the data. This is because it is possible, with

optimal subsetting, to achieve a similarly good balance without losing as many treatment sites

as might be lost with a caliper strategy for improving balance.

In the context of multilevel data, optimal subsetting can be used to trim clusters, units, or both.

Given sample sizes, however, trimming is typically necessary only at the school level. In applying

optimal subsetting, the analyst specifies a minimum number of treated clusters (or units) that

must be included. By adjusting this number downward, the analyst can drop treated schools

one-by-one until balance improves. For example, if there are 20 treated schools and the optimal

subset number is set to 19, the algorithm will discard the one treated school with the poorest

match among all of the treated schools. In general, we recommend dropping schools one-by-one

until balance is deemed acceptable.

We improve balance on the proportion of novice teachers by dropping four treated schools via

optimal subsetting and rematching. Specifically, this match (Match 4) excludes the four treated
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Figure 1: Boxplots of the distribution of absolute standardized differences for school level covari-
ates.

schools with the largest covariate imbalances. This match changes the casual estimand in that

subsequent treatment effect estimates will apply to a subset of treated schools—not the entire

treated population. We might ask whether the estimand is too local, since we lost 20% of the

treated school population. Is this still a population of interest? Unfortunately, that isn’t a question

that can be answered using statistics. In practice, we advise examining descriptive statistics for

the treated population that remains in order to understand whether and how it differs from the

full treated population.

Next, we plot the distribution of covariate standardized differences for each match in Figure 1.

The boxplots reveal a few clear patterns. First, matching using the default settings does improve

balance overall (Match 1), but a few covariates remain highly imbalanced. It is also clear that

Match 3 is well-balanced with the exception of one covariate, as we saw in Table 2. This is

relevant information. It tells us that the trimming removed schools with a larger proportion

of novice teachers—and that the schools in Match 4 differ from the overall treated population

mostly with respect to this covariate.

Finally, we briefly return to the question of balance for the student-level covariates after matching
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in Table 3. As noted above, even in the unmatched data, the standardized differences between

treatment and control students are quite modest, as none exceeds 0.10. In assessing the balance

in student-level covariates for the first and final matches, we find that it remains roughly the

same across the matches. Taken together, there is little evidence that treatment selection was a

function of observed student-level covariates for students participating in summer school.

Table 3: Balance on student level covariates.
Unmatched Match 1 Match 4

Reading pretest score -0.02 -0.03 0.01
Math pretest score -0.02 -0.03 -0.01
Male (0/1) -0.09 -0.05 -0.11
Special education (0/1) 0.09 0.06 0.11
Hispanic (0/1) 0.02 0.01 0.02
African-American (0/1) -0.00 0.02 -0.00

4.1 Outcome Estimates

Next, we turn to assessing the effectiveness of the myON intervention to improve performance

on the post-summer school standardized reading assessment in our matched sample. As outlined

above, once matching is complete, we can estimate treatment effects in a number of different

ways. One approach is to simply fit a regression model to the matched data with the outcome

regressed on the treatment indicator. Here, we use multilevel models with a random intercept and

clustering at both the school and matched school-pair level. One advantage to using regression

models for treatment effect estimation is that the analyst can add baseline covariates to the

model. In particular, it is useful to include any covariates that did not balance sufficiently in the

match. For example, in Match 3, we were unable to reduce the standardized differences below

0.10 for school enrollment, the percentage of novice teachers, and the staff turnover rate. To

more completely remove bias from the imbalance in these covariates, we can include them in the

model used to estimate the treatment effect.

Table 4 reports unadjusted estimates as well as those produced from regression adjustment alone,

matching alone (for Matches 3 and 4), and matching in combination with regression adjustment
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(again with Matches 3 and 4). Two facts are clear from the results. First, there is little difference

between the unadjusted estimate and any of the adjusted estimates. This suggests either that

little self-selection is present in this application, or if selection bias is present, it is not a function

of the observed data. Second, when selection biases are not a function of observed data, the

effect of the adjustment methods will be minimal. This is also true here. Estimates based on

regression alone, matching, or matching plus regression all produce similar estimates. Across all

methods, effect sizes are small, and the associated 95% confidence intervals include zero—results

that conflict with claims made by the creators of the myON software.4 Finally, it is worth noting

that the causal estimand for Match 4 differs from the other estimates. In Match 4, we dropped

four treated schools, so the results from Match 4 do not apply to the entire treated population.

