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1 Introduction

Educational interventions are often allocated to intact groups rather than to individuals. For

example, a new reading program may be implemented in some schools but not in others. Such

grouped treatments may be randomly or non-randomly allocated. When clustered treatments are

randomly allocated, the statistical power to detect treatment effects is reduced, but the treat-

ment effect estimates remain unbiased. Such clustered randomized trials (CRTs) have become a

common research design in educational settings. Many observational studies in education share

the same grouped treatment assignment mechanism as a CRT, where schools or classrooms are

selected for a new program, curriculum or intervention. When clustered treatments are non-

randomly allocated, the research design may be described as a clustered observational study

(COS) (Page et al. 2019).

When a treatment is non-randomly allocated—grouped or not—differences in outcomes between

those who are and are not treated may reflect pretreatment differences rather than the effect

of the treatment itself (Cochran 1965; Rubin 1974). Such pretreatment differences may be

measurable and thus constitute overt biases. Alternatively, these differences may be unmeasured

and form hidden biases. In the context of any observational study, the need to remove overt

bias necessitates the use of statistical adjustment methods to make treated and control groups

comparable in order to estimate causal effects. In a COS, investigators often use multilevel

regression models to adjust for observed confounders and remove overt bias. Regression models,

however, impose strong functional form assumptions that may bias treatment effect estimates. A

wide variety of matching and weighting methods have been developed as more robust alternatives

to regression modeling. However, little of this development has focused on clustered observational

studies.

Here, we review and evaluate a new matching method—multilevel matching—specifically designed

for clustered observational studies. First, we provide a non-technical introduction to this new form
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of matching. Second, we evaluate multilevel matching by attempting to recover treatment effect

estimates from three CRTs. In each case, we are able to recover experimental benchmarks

and show that that a combination of multilevel matching followed by regression analysis with

the matched data tends to reduce bias more than either matching or regression used in isolation.

Third, we conduct a simulation study based on a real clustered observational study. Our simulation

results shed light on how the clustered nature of treatment assignment affects the performance

of treatment effect estimation. Overall, we contribute important, new evidence on best practices

for statistical adjustment in COSs. Throughout, we emphasize the practical implications of our

results for applied research that utilizes the COS design.

This paper proceeds as follows. Section 2 reviews design considerations for a COS. Here we

advocate for designing COSs to emulate the CRT the researcher would have designed, were it

possible. Section 3 discusses the mechanics of applying multilevel matching procedures to COSs.

Section 4 summarizes how to conduct outcome analyses after applying the multilevel matching

approach. Section 5 reports experimental benchmarks derived from multilevel matching using

data from existing CRTs. Section 6 reports on the bias-reduction potential of multilevel matching

through the use of a simulation study. Section 7 presents an empirical application in the context

of a COS. Section 8 concludes.

2 Clustered Observational Studies: A Review

We are focused on a form of matching that is tailored to a specific research design, to which we

refer as a clustered observational study. A COS is the observational counterpart to the clustered

randomized trial. That is, treatment assignment occurs at the group level, while analytical interest

is focused on unit outcomes. Throughout we will use the term cluster to refer to groups for which

treatment has been assigned and unit to refer to the units within clusters. Throughout, because

we are focused on COSs in educational settings, we will use the terms “cluster,” “group,” and

“school” interchangeably. We will do the same for the terms “unit” and “student.” Given the
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tight connection between the study design and the matching method, we first review the study

design. We refer the interested reader to Page et al. (2019) for a more detailed treatment of this

topic.

2.1 Target Trials and Notation

Here, we follow an approach to causal inference that advocates target trial emulation (Hernán

and Robins 2016). That is, we apply design principles from randomized trials to observational

studies, specifically by tying our analysis to a trial that the observational study seeks to emulate.

The goal is to improve observational studies by using trial design principles even if a trial of

that form is not available or feasible. Our notation is structured by the target trial of interest.

As noted, for a COS, the target trial is a CRT. In the educational research context, clustered

treatment assignment happens commonly due to an intervention being administered to clusters.

Since we are focused on matching, we specifically seek to emulate a matched-pair CRT: a trial

where schools are paired based on a similar pre-treatment characteristic (or characteristics) and

then randomized to treatment and control conditions. Here, we consider two different forms that

the target trial may take and how the relevant form affects the matching process.

We refer to the first target trial as Design 1. Design 1 describes a COS where complete clusters

are selected for treatment, and all units within a given cluster either receive or do not receive

treatment. Under Design 1, given that the assignment mechanism is at the cluster level and

assignment is made on the basis of cluster-level characteristics, we expect that it will be critical

to account for cluster-level covariates. Therefore, while aggregated student-level covariates could

be important, student-level covariates may not contribute to the decision to assign treatment to

a specific school. See Pimentel et al. (2017) for an example of this target trial.

Under Design 2 the target CRT is one where treatment is assigned to clusters but that treatment

is applied to only a subset of the units within each treated cluster. Design 2 targets a CRT

with student-level selection into the treatment within the schools selected for the experimental
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intervention. How might a CRT of this type arise? Imagine an intervention for academically

gifted students. The intervention could be assigned to entire schools but then applied only to

the gifted student population within these schools. Under Design 2, student-level covariates will

play a more critical role, since whether a student is exposed to treatment in a treated school will

depend on student characteristics. This implies that we must adjust for covariates and match at

both the school and the student levels. Hereafter, we do not focus extensively on this design,

since we are unable to emulate this design in our main analysis, which is focused on experimental

benchmarks.

Based on these two target trials, we use the following notation to describe a paired COS. There

are S matched pairs of clusters, s = 1, . . . , S, with two schools, j = 1, 2, one treated and one

control, for 2S total clusters. Each school sj contains nsj > 1 students, i = 1, . . . , nsj. We have

a matrix of observed, pretreatment covariates, xsji, that typically describes both students and

schools. That is, xsji typically contains baseline measures such as student sex and race/ethnicity,

as well as the percentage of students in the school who are proficient in reading based on test

scores. School-level measures take the same value for all students in the same school. In a COS,

treatment assignment occurs at the group level, which in educational contexts often means that

treatment is assigned at the school level. For the jth school in pair s that receives the treatment,

we write Zsj = 1, whereas if the school receives the control, write Zsj = 0. We define causal

effects using the potential outcomes framework (Neyman 1923; Rubin 1974). Prior to treatment,

each student has two potential responses: (yTsji, yCsji), where yTsji is observed from the ith

subject in pair s under Zsj = 1, and yCsji is observed for this subject under Zsj = 0. We

only observe responses, which are a function of potential outcomes and treatment assignment:

Ysji = ZsjyTsji + (1− Zsj)yCsji.

2.2 Causal Identification Assumptions

In a COS, one reasonable estimand is the following student-level contrast: yTsji − yCsji which

is the change in student-level outcomes caused by group-level treatment assignment. Many
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investigators focus on the average causal effect of the form E[yTsji−yCsji] or the average causal

effect for the treated: E[yTsji − yCsji|Zsj = 1]. These contrasts are referred to as estimands,

since they refer to counterfactual quantities. Due to the fact that causal estimands are based on

counterfactual quantities, we require a set of assumptions that allow us to identify these terms

using observed data. Next, we outline the assumptions that are typically invoked for a clustered

observational study to yield consistent estimates of causal effects.

First, our notation implicitly assumes that the Stable Unit Treatment Value Assumption (SUTVA)

holds (Rubin 1986). SUTVA has two parts: 1) the treatment levels of Zsj (1 and 0) adequately

represent all versions of the treatment, and 2) a student’s outcomes are not affected by other

students’ exposures. Under the first component of SUTVA, we must assume that while there may

be some variation in how students receive the treatment, this variation in treatment corresponds to

the same set of potential outcomes. Next, clustered treatment assignment is generally assumed to

bolster the second component of SUTVA. For student outcomes to be affected by other students’

treatment status, treatment spillovers must occur across schools. That is, only interference across

schools would be problematic. While possible, in most education research settings it is unlikely

that cross-school spillovers will occur. Importantly, the potential outcomes notation we outlined

above allows for arbitrary patterns of interference among students within the same school, given

treatment selection at the school level.

The key assumption in a COS is that treatment assignment depends on observed covariates only.

Next, we provide a formal definition of this assumption. To do so, we introduce some additional

notation. Specifically, we write usji, which is an unobserved, binary confounder. Formally, we

must assume that:

πsj = Pr(Zsj = 1|yTsj,yCsj,xsj,usj) = Pr(Zsj = 1|xsj).

In this equation, we see that the probability of being treated (πsj) can depend on potential

outcomes, observed data, and unobservables. However, in order to draw causal inferences we
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must assume that this probability only depends on observed data. As such, the investigator

asserts that there are no unobservable differences between the treated and control groups. This

assumption goes by many different names, but it is often called “selection on observables,”

since the analyst asserts that there is some set of covariates such that treatment assignment

is random conditional on these covariates (Barnow et al. 1980). Critically, this assumption is

nonrefutable, since it cannot be tested with observed data (Manski 2007). If this assumption

holds, potential outcomes will be independent of treatment assignment, and the causal effect

of the treatment will be identified. Outside of randomization, many studies in education must

invoke the selection on observables assumption in some form. Even in studies that are described

as “natural experiments,” where treatment is haphazardly allocated, if the investigator feels the

need to control for confounders—as opposed to including covariates to improve precision—then

the selection on observables assumption is in effect.

Next, we also assume that all schools have some probability of being treated such that 0 < πsj <

1. Under the principle of target trial emulation, this implies that a COS should have inclusion

criteria like a CRT. In a CRT, a study population is defined, and randomization is then applied

to this population. For example, in a CRT, the inclusion criteria might be elementary schools

that have a Title I designation and that serve a student body in which over 50% of the students

participate in the free lunch program. Schools that do not fall within these inclusion criteria have

zero probability of being treated. In a COS, schools that have no probability of being treated

or are almost certain to be treated should be removed just as they would be removed from a

CRT due to the study inclusion criteria. In a COS, not doing so may manifest itself in large pre-

treatment covariate imbalances which may occur due to treated clusters that are very dissimilar

from any control clusters. Under such circumstances, the treated and control clusters are said

to lack common support, since the covariate distributions do not overlap. The matching method

we outline below allows investigators to trim data, typically treated clusters, to enforce common

support overlap on covariate distributions and improve balance. Trimming treated clusters is not

without consequence, however. Trimming treated clusters changes the estimand such that it only
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applies to the population of clusters for which the effect of treatment is marginal: clusters that

may or may not receive the treatment. Changing the estimand in this way may be unproblematic

if the data do not represent a well-defined population (Rosenbaum 2012). We explore the issue

of overlap through an empirical application below.

3 Multilevel Matching for Clustered Observational Stud-

ies

In a COS, the key identifying assumption is that treatment assignment depends on observed

covariates only. In most cases, investigators will find that the treated and control groups differ

with respect to baseline covariates, and they will need to make these groups more comparable by

using a method of statistical adjustment to remove this overt bias. In this section, we describe

a new form of matching—multilevel matching—designed specifically for COSs. One reasonable

question to ask is why should analysts apply multilevel matching rather than other forms of

statistical adjustment, such as regression? The answer is that matching tends to be more robust—

especially when treated and control covariate distributions do not have good overlap (Imbens

2015). COSs in education often have relatively small numbers of treated and control schools which

may exacerbate this problem. One potential solution might be to use propensity score methods

such as inverse probability weighting. In practice, however, we have found that propensity score

models fitted to hierarchical education data often suffer from convergence problems. When this

happens, little progress can be made, since failure of model convergence means that one is not

able to estimate propensity scores.

The matching method we developed does not require any model fitting, and thus is highly robust.

In addition, multilevel matching allows for both covariate prioritization and sample trimming,

which provide the analyst with control and flexibility to increase treated-control comparability

on covariates deemed to be of critical importance. For example, an investigator may choose to

more closely balance past test scores relative to other covariates such as school size. Moreover,
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trimming allows the investigator to find the set of clusters and units with the highest levels of

comparability. We provide more details on these aspects of the matching process below.

3.1 Matching and Optimality

Next, we turn to the mechanics of matching for a COS using data that have a multilevel structure.

That is, we observe covariates for both individual students and the clusters in which students

are nested. How should we match in this context? And more specifically, are there aspects

of the match that need to be tailored to the specifics of a COS? We begin by discussing how

standard matching methods could be applied to a COS and the drawbacks to using such standard

methods.

One could apply standard matching methods to a COS in two ways. First, one could simply

match at the student level and ignore the multilevel structure of the data. However, this process

would match treated students in the same cluster to control students dispersed across multiple

clusters. A match of this type is inconsistent with the target trial outline above. In general,

standard matching methods are not designed to account for the multilevel structure of the data

that is a key component of a COS. Alternatively, one might choose to pair schools and then

match students within each matched school pair. The drawback to this approach is that it is

not “optimal” (Keele and Zubizarreta 2017). The difficulty with using a non-optimal matching

method is that balance can be improved with the data at hand by choosing better matches.

Rosenbaum (1989) introduced the concept of optimality to matching. It is an important criterion

for judging matching methods. Given its importance, here we provide a conceptual introduction

to optimality in matching. Note that in this example, we assume individual-level treatment

assignment and matching to ease exposition.

Assume there are T treated subjects, T = {τ1, . . . , τT}, and C controls, C = {γ1, . . . , γC},

with C ≥ T . Each subject has a set x of observed covariates. Using a distance metric, such

as the Mahalanobis distance, we calculate a distance δτt,γc ≥ 0 between the covariates for each
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treated unit τt and each control unit γc, where t = 1, . . . , T and c = 1, . . . , C. These distances

are recorded in a T × C distance matrix we denote δ. Table 1 contains a distance matrix from

an example in Rosenbaum (2012). An optimal matching algorithm selects a mapping (α) to

minimize the sum of the distances between each treated and control unit (Rosenbaum 1989).

That is, an optimal match is one that chooses α to minimize ∑T
t=1 δτt,α(τt). Matching algorithms

that we might characterize as “greedy” or “short-sighted” lack optimality, since they may fail to

minimize this total distance.

Table 1: A 5× 6 distance matrix and an optimal assignment

Control
Treated 1 2 3 4 5 6
1 156 515 380 225 84 209
2 85 297 185 66 172 77
3 110 469 354 143 83 119
4 144 518 401 214 100 228
5 198 557 430 239 124 210

Based on the distances in Table 1, one logical way to match would be to first select the best

match for the first treated unit, without consideration for future matches. This process is then

repeated for each treated unit. This type of match would start by selecting δτ1,γ5 = 84 as the

first match, followed by the next match for the next treated unit, δτ2,γ4 = 66, and so on, resulting

in a total distance of 84 + 66 + 110 + 228 + 430 = 918. This large covariate distance is mostly

driven by the final matched pair selected: δτ5,γ3 = 430. A variant of this general approach would

be to randomly pick a treated unit for the first match and proceed from that randomly selected

treated unit.

We can improve the overall quality of the match (e.g., the overall distance) by changing early

matches to improve the quality of later matches. The matches highlighted in bold are from an

optimal match which has a total distance of 84 + 185 + 143 + 144 + 210 = 766. This better

result is a function of picking earlier matches that are somewhat worse in order to improve the

quality of the match overall. In short, an optimal match minimizes the covariate distances such
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that no other match will produce a lower total distance. The key insight of this simple example is

that one can improve the quality of the match by changing the type of match and the associated

matching procedure.