However, that difference appears to be unimportant, given that substantive conclusions are similar

between Match 4 and the other matches.

In this example, the estimates of the treatment effect do not vary with the type of statistical

adjustment. Should we interpret this as evidence that these choices are inconsequential? Design

choices—including the type of the match—should be done without reference to outcomes. Such

choices may be of consequence in other applications. If we use regression alone, we still cannot be

sure that our inferences are not overly dependent on the model to extrapolate between treatment

and control sites that had poor overlap. The inferences we are able to derive and the confidence

that we have in them have more to do with the strength of our design process and less to do with

how the results change across the different strategies represented in Table 4. Our confidence can

be increased further by using a sensitivity analysis.

4.2 Sensitivity Analysis

Next, we present the results from a sensitivity analysis. As noted above, we can use sensitivity

analyses to identify whether it would take a weak or strong unobserved confounder to render
4For example, myON documentation suggests that students using the product can increase their Lexile scores

by more than 20% Corp (2015). Ortlieb et al. (2014) find that while myON can potentially improve reading
achievement when used in conjunction with traditional books, it has no positive impacts as a stand-alone product.
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Table 4: Outcome estimates for the treatment effect
of the myON reading program.

Treatment Effect Estimate
Unadjusted 0.03

[-0.08, 0.14]
Regression 0.05

[-0.03, 0.13]
Match 3 0.04

[-0.09, 0.16]
Match 3 + Regression 0.04

[-0.12, 0.21]
Match 4 0.04

[-0.07, 0.16]
Match 4 + Regression 0.07

[-0.06, 0.21]

Note: Quantities in brackets are 95% confidence in-
tervals. Outcomes are standardized test scores.

a significant treatment effect no longer significant. That is, we seek to understand whether

the study results could be easily explained by bias from an unobserved confounder. In the

myON analysis, however, the treatment effect estimates are small, and the confidence intervals

include zero, so we are unable to reject the null hypothesis of no treatment effect. One might

conclude that given the null results, there is no need to conduct a sensitivity analysis. Here, we

illustrate how we can instead explore the possibility that bias from a hidden confounder masks

an educationally meaningful effect. That is, an unobserved confounder may leave us to conclude

that there is no effect when in fact such an effect exists. We can explore this possibility by using

a test of equivalence with a sensitivity analysis (Rosenbaum 2008; Rosenbaum and Silber 2009;

Rosenbaum 2010).

Because we did not discuss it above, we first review tests of equivalence. Under a test of

equivalence, the null hypothesis asserts that the absolute value of the treatment effect is greater

than some δ, a treatment effect size set by the researcher. That is, H(δ)
6= : |τ | > δ for some

specified δ > 0. Here, we set δ to 0.20 of a standard deviation, as 0.20 is generally considered

to be a meaningful effect size in education research (Kraft 2019). Therefore, the relevant null
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hypothesis for a test of equivalence is that the treatment effect, denoted τ , is greater than

0.20 or less than -0.20. Rejecting the null hypothesis provides a basis for asserting with 95%

confidence that τ is between -0.20 and 0.20. That is, |τ | < δ. H(δ)
6= is the union of two exclusive

hypotheses: ←−H (δ)
0 : τ ≤ −δ and −→H (δ)

0 : τ ≥ δ, and H
(δ)
6= is rejected if both ←−H (δ)

0 and −→H (δ)
0

are rejected (Rosenbaum and Silber 2009). We can apply the two tests without correction for

multiple testing, since we test two mutually exclusive hypotheses. That is, we set α = 0.05 for

each test. Thus we can test whether the estimate from our study is different from other possible

treatment effects which are represented by δ. With a test of equivalence, it is not possible to

demonstrate a total absence of effect, but instead we test that our estimated effect is not as large

as δ (in a positive or negative direction). Under a test of equivalence, the closer the estimated

treatment effect is to zero, the smaller the p-values will be, since the estimated effects will be

farther from δ.