When matching for a COS, pairing schools or using student level covariate information, as outlined

above, would seem a reasonable option. However, a match of this type is not optimal (Keele and

Zubizarreta 2017). Pimentel et al. (2017) provide additional simulation evidence on this point.

The general problem is that it is not clear a priori which school-level match will produce the

best student-level match, thus rendering a given school match potentially suboptimal. Next, we

outline a matching algorithm that is optimal for the multilevel data structure that is a hallmark

of a COS (Keele and Zubizarreta 2017; Pimentel et al. 2017).

3.2 Student Matches in Multilevel Matching

Next, we describe multilevel matching for COSs, with a focus on building intuition for the pro-

cess. We refer the interested reader to Keele and Zubizarreta (2017) for a formal description of

multilevel matching. Multilevel matching proceeds in a counter-intuitive way in that it explores

student matches before school matches. This is done to ensure that the match is optimal. If we

match on schools and do not account for student-level information, the match is ignoring critical

information and thus won’t be optimal.

Multilevel matching for a COS proceeds via the following steps. First, using covariates measured

at the student level, student-level matches are conducted for all possible pairings of treated and

controlled schools. For example, suppose there are 3 treated schools and 5 control schools indexed

by kt ∈ Kt = {1, ..., 3} and kc ∈ Kc = {1, ..., 5}, respectively. We first evaluate the student-pair

matches across all the possible pairs of treated and control schools. Since there are 3 treated

schools and 5 control schools, we conduct 3 × 5 = 15 student-level matches. In general, where

there are N1 treated schools and N2 control schools, the number of such possible pairings will be

N1×N2. Although this involves assessing a large number of possible matches, the form of these
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matches is straightforward, since we are simply conducting standard student-to-student matches

within each potential school pair. For these student-to-student matches we apply an optimal

match based on a robust form of the Mahalanobis distance.

Next, we score the quality of each of these student matches. For each student-level match, we

record a score for the pair-matched students. We denote this score as mkt,kc . The student-level

matches are scored according to two criteria. First, the match is scored based on the balance

it achieves on student-level covariates, with worse scores given to matches with poor balance.

Second, it is scored on the sample size it produces, with worse scores given to matches yielding

smaller sample sizes. The matched sample size is measured using the harmonic mean of the

treated and control group sizes. These two measures are combined additively to form the scores,

mkt,kc , which are inverted such that the best matches receive low scores, and the poorest ones

receive high scores according to these criteria. These scores are then stored in an N1 by N2

matrix. This matrix will serve as the distance matrix for the school-level matches.

One critical point to understand about multilevel matching is that student-level covariates are

incorporated into the match in an unconventional fashion. Given the multilevel structure of the

data, student-level covariates can be included as either student-level measures or as aggregate

measures. For example, a covariate such as student sex can be used as a binary, student-level

measure or as the proportion of female students in the school. The first stage of a multilevel

match avoids the need to create aggregate measures from student-level covariates. All student-

level covariates will inform the score, and this score is used directly in the school-level match in

the next step. However, one can also include aggregate covariates during the school matching

process.

3.3 Refined Covariate Balance

At this point in the process, matched school pairs can be created using the distance matrix created

frommkt,kc , however, school-level covariates have not yet been taken into account. To incorporate
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school-level covariates, refined covariate balancing is used. We now outline this process and refer

the interested reader to a technical treatment in (Pimentel et al. 2015). Refined covariate

balance is based on the concept of fine balance. Therefore, we begin with an introduction to fine

balance.

The goal in matching is to make treated and control group distributions similar on baseline

covariates. When the treated and control distributions are similar, they are often said to be

“balanced.” One way to balance treated and control groups is to use fine balance. A match with

fine balance on a covariate is one with identical marginal distributions for this covariate. For

example, in a matched set of schools, suppose we wish to fine balance a binary indicator for Title

I status. Under fine balance, even if a Title I school is matched to a school that is not a Title

I school in certain pairs, the match is fine balanced if the total number of Title I and non-Title

I schools in the matched controls is equal to the total in the treated group. Rosenbaum et al.

(2007) use the term “fine balance” when a variable has been balanced in terms of the marginal

distribution even if units are not exactly matched on the variable. In terms of removing overt

bias, the effect is the same since balance is a property of groups. Randomization, for example,

balances the treated and control groups, on average, but says nothing about the characteristics

of any single unit in those groups.

Alternatively, one can use near-fine balance. Under near-fine balance, a covariate is finely balanced

when it is feasible, and otherwise the deviation from fine balance is minimized (Yang et al. 2012).

For example, a match with near-fine balance on Title I status would seek to make the number

of Title I schools in the control group as close as possible to the count of Title I schools in the

treated group. Fine and near-fine balance were originally designed to be applied to a small number

of nominal covariates. In its original form, near-fine balance was infeasible for large numbers of

covariates. Refined covariate balance is a generalization of near-fine balance for many covariates.

Refined covariate balance works on many variables by applying near-fine balance to an interaction

of a set of nominal covariates. However, as the number of variables in the interaction increases
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the number of categories explodes, and it tends to be difficult to balance every category of the

interaction. Since there typically is not any way to balance every category of the interaction, the

balancing occurs in an order of priority set by the analyst. Refined covariate balance proceeds in

the following way.

Suppose we have three nominal covariates, arranged in descending order of balance importance.

A match satisfies refined covariate balance if:

1. The match satisfies near-fine balance for the first-priority covariate.

2. The treated and matched-control distributions of the second covariate are as close as

possible among matches satisfying (1).

3. The treated and matched-control distributions of the third covariate are as close as possible

among matches satisfying (1) and (2).

Intuitively, refined covariate balance asks for balance in priority order, requiring near-fine balance

on the most important covariate and asking for the closest possible balance on the remaining

covariates, in decreasing order of importance.

An important detail to note is that refined covariate balancing only works with discrete variables.

As such, school level covariates must be transformed into discrete measures. For example, we

cannot match directly on a covariate that is the percentage of students proficient in reading.

Instead, we would match on a coarsened version of this measure. The refined covariate balancing

works best with broad categories, so the simplest approach is to split all school-level covariates at

the mean or median. Assume we have 3 school level covariates: an indicator for schools where the

percentage of students proficient in reading is above average, Title I status, and an indicator for

a school where the percentage of students enrolled in the free lunch program is above average.

Refined covariate balance seeks to near-fine balance the interaction of these three variables.

The matching algorithm would do this by trying to create a matched set of schools with nearly

identical numbers of schools with these features. If we designated Title I status as the highest
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priority covariate, the match would seek to near-fine balance it first, and then seek to balance

the interaction of the other two covariates.

3.4 The School Matches

As we noted above, for the school-level match, we use a distance matrix that is built from the

results of the student-level match. In the school matching step, we find the school pairs that

minimize the total sum of school-pair distances on this distance matrix, subject to a refined

covariance balance constraint. That is, school matched pairs are created so that the student-

level distances are minimized for the set of treated and control schools that meet the refined

covariate balance prioritization established by the user. For example, if we have prioritized the

indicator for above average test scores, the matching algorithm will minimize the distance on the

student-level matrix subject to the constraint that the number of schools with above average

tests scores is the same across the treated and control groups. If it isn’t possible to achieve the

exact same number of high test score schools in the treated and control groups, the algorithm

will seek to make the discrepancy in the number of schools as small as possible. See Rosenbaum

(2010, Ch. 10) for a nontechnical introduction to matching with constraints of this form.

Why does the multilevel matching rely on refined covariate balance methods? First, the final

match needs to simultaneously use student- and school-level information. Refined covariate

balance is one way to easily add school information to the result derived from the student-level

match (Pimentel et al. 2017). Second, refined covariate balancing allows the user to include

balance prioritization, which we consider a critical step. We discuss balance prioritization in more

detail below. Finally, refined covariate balancing allows for faster computing times in a multilevel

match based on integer programming (Zubizarreta and Keele 2016; Pimentel et al. 2017). Once

the schools are matched, if the investigator is using Design 2, the information from the first

stage of the match is used to return matched student pairs (Pimentel et al. 2017). If Design 1

is the target trial, then only the schools are matched and all treated and control students are

retained.
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After matching, the most common form of balance checking is estimating mean differences

between the treated and control groups. This can still be done after refined covariate balance, but

it is useful to remember that the match is seeking to balance the number of schools with specific

covariate profiles across the groups—not the means. In the example above, we are seeking to

balance the number of schools with above average test scores. As such, a test for the difference in

means will not directly measure how well the match performed at this task. However, even though

the algorithm doesn’t directly aim to balance the means of school covariates, standardized mean

differences remain a useful heuristic to judge the balance of the school covariates after matching.

In addition, one can tabulate school covariate categories across the treated and control groups

as an additional balance check.

3.5 Match Options

Thus far we have described the basic mechanics of a multilevel match for a COS. Next, we review

aspects of the matching process that require user input. All of the choices we discuss below are

optional, but they allow the investigator to override the algorithm’s default settings and further

fine-tune the match.

First, we consider covariate balance prioritization. Refined covariate balance allows investigators

to prioritize balance on school-level covariates. Why might an investigator want to do this? If

scientific knowledge dictates that certain covariates should have higher priority, balance on those

covariates can be targeted for improvement. What kind of scientific knowledge do we mean?

Typically, this would be knowledge of the treatment assignment process. If district officials report

that certain covariates were used to select schools for the intervention, we want to ensure that

treated and control schools are comparable on these variables. Covariate prioritization can be

applied to individual covariates or to covariate sets. Prioritization of covariates won’t improve

balance overall, but it does ensure that the covariates that are deemed to be of overriding

importance are better balanced. This implies that selecting covariates for prioritization is a

process of managing potential tradeoffs between improving balance for important covariates that
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may cause increased imbalance in other, less important covariates.

Often investigators find that, despite matching, treated and control units are not sufficiently

comparable. This manifests itself as post-match balance statistics that show treated and control

units as too dissimilar. In our experience, this is common in education settings—especially when

the pool of control schools is fairly small. What can be done in this situation? One strategy is

to improve the match via optimal subsetting in conjunction with a school-level caliper. A caliper

forbids matches between units that are not sufficiently close in terms of covariate distance. Under

optimal subsetting, we subset the treated group by dropping the treated schools with the worst

imbalances. Subsetting is applied by using the n parameter, which specifies a minimum number of

treated units that must be included in the match. For example, if there are 20 treated schools and

n is set to 19, the algorithm will discard the one treated school that improves balance best among

the remaining treated schools. That is, the school that contributes the most to the imbalance

will be discarded. Using this parameter, analysts can drop treated schools until balance improves.

In general, we recommend dropping schools one-by-one until balance is deemed acceptable.

If the investigator decides to trim one or more schools to improve balance, they need to be aware

of the fact that this changes the interpretation of the estimated treatment effect. The estimated

treatment effect is no longer the effect among the treated, but the treatment effect for a subset

of the treated. Thus, some amount of generalizability is lost. That is, we can no longer describe

the estimated effect as the treatment effect for the entire treated population. Instead, it is the

treatment effect for the subsample of the treated included in the match. When this occurs, it

is critical that the analyst provide descriptive statistics for both the treated units retained in

the match and those discarded by the matching. This provides important information on the

population for which the treatment effect is relevant.

Next, trimming treated students can occur in a different way when the investigator pairs both

schools and students under Design 2. In a match of this type, some student-level trimming is

almost impossible to avoid even if subsetting has not been applied. That is, unless the student
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sample sizes in the control schools are substantially larger than the sample sizes in all treated

schools, some of the student-level matches will involve treated groups that are larger or very

similar in size to their control groups. In these settings, under the student-level pair matching

used in the first step, some treated students will invariably be excluded from the match. Here

the trimming is not done to enforce balance or common support but is simply a byproduct of

the structure of the pair match. Under a Design 2 match, the causal estimand is a school-level

contrast for a set of students within the school who are at risk for the treatment. After matching

under Design 2, analysts should again present descriptive statistics for both the students included

in the match and those discarded from the match.

4 Approaches to Outcome Analyses

Multilevel matching—like any form of matching—is only a method of statistical adjustment. That

is, it serves to make the treated and control groups comparable on observed covariates. Matching

itself does not include any method for the estimation of treatment effects. As we outline below,

treatment effect estimation after matching often utilizes standard statistical models. However,

nonparametric methods can be applied as well (Rosenbaum 2002, Ch. 2). Next, we briefly review

regression models for clustered observational studies.

4.1 Multilevel Regression

The primary alternative to methods such as matching is the regression model. In the context

of clustered data in education, the regression model of choice is typically the random-effects

(RE) regression model. In an RE regression model, there are error terms at both the unit and

cluster level (Murnane and Willett 2010). In the context of a COS, the basic structure of the

random-effects regression model takes the following form:

Yji = γ0 + γ1Zj + βXij + υj + εji,
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where the model includes separate error terms at the school (υj) and student (εji) levels. In

the model, Xij represents covariates measured at baseline that are assumed to be confounders.

These covariates are added to the model to remove overt biases—observable differences between

the treated and untreated schools and students. That is, the RE regression model, the primary

alternative to multilevel matching, is a method of covariate adjustment for a COS. Imbens (2015)

argues that matching is an attractive alternative to regression modeling for treatment effects, since

it tends to be more robust to a variety of data configurations. As we outline below, the RE model

is also the most straightforward way to estimate treatment effects after ML matching.

4.2 Matching and Regression

Once matching is complete, the analyst can estimate treatment effects via regression models. Un-

der this analytic strategy, the outcome is regressed on the treatment indicator using the matched

data set. For this step, standard regression models can be applied. Of course, investigators may

instead prefer to apply the RE model. A random intercept model will account for within-school

correlations in the standard error estimates (Murnane and Willett 2010; Raudenbush 1997). If a

standard regression model is used, robust variance estimators that take into account intra-cluster

correlations should be used. Spiess and Abadie (2019) find that if matching is done without

replacement, using regression models to estimate the treatment effect will have valid standard

errors if one accounts for pair clustering. As such, analysts should also include a random ef-

fect for paired school clusters or use a cluster robust variance estimate. The only difficulty is

that this approach assumes that there is a sufficiently large number of clusters to make valid

inferences.

Treatment effect estimation via regression models after matching is also useful for additional

bias correction. That is, any covariates that are not fully balanced by the match can also

be included in the regression model to reduce bias while estimating treatment effects (Abadie

and Imbens 2011). Using regression models to further reduce imbalance after matching is a

well-known idea (Stuart 2010; Ho et al. 2007). See Imbens and Rubin (2015, ch 18.8) for a
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complete review of how regression may be used for additional bias correction after matching. In

the education literature, one recommendation—in randomized trials—is to adjust for covariates

where the imbalance exceeds a standardized difference of 0.05 or more (What Works Clearinghouse

2020). A similar rule could be applied to imbalances after matching.

In sum, the basic critique of regression models is that the analyst imposes a linear functional

form assumption across the full covariate space, which may induce bias especially if there is a

lack of overlap in the covariate distributions. However, if regression is applied after matching, it

is applied to a subsample of the data that is well-balanced and in which covariate distributions

overlap. Since regression is used locally in the covariate space, the corresponding results should

be less sensitive to minor changes in the specification of the regression function (Imbens and

Rubin 2015, p. 417).