Next, we implement a test of equivalence for the myON data for Match 4, first assuming no

unobserved confounding. We test ←−H (δ)
0 and find that the one-sided p-value from this test is

0.011. We then test −→H (δ)
0 , and we find that the associated one-sided p-value is 0.027. The

overall test of equivalence is then based on the larger of these two p-values. Therefore, we are

able to reject the null that the estimated treatment effect we observe in this study is equivalent

to an educationally significant effect.

If our study were a CRT, we could be confident that the results were not due to unobserved

differences between the treated and control group. However, in a COS, we may reject the

null hypothesis of equivalence due to hidden confounding. That is, the test results above are

conducted under the assumption that there is no hidden bias (e.g., Γ = 1). However, using a

sensitivity analysis we can explore whether and to what extent the test of equivalence is sensitive

to potential biases from non-random treatment assignment. That is, we ask whether our inference

of no educationally meaningful effect is sensitive to bias from a confounder.

To conduct the sensitivity analysis, we repeat the test of equivalence, but use values of Γ that
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are larger than 1. When Γ is greater than 1, we obtain upper and lower bounds on the p-values

derived above. We then find the Γ changepoint—the value of Γ at which the upper-bound on the

p-value is no longer statistically significant at the 0.05 level. This is the amount of confounding

that would need to be present for our test result to no longer be statistically significant. In the

myON study, we find that when Γ is as small as 1.3, the upper bound on the p-value for the

test of equivalence is 0.049. Γ is on an odds-ratio scale. This implies that if there were a binary

unobserved confounder that caused the odds of treatment to differ by 30%, that could explain

the result from the test of equivalence.

Is this a large or small value of Γ? To provide a benchmark, we regressed treatment status

on the observed covariates using a logit model. We then calculated the odds-ratios for the

covariates in this model. We can compare these odds-ratios from this model to those from the

sensitivity analysis. If the odds-ratios from this model are smaller than the Γ value, then the

hidden confounder would need to have an effect on the odds of treatment that is generally larger

than the covariates we observe. We can interpret this as a robust result, since the effect of the

unobserved confounder would need to be generally larger than the observed data. However, if

the Γ value is smaller than these estimated odds-ratios, then the unobserved confounder could

be similar to observed confounders. For example, if we increase composite school test scores

by one-tenth of a standard deviation, that increases the odds of being treated by 1.42. Thus,

a Γ value of 1.3 is smaller. This implies that an unobserved confounder could easily mask an

educationally meaningful effect.

5 Discussion
Although randomized trials are considered the “gold standard” for conducting educational effec-

tiveness research, they are not always possible for cost, political, or other reasons. Furthermore,

an investigator may have questions about the efficacy of a given educational intervention only af-

ter it has been implemented in a non-random manner. In educational contexts, such non-random

allocation of educational opportunities often occurs at the cluster (e.g., school or classroom) level
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rather than at the individual level.

In such instances, thoughtfully designed cluster observational studies conducted in concert with

sensitivity analyses are an important tool in the education analyst’s arsenal. However, the key to

conducting a high-quality COS is thoughtful design. Here, we outline a set of principles for the

design of clustered observational studies. We advocate that COSs be designed with their cluster

randomized trial analogue as a guide. Analysts should focus on the assignment mechanism and

seek to identify the factors used for treatment allocation. We further advocate the use of multilevel

matching strategies to achieve treatment and control balance and common support prior to the

application of regression or other analytical tools for estimating treatment effects.

The weakness of a COS, of course, is that even after thoughtful application of such matching and

regression-based strategies, the analyst can never definitively know whether a critical unobserved

confounder is the true driver of an impact estimate or whether such an unobserved measure may

be masking true effects that remain unobserved. Nevertheless, sensitivity analyses, such as those

discussed above, allow the analyst to consider how large such confounders would need to be to

operate in either of these ways, and whether a confounder of such a magnitude is reasonable

within the context under consideration. In short, there is much to be learned from thoughtfully

designed and implemented COSs. Our goal in this paper is to establish a framework and guidelines

for such work.
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