4.3 Nonparametric Methods

One additional drawback to relying on regression methods is that inferences depend on the number

of clusters. That is, the accuracy of quantities such as p-values and confidence intervals depend

on having a large sample size—i.e., a large number of clusters. In many COSs, the number

of clusters may be small. Analysts can avoid large sample assumptions by using randomization

inference methods. Hansen et al. (2014) developed a set of randomization inference methods for

COSs. Randomization inference methods are often referred to as permutation methods, since

the inferences rely on permuting the data in a manner consistent with the implied randomization.

Such inferences are valid for any sample size. Randomization inference also allows investigators

to use rank-based statistics which are robust in the presence of heavy-tailed distributions. Finally,

randomization inference methods allow for easy implementation of sensitivity analyses. See Page

et al. (2019) for more details on the use of randomization inference in the context of COSs.
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5 Experimental Benchmarks

Thus far, we have outlined multilevel matching as a method for statistical adjustment in a COS.

Given that this method of matching is relatively new, there is limited work on how well it performs

in practice. In this section, we further explore whether multilevel matching is the best analytic

approach to estimate treatment effects when conducting a COS. Here, we take a two-pronged

approach. First, we evaluate methods of statistical adjustment for COSs by attempting to recover

benchmark treatment effect estimates from randomized experiments. Second, we present results

from a simulation study.

Here, we describe the design for our analysis that is focused on recovering experimental bench-

marks. This design is often referred to as a within-study comparison (WSC) design (Wong et al.

2018). The general approach in our analysis is to use data from a randomized trial, set aside the

experimental control group, and replace it with a new control group from the overall population

that was not included in the original randomized trial.

We then use this new observational data set for the study. Specifically, we apply a method

of covariate adjustment to make the new control group comparable to the treated group on

observed covariates. After statistical adjustment is complete, we estimate the treatment effect.

We then observe whether the estimated treatment effect from the observational study design

is indistinguishable from the original treatment effect estimate in the randomized trial. This is

often referred to as a dependent arm WSC design (Wong and Steiner 2018). Perhaps the most

well-known example of this study design is from Lalonde (1986). There are also examples of this

design in education (Wong et al. 2017). See Wong et al. (2018) for a general overview of WSC

designs.

We apply this study design to data from three different randomized interventions from the Wake

County Public School System (hereafter, Wake County), the largest school system in North

Carolina and 15th largest in the nation (Snyder et al. 2019, p. 119). All three of the original
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studies were CRTs conducted in Wake County elementary schools. In each case, elementary

schools were able to opt into the CRT. Among the schools that agreed to participate, a treatment

was randomly allocated to half of the schools on the basis of pairwise matching on a prior value

of the outcome variable. The intervention was then applied to either the entire school or to whole

grades within the school. In our study, we replaced the control group from the CRT with schools

that did not participate in the original CRT. For each constructed data set, we then estimated

treatments after adjusting for observed covariates. For each study, we apply not only multilevel

matching but also mixed effects regression models. This allows us to compare matching to a

clear alternative. In some of the studies, we also included treatment effect estimates based on

regression models with the matched data sets.

For each method of adjustment, we then estimated several different quantities. The first two

quantities are τ̂rct which is the estimate from the original RCT, τ̂obs which is the estimated

treatment effect after statistical adjustment, and τ̂unadj which is the unadjusted treatment effect

estimate from the observational data. We then calculated two measures of discrepancy between

the adjusted estimates and the RCT estimate (Steiner and Wong 2018). The first is a measure

of standardized bias:
τ̂obs − τ̂rct
SDrct=0

where and SDrct=0 is the standard deviation from the outcome in the control group in the RCT.

This is a standard measure for studies of this type (Wong et al. 2017). Thus, we report how far

the estimates from observational study methods are from the RCT estimate. We also include 95%

confidence intervals for this measure of standardized bias. Next, we estimated the percentage of

bias reduction, which is calculated as

(
1−

∣∣∣∣∣ τ̂obs − τ̂rctτ̂unadj − τ̂rct

∣∣∣∣∣
)
× 100

This research design has several advantages. First, it allows us to evaluate statistical adjustment
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methods in a realistic setting. Second, this design may help us to identify the covariates that are

critical for adjustment. This, in turn, would help to inform future data collection and evaluation

efforts. Third, our work will inform the question of whether observational studies can provide

plausible estimates of causal effects when treatments are assigned at the school level. Work by

Cook et al. (2008) has helped investigators gain insight into the conditions that better allow

for causal inference with observational data. Our study will further our understanding of this in

educational contexts. Third, success is not guaranteed: we cannot ensure in advance that our

algorithm will be able to recover the experimental benchmark. The primary disadvantage of our

design is that if the estimates are too noisy, it may be difficult to draw any strong conclusions.

We now turn to the three randomized interventions we consider for these analyses.

5.1 Achieve3000

In our first analysis, we use data from a CRT that was designed to evaluate Achieve3000, an

adaptive literacy software program intended to increase student reading proficiency (Achieve3000

2011). In the CRT, 32 district elementary schools participated in the study. These schools

were sorted pairwise on 2012-13 composite reading scores and randomly assigned within pairs

to use Achieve3000. The schools that were selected for the treatment condition implemented

Achieve3000 for all students in grades 2-5 and outcomes were measured in school years 2013-

14, 2014-15, and 2015-16. For our analysis, we first estimated the experimental benchmark

using the schools in the trial. For an outcome measure, we used end-of-grade reading scores

from 2016. Student-level covariates included sex, race/ethnicity, English language learner status,

gifted status, and prior achievement. School-level covariates included the percentage of Hispanic

or African American students, students receiving free/reduced price lunch, students classified as

English language learners, students proficient in reading and mathematics, novice teachers, (e.g.,

first-year teachers), and white teachers as well as an indicator for Title I school classification.

Next, we created a new data set that excluded the control schools and replaced them with the 60

elementary schools that chose not to participate in the randomized trial. We excluded 8 schools
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that were using a reading program similar to Achieve3000. Since schools opted into the trial, and

it was administered to all students in grades 2-5 in each treatment school, we determined that

Design 1 was the most appropriate target trial. As such, we matched schools, but did not pair

students within school pairs. We then sought to recover the experimental estimate by adjusting

for observed confounders. We performed the multilevel match using the matchMulti package

in R. We implemented three different matches. The first match used the algorithm defaults.

The second match prioritized school-level reading scores, since the intervention was a reading

intervention. The final match prioritized balance on the covariates with the worst imbalances to

produce the best overall balance. We estimated treatment effects after matching by using RE

regression models with students nested within schools and schools nested within matched pairs.

We then estimated the treatment effect including covariates in the model to provide additional

bias correction. Finally, we estimated the treatment effect using only RE regression for adjustment

in the data without matching.

Table 2 contains the results from the analysis. First, we estimated an unadjusted treatment

effect. The bias for the unadjusted estimate is -0.18 which indicates that the schools that

opted out of the original study tended to have lower reading scores. If we adjusted for observed

confounders, using a regression model, the estimated bias is -0.08 and the 95% confidence

interval now includes zero. Multilevel matching using the default settings produces an estimated

bias of -0.13 standard deviations. However, the three more customized matches (Matches 2–4)

produce smaller amounts of bias: -0.04, -0.05, -0.04, respectively. These estimates are 50%

smaller than those from the regression model. Here, additional regression adjustment does not

provide additional bias correction; these estimates are essentially identical to those based on

regression alone. However, the confidence intervals are wide enough that we can’t distinguish

among the estimates. In general, for this first study, two conclusions are warranted. First, if

we adjust for observed confounders, we produce treatment effect estimates that are statistically

indistinguishable from those in the randomized trial. Second, multilevel matching, when carefully

applied, produces estimates that are closest to those from the trial.
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Table 2: Comparison of Statistical Adjustment Methods to Experimental Benchmark from Achieve
3000 Intervention

Treatment % Bias
Bias 95% CI Effect Estimate Reduction

Unadjusted -0.18 [-0.30, -0.07] -0.13 0
Multilevel Regression Model -0.08 [-0.19, 0.03] -0.03 58
Match 1 - Defaults -0.13 [-0.25, -0.02] -0.08 27
Match 2 - Reading Score Balance -0.04 [-0.16, 0.08] 0.01 79
Match 3 - Overall Balance -0.05 [-0.18, 0.07] -0.01 71
Match 4 - Reading Score Only Balance -0.04 [-0.16, 0.08] 0.00 76
Match 1 + Reg. Adjust. -0.10 [-0.21, 0.02] -0.05 47
Match 2 + Reg. Adjust. -0.09 [-0.21, 0.03] -0.04 52
Match 3 + Reg. Adjust. -0.07 [-0.20, 0.05] -0.02 60
Match 4 + Reg. Adjust. -0.08 [-0.19, 0.04] -0.03 59

5.1.1 Multi-Tiered System of Supports (MTSS)

In the second analysis, we use a CRT that evaluated the use of Multi-Tiered System of Supports

(MTSS). MTSS is an umbrella framework designed to empower teachers to make instructional

and behavioral decisions based on student need. In 2015-16, the district launched a randomized

evaluation of MTSS by recruiting 88 schools and randomly assigning the framework to 44 schools.

At the elementary school level—our focus here—54 schools were recruited, and 28 received MTSS.

The full sample was sorted according to an achievement and behavior index with MTSS randomly

assigned within pairs. The control condition was business-as-usual whereby teachers utilized

existing resources to meet students’ needs. Treated schools were provided with MTSS coaches

who provided ongoing support to schools, ongoing technical training for all school-based MTSS

teams, consulting services from MTSS program advisors and staff, and various implementation

resources. Again, we use end-of-grade reading scores as the outcome measure. See the appendix

for the list of student- and school-level variables used for adjustment.

The analysis mirrors the Achieve3000 CRT in that we first estimated the treatment effect from the

randomized trial. We then discarded the experimental controls and replaced them with schools

that did not opt into the study. We again adjusted for observed confounders using the same three
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forms of multilevel matching and regression models. Table 3 contains the results. Again, the

unadjusted estimate differs significantly from the experimental benchmark estimate (bias: 0.138).

All three forms of multilevel matching produce estimates which are statistically indistinguishable

from the experimental benchmark. However, the regression estimates are noticeably closer to

the experimental benchmark (bias: -0.002). Next, we estimated treatment effects by applying

regression models to the matched data and adjusting for any covariates with residual imbalances.

These estimates are nearly identical to those from regression adjustment alone. What explains

this result? Matching is focused on modeling the treatment assignment, while regression is a

model of the outcome. Clearly some of the confounders are strongly related to the outcome (most

likely prior test scores), and in this application, adjustment via a regression produces additional

bias reduction.

Table 3: Comparison of Statistical Adjustment Methods to Experimental Benchmark from MTSS
Intervention

Treatment % Bias
Bias 95% CI Effect Estimate Reduction

Unadjusted 0.138 [0.058, 0.218] 0.812 0
Multilevel Regression Model -0.002 [-0.082, 0.078] -0.068 99
Match 1 - Defaults 0.055 [-0.029, 0.139] 0.289 60
Match 2 - Reading Score Balance 0.036 [-0.059, 0.130] 0.167 74
Match 3 - Overall Balance 0.038 [-0.046, 0.123] 0.185 72
Match 4 - Reading Score Only Balance 0.018 [-0.071, 0.107] 0.057 87
Match 1 + Reg. Adjust. -0.003 [-0.087, 0.081] -0.076 98
Match 2 + Reg. Adjust. -0.002 [-0.096, 0.092] -0.068 99
Match 3 + Reg. Adjust. 0.002 [-0.082, 0.086] -0.046 99
Match 4 + Reg. Adjust. -0.004 [-0.093, 0.085] -0.082 97

5.1.2 Nurturing for a Bright Tomorrow (NBT)

In our final benchmarking analysis, we use a randomized evaluation of Nurturing for a Bright

Tomorrow (NBT). NBT was designed for use in early elementary school classrooms to provide

teachers with a framework to differentiate instruction, teach advanced vocabulary and speaking

skills, and build sustainable problem-solving traits. The primary goal in the study was to under-
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stand whether the NBT intervention would increase enrollment in the district’s gifted and talented

program. District staff recruited 32 schools with below average gifted enrollments to participate

in the CRT. The CRT design was again a matched-pair design in which schools that were ranked

on prior gifted program enrollment rates were sorted into pairs, and NBT was randomly assigned

to one school within each matched pair. NBT was applied to schools for each new kindergarten

cohort. The primary outcome was a binary measure for whether the student enrolled in the gifted

program in fall of the third grade year.

Our study design was consistent with Achieve3000 and MTSS. That is, we again replaced the

control schools with schools that did not participate in the CRT. We matched treated schools to

the new control cohort. Table 4 displays the results. Again, the unadjusted estimate differs sig-

nificantly from the experimental estimate. Here, matching and regression adjustment all produce

bias estimates of similar magnitudes. That is, bias under regression alone is 0.018 and bias under

one of the three matches is 0.013. However, we find there is additional bias reduction when we

apply regression modeling to the matched data and include covariates. Under this approach, the

bias for all three methods of matching is quite low: 0.009 to -0.008.

Table 4: Comparison of Statistical Adjustment Methods to Experimental Benchmark from the
NBT Intervention

Treatment % Bias
Bias 95% CI Effect Estimate Reduction

Unadjusted -0.028 [-0.137, 0.082] -0.059 0
Multilevel Regression Model 0.018 [-0.061, 0.098] -0.013 34
Match 1: Defaults -0.001 [-0.097, 0.096] -0.032 98
Match 2: Reading Score Balance -0.026 [-0.148, 0.097] -0.057 8
Match 3: Overall Balance -0.013 [-0.126, 0.099] -0.045 52
Match 1 + Reg. Adjust. -0.006 [-0.105, 0.093] -0.038 77
Match 2 + Reg. Adjust. -0.008 [-0.108, 0.092] -0.039 71
Match 3 + Reg. Adjust. 0.009 [-0.078, 0.095] -0.023 69

In sum, two broad conclusions are warranted based on these three benchmark studies. First, we

were able to recover the experimental benchmark in all three cases. That is, across all three

applications, we were able to use observed covariates to obtain treatment effect estimates that

27



are very close to the randomized trial results. Why might this be the case? While we cannot

know for sure, it is our supposition that this is due to the nature of clustered observational

studies. That is, selection into treatment tends to be based on school-level covariates and is often

conducted by school district officials. Such scenarios typically are easier to model than applications

where subjects select their own treatments based on anticipated benefits. Second, we can also

draw some limited conclusions about the best approach to statistical adjustment. Consistent

with much other research, we found that while matching often performs well, regression after

matching can provide additional bias reduction. In the first case study, matching alone produced

the best results, and additional regression adjustment was unnecessary. In the second application,

regression and matching with regression produce nearly identical results. In the second and third

applications, additional regression adjustment after matching was critical to improving results.

However, in we must interpret the results with some caution in the first two cases, since we did

not have sufficient power to distinguish between methods. Next, we conduct a simulation study

to to better understand the variation in performance across matching alone, regression alone,

and matching together with regression. We can design the simulation study so that matters of

statistical power are not concern.

6 Simulation Study

For our simulation study, we sought to develop a design that closely mimics an actual COS

in education. To that end, we based our simulation on a COS in Pimentel et al. (2017). That

study investigated the effectiveness of a summer school reading intervention in Wake County, NC.

More specifically, the authors evaluated the use of myON, a digital reading platform designed to

increase reading comprehension among students. Schools were selected for the intervention based

on a mix of factors including internet bandwidth, computer access, and geographic distribution.

Given that the intervention was assigned to entire elementary schools, the design follows the COS

template. Next, we outline the simulation design and how we used the myON data to structure

the simulation.
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We begin with a short review of details about the data set that influence the simulations. In

the data, there are 18 treated schools with 1,367 students, and 26 control schools with 2,060

students. There are 5 student-level variables and 9 school-level variables. The student-level

variables are reading and math test scores, and indicator variables for race/ethnicity and sex.

The school covariates include the percentage of students receiving free/reduced price lunch,

English language learners, novice teachers, and students proficient in math and reading. We also

include school-level measures for staff turnover rates and student average daily attendance. We

calculated R2 values for both the outcome and for a propensity score model stratified by student

and school-level covariates. The R2 using student-level variables for the outcome is 0.59 and

for treatment assignment the pseudo-R2 is 0.003. The R2 using school-level variables for the

outcome is 0.004 and for treatment assignment the pseudo-R2 is 0.28. As such, in this data,

school-level variables are critical for treatment assignment, and student-level variables are strongly

associated with the outcome. Our simulation utilizes this feature as we outline next.

We begin by describing the notation for our data generating process used in the simulation.

We use X to represent both school- and student-level variables in the myON data, summarized

above. Since X includes covariates at both levels, we omit subscripts. We use separate notation

for three covariates related to achievement. We denote student-level reading scores with Rij,

student-level math scores as Mij, and the percentage of students proficient in math and reading

in each school with Pj. We then fit the following model:

Yij = β0 + β1X + β2Rij + β3Mij

where Yij are student-level reading scores and β0 is the intercept. After fitting this model, we

save β̂0 and ε̂ij, the estimated residuals from this regression model. We use τ̃ to denote the true

treatment effect estimate in the simulation. We set the true treatment effect to be a third of a

standard deviation of the raw outcome measure.

Next, we generated simulated data via the following steps. First, we generate potential outcomes
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under control as

y0 = β̂0 + 2.5Rij + 2.5Mij + 1.9Pj + v1

where v1 is a draw from a normal distribution that is mean zero with a standard deviation of 12.

Next, we generated potential outcomes under treatment as

y1 = y0 + τ̃ + δi

where δi is the following student-level model for treatment effect heterogeneity:

δi = .01Rij + .05Mij + v2.

Again v2 is a draw from a normal distribution that is mean zero with a standard deviation of

2. This implies that there is a systematic treatment effect as well as student-level heterogeneity

in the treatment effect. We also developed a model for the treatment assignment process. We

stipulate that treatment assignment is a school-level process that is only a function of school

academic performance:

Sj = 25− .5Pj

We then generate the school-level treatment assignment indicator, Zj, as draws from a Binomial

distribution with central tendency dj, where dj is

dj = exp(Sj)
1 + exp(Sj)

.

There were 44 schools in the data set and 18 are treated. This treatment selection model

produced between 15 and 25 treated schools in each iteration of the simulation. Next, we

generate simulated outcomes based on the following equation:

Ỹij = Zjy1 + (1− Zj)y0 + uij + ũj
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In the equation for the outcomes, there are both student and school specific error terms. Above,

uij = ε̂ij + v3, where v3 is a draw from a normal distribution with mean zero and a standard

deviation of 4. Next, ũj is a school-level error term that is the mean of ε̂ij for each school.

There are several important features of our simulation that are critical to understand. First,

potential outcomes under control are a function of the student-level test scores and, to a lesser

extent, the overall quality of the school as measured by the percentage of proficient students.

Second, for each student there is both a systematic treatment effect that is constant and an

idiosyncratic component that is also a function of student-level test scores. Third, selection for

treatment at the school level is only a function of school-level academic performance. Finally, the

error term has both student- and school-level components, as we would expect in a COS.

In each simulation scenario, we apply three different estimation methods. First, we use multilevel

matching to adjust for observed confounders. After matching, we estimate the treatment effect

by applying a RE regression model to the matched data. Second, we use multilevel matching, but

after matching, we estimated the treatment effect using an RE regression model that includes all

the baseline covariates. Third, we estimated the treatment effect using a RE regression model

alone. For the estimates from the RE regression alone, we use the complete control group.

Next, we conducted four simulation studies, where we varied the specification for the three

estimators. In the first scenario, we omitted the school-level academic performance measure Pj

from the ML matching and the RE regression. However, we include the school-level academic

performance covariate in the RE regression model applied to the matched data. We refer to

this scenario as the “Student In” case, since we condition on student-level test scores, and

we omit the key school-level confounder. In the second scenario, we omitted the student-level

test score measures Rij and Mij from the matching estimator and the RE regression model.

These covariates are included in the post-match regression model. We refer to this scenario

as the “School In” case, since we condition on the key school-level covariate, and we omit the

key student-level confounders. In the next scenario, both student- and school-level covariates are
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included, so all three methods of estimation are fully specified. In the final scenario, we omit both

student- and school-level measures from the matching and RE regression estimator. However,

these covariates are included in the regression model that further adjusts after matching. Thus,

we seek to understand how misspecification affects estimation methods in the context of the COS.

Specifically, we designed the study such that the key school-level covariate determines outcomes

and treatment assignment, while the key student-level variables only determine outcomes. As

such, we can understand how methods that model either assignment, outcomes, or both are

affected by omitting these covariates from the specification. Note that in all the scenarios, we still

include all the other baseline covariates in either the regression model or the match. However,

these covariates are, by construction, not determinants of either the outcomes or treatment

assignment process, except insofar as they are correlated with the key covariates.

For each scenario, we repeated the simulation 1,000 times, and we report the bias for each

method. We measured bias as absolute standardized bias. That is, we calculate the absolute

value of the average bias and divide it by the standard deviation of the control group from

the original data. Finally, we comment on three additional considerations. First, the outcome

model is linear—as such, the data generating process should be amenable to regression modeling.

Second, simulations of this type are difficult to conduct with matching. Normally, the matching

process would included iterative fine-tuning to reduce imbalances. Here, the imbalances will

vary stochastically from simulation to simulation, and we cannot practically adjust the matching

parameters to match the variation in the imbalances over a thousand simulations. In theory,

matching would perform better if we were able to adjust the match in each case to improve

balance. Finally, standard practice is to include only imbalanced regressors in the regression

model after matching. Here, we include all variables, since again balance checking is impractical

in a simulation.
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6.1 Simulation Results

Table 5 contains the results from the four simulation scenarios. First, we review the results

from the Student In scenario. Here, we observe that if we do not make any adjustment for

covariates, the bias is on average nearly 0.30 standard deviations—a rather large bias that would

completely mask the true treatment effect. We find that the RE regression model is robust

to misspecification in this scenario. That is, so long as the key outcome-level covariates are

included, the RE regression model displays little bias. Matching alone, however, performs poorly

with an average bias of 0.13. However, post hoc regression adjustment removes this bias. Next,

in the School In scenario, matching has little bias—0.03 of a standard deviation. Now the RE

regression is biased—0.18 of a standard deviation. Clearly, regression performs poorly when we

only condition on the key school-level covariate that strongly determines treatment assignment.

When there is no mis-specification, all three methods perform similarly. Finally, when we omit

both sets of variables, the RE regression model performs worst. Here, the doubly robust option

performs best. However, the bias from matching alone is much smaller than that of regression

alone. This is due to the fact that the school-level variables that are included are more strongly

correlated with school-level academic performance than the other student-level measures. As

such, adjusting for these other school-level covariates allows for some bias reduction. Overall,

the results of the simulation comport with conventional wisdom. That is, when key confounders

are in the outcome model, outcome modeling will perform well. When key confounders predict

treatment, methods such as matching perform well. What is novel about our simulation study is

that in an education context, matching appears to be more robust, since school-level predictors

often serve as important proxies for each other in treatment assignment. The smaller correlations

among student-level variables make them poor proxies when those key variables are missing.

Finally, these results may also help explain the variation in the results of the experimental bench-

mark results. Matching performed well in the first application. This suggests that the school level

covariates were critical in the analysis. In the second analysis, regression performed well, which
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Table 5: Bias in Treatment Effect Estimates For Three Simulation Scenarios

Student In School In Both In Both Out
Unadjusted 0.28 0.28 0.28 0.27
Regression 0.03 0.18 0.04 0.18
Multilevel Match 0.13 0.03 0.01 0.10
Multilevel Match + Regression 0.05 0.04 0.04 0.05

suggests that student-level covariates were critical. In this application, the additional bias reduc-

tion from regression after matching was key. In the third application, we needed both matching

and regression for the largest amount of bias reduction. That implies there were key imbalances

in school- and outcome-level covariates that needed to be accounted for.

7 Application

Finally, we present an empirical application. We use this empirical application to demonstrate one

key strength of matching in the context of a COS. When treatments are assigned at the school

level, this often results in smaller samples, which may exacerbate a lack of overlap in the treated

and control covariate distributions. Here, we use the empirical application to demonstrate how

matching can reveal overlap issues in data in a way that regression modeling cannot. We begin

by reviewing the details of the application.

In 2015-16, Wake County followed many other large districts by implementing a school turnaround

strategy known as the Elementary Support Model (ESM). ESM was designed to increase support

for the district’s chronically lowest performing elementary schools. To identify these schools,

district staff developed an index that accounted for academic, human capital, behavioral, and

socioeconomic indicators and was averaged over the previous three years. The 12 elementary

schools ranking at the bottom of this index were non-randomly assigned to the ESM treatment

condition and received a range of supports over the next three years, including governance re-

form, additional staffing, and instructional coaching. The goal of ESM was to help these 12

schools transition out of chronically underperforming status. A district evaluation of ESM used
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an unspecified matching procedure that resulted in an analytic sample of the 12 ESM schools and

12 matched comparison schools (Paeplow et al. 2019). Here, we present a brief analysis of the

ESM intervention to compare the utility of multilevel matching to an analysis based on regression

modeling alone.

Our analytic sample consists of the final year of a three-year panel that spans 2015-16 to 2017-18

and includes all schools and students in the district. In the fall prior to ESM’s launch, the district

had 104 elementary schools—12 ESM and 92 non-ESM. Our data includes school and student-

level variables merged into a single data source. Student-level covariates include student sex, an

indicator for limited English proficiency, an indicator for being advanced in grade, student race,

and prior end-of-year test scores in reading and mathematics. School-level covariates include

the percentage of students proficient in reading, mathematics, and science; magnet status, Title

1 status, and measures for the percentages of students receiving free/reduced lunch, students

classified as English language learners, African American or Hispanic students, and National Board

certified teachers. The first column of Table 6 contains balance statistics for this data set before

matching. First, it is immediately obvious that there are very large differences between the treated

and comparison schools. The smallest standardized difference is 0.43 and the largest is near 3.

In fact, for the three measures of academic proficiency, all the standardized differences are larger

than 2, and two of those are nearly 3. That implies that the means of these covariates differ by

more than 2 standard deviations.

If our adjustment strategy were based on regression modeling alone, we would simply adjust for

these covariate differences. We would have little sense of how much improvement such regression

adjustment made in terms of comparability. That is, these groups might still be incomparable.

Here, we implemented a multilevel match. In the match, we prioritized the large imbalances

in academic proficiency as a set, and balanced on 3 additional, strongly imbalanced covariates.

The results are contained in the second column of Table 6. We find that balance is dramatically

improved. For the 3 measures of academic proficiency, the standardized differences are now near
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one instead of 3, and balance is generally improved. However, the rough rule of thumb is that

after matching, standardized differences should fall below 0.10. In the context of ESM, only

two covariates approach that threshold. Next, we implemented a match that trims the treated

schools. We trimmed iteratively and stopped after dropping six treated schools. The final column

of Table 6 contains the balance statistics for this match. Again, while the improvements in balance

are large, we are nowhere near the standard benchmark for standardized differences. What have

we learned? Here, the matching process provides clear evidence that the treated schools are quite

different from the control schools. Moreover, even a subset of the treated schools remain very

different from the controls. Figure 1 contains box plots for two covariates after matching. The

lack of overlap in the covariates distributions is quite obvious.

What should one do? Here, the best option is to expand the control pool to include schools outside

of the district. We would caution against estimating treatment effects even after matching given

clear levels of incomparability. Matching readily reveals the large differences between treated and

control schools and clearly warns against invalid inferences in a way that regression does not.

The ability to detect such large differences is critical in the context of COS applications, since

treated and control pools tend to be smaller. While this ability to detect large differences has

long been a strength of matching, multilevel matching makes these tools available to applications

that conform to the COS template.

8 Conclusion

Clustered observational studies are a common study design in educational research. In a COS,

treatments are non-randomly assigned to clusters such as schools or classrooms. The non-random

assignment of treatment implies that investigators must use statistical methods to make treated

and control groups comparable in terms of observed covariates. Traditionally, multilevel regression

models have been widely used for this task, since matching methods for this type of study design

are relatively new. Here, we provide readers with an introduction to multilevel matching, a new
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Table 6: Balance Statistics for Elementary Support Model Schools in Wake County

Unmatched Matched Matching + Trimming
Std. Diff. Std. Diff. Std. Diff.

Proficient Reading -2.79 -1.16 -0.46
Proficient Math -2.80 -1.25 -0.61
Proficient Science -2.37 -0.96 0.04
Magnet 0.43 -0.18 -1.07
Title I School 1.38 0.00 0.00
Student With Free Lunch 2.72 1.15 0.77
LEP 1.49 0.86 0.62
Black Students 1.95 0.37 0.62
Hispanic Students 1.51 0.81 0.31
Beginner teachers 1.06 1.10 1.52
White Teachers -1.46 -0.79 -0.50
Black Teachers 1.42 0.75 0.36
National Board Certified -0.88 -0.33 -0.44

form of matching designed specifically for clustered observational studies. In a multilevel match,

schools are paired using both school-level covariates and summary statistics based on student-

level covariates. More specifically, students are first matched across treated and control schools.

The quality of these matches is then used to inform a school-level match.

Next, we performed two different evaluations of multilevel matching. In the first evaluation, we

recovered experimental benchmarks from three clustered randomized trials. Next, we conducted a

simulation study where we constructed the simulations based on data from a real COS application.

In the first study, we found variation in results that were explained by patterns in the simulations.

In the simulation, we found that regression modeling performed well when only student-level

covariates were available, while multilevel matching was key when school-level covariates were

available. However, across these different analyses, we found that often the most effective strategy

was to combine multilevel matching with regression modeling using the matched data set. This

approach tended to further reduce bias compared to matching or regression used in isolation.

Finally, using a real data application, we demonstrated how matching can clearly reveal overlap

in covariate distributions more readily than regression modeling. When we find that balance
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Figure 1: Covariate Distributions After Matching

and overlap are still poor after matching, we should recognize that a key incomparability exists

between treated and control units. Such incomparability would not be readily apparent following

regression analysis alone.

Multilevel matching is not without its limitations. Multilevel matching does provide researchers

with many degrees of freedom in the analysis. Researchers might be tempted to trim treated

units or prioritize covariates with an eye toward treatment effect estimates rather than balance

metrics. The primary way to prevent this is the use of analysis plans, where match options are

specified and implemented without reference to outcomes.
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