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Abstract

Researchers often include covariates when they analyze the results of ran-

domized controlled trials (RCTs), valuing the increased precision of the esti-

mates over the potential of inducing small-sample bias when doing so. In this

paper, we develop a sufficient condition which ensures that the inclusion of

covariates does not cause small-sample bias in the effect estimates. Using this

result as a building block, we develop a novel approach that uses machine learn-

ing techniques to reduce the variance of the average treatment effect estimates

while guaranteeing that the effect estimates remain unbiased. The framework

also highlights how researchers can use data from outside the study sample to

improve the precision of the treatment effect estimate by using the auxiliary

data to better model the relationship between the covariates and the outcomes.

We conclude with a simulation, which highlights the value of using the proposed

approach.
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I Introduction

Randomized controlled trials (RCTs), in which treatment is randomly assigned to

study participants, are a key tool for researchers and are often regarded as the gold

standard of causal inference. One main advantage of RCTs is that simply comparing

the average outcome of the treated observations to the average outcome of control

observations provides an intuitive and unbiased estimate of the average treatment

effect of the intervention. Unbiasedness is not the only criterion for an estimator,

however, and there is a robust literature on alternative evaluation approaches that

provide more precise estimates.

One of the most studied approaches involves controlling for covariates in the anal-

ysis of RCTs. The current literatures suggests a bias-variance tradeoff: a number of

papers have illustrated that adjusting for a fixed number of covariates can reduce the

asymptotic variance of the estimates, while other research illustrates that including

covariates can lead to small-sample bias in the estimator, e.g. (Athey and Imbens,

2017; Freedman, 2008a; Lin, 2013; Berk et al., 2013; Freedman, 2008b; Zhang et al.,

2008; Pitkin et al., 2013; Wager et al., 2016; Bloniarz et al., 2016; Lei and Ding,

2019). Given the small sample size of many RCTs, researchers are often stuck in an

uncomfortable position: the inclusion of covariates is tempting due to the otherwise

imprecise estimates, but the potential for inducing bias by doing so is non-trivial

given the small sample size.

This debate on whether to include covariates in the analysis of RCTs is amplified

when one considers using machine learning techniques such as lasso or random forest

regressions to control for the covariates instead of ordinary least squares (OLS). The

potential value of including controls is larger for these ML techniques than in a tra-

ditional OLS case, but the concern about small-sample bias is less well understood

and potentially more of a concern due to the increased flexibility. A burgeoning lit-

erature has begun to study the performance of estimators that use machine learning

approaches to evaluate RCTs, but all have made strong assumptions on the data

generating process and/or taken an asymptotic perspective in which the size of the

RCT grows, e.g. (Wager et al., 2016; Bloniarz et al., 2016; Lei and Ding, 2019; Wu

and Gagnon-Bartsch, 2018).

In this paper, we use a design-based or randomization model in which the only un-

certainty in the estimate is generated by the randomness of the treatment assignment.
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We then focus on a set of estimators that retain the intuition behind the standard

estimation approach by comparing the average residualized outcome, i.e. the outcome

minus some function of the covariates, of the treated group to the average residual-

ized outcome of the control group. We then derive a sufficient condition which, when

satisfied, guarantees that using covariates to residualize the outcome will not add bias

even in finite samples and discuss how this sufficient condition can be satisfied under

most common treatment assignment mechanisms and estimation approaches.

We then turn our attention to the variance of the proposed estimator. A downside

of the design-based model is that general statements about optimal residualization are

difficult, as the optimal approach will depend on the characteristics of the particular

(fixed) sample. Instead of an optimality condition, we show that as a general rule

the uncertainty in the treatment effect decreases as one can better predict a weighted

average of the two potential outcomes of the study sample.

Together, the above results suggest that the residualization can be done with the

perspective that any approach can be judged purely based on how well one is able

to (out-of-sample) predict the treated and control outcomes. We use this insight to

propose a novel way to include covariates in the analysis of an RCT that starts by

predicting the outcomes without distinguishing between treated and control obser-

vations, before separately modeling the relationship between the covariates and the

resulting treatment and control residuals.

We also use the results to motivate the inclusion of information from observations

outside the study, such as settings that did not participate in the RCT. Even if there

is non-random selection of observations into the study, these observations may allow

one to better residualize the outcome of observations inside the study and therefore

improve the precision of the RCT. Our theoretical result suggests a way one can do

so that does not risk adding bias to the estimates, turning the question of whether to

include these observations in the analysis into an easily testable empirical one. This

is in contrast to existing approaches, which generally add bias to the effect estimate

as the cost of increasing its precision (Angrist et al., 2016; Kaizar, 2015).

Finally, we illustrate the potential value of the proposed approach by turning to

an empirical application in which we randomly select schools from the New York City

administrative data, randomly select some of them to be considered treated schools,

and then add a known heterogeneous treatment effect to the treated school’s true

outcome. We show that the proposed approach reduces the variance of the estimates
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by anywhere from 55% to 70%, depending on the sample size and method used. This

is equivalent to more than doubling the sample size of the RCT. Thus, the proposed

method is a cost free way to improve the precision of treatment effect estimates,

leading to more cost-effective RCTs and therefore more rapid scientific advancement.

II Conceptual Framework and Notation

We will use Rubin’s Causal Model as the conceptual framework, in which we postulate

the existence of one potential outcome for individual i if she is not treated and an

alternative potential outcome for individual i if she is treated. We will use µi to denote

individual i’s outcome if she is not treated and τi is the causal effect of the treatment,

i.e. the difference between her outcome if she is treated and her outcome if she is

not treated. Using Ti, which equals one if she is treated and zero if not, to denote

her treatment status, we can therefore write her observed outcome as Yi = µi + τiTi.

We will also assume that there are a vector of covariates Xi that are observed by the

researcher and are not impacted by the treatment.

We will take the perspective that the only randomness is in the treatment assign-

ment, which implies that we can treat µi and τi as fixed parameters and Ti as the only

random variable. We will let each individual potentially have different probabilities

of being assigned to the treatment condition and only assume that E[Ti] = pi ∈ (0, 1).

We will not make any additional assumptions on how this assignment process works,

allowing for correlations in the assignments as would be the case when a fixed num-

ber of units are treated or assignment is done via stratified random sampling, re-

randomization, or when units within a cluster are all assigned the same treatment

status.

Finally, we will restrict our attention to estimators that consist of differencing the

mean residuals in the treatment group and the mean residuals in the control group,

potentially with weights to adjust for the fact that different observations may have

different probabilities of being assigned to the treatment. More precisely, we will

focus on estimators of the form:

τ̂ =
1

N

∑
∀i

Yi − ĝi(Xi)

pi
Ti −

Yi − ĝi(Xi)

1− pi
(1− Ti) (1)

for some function ĝi(Xi) that can be estimated from the observed data (Aronow and
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Middleton, 2013). Note that in cases where each observation has the same probability

of treatment, this is equivalent to:

τ̂ =

(
1

NT

∑
∀i s.t. Ti=1

Yi − ĝi(Xi)

)
−

(
1

NC

∑
∀i s.t. Ti=0

Yi − ĝi(Xi)

)

where NT is the number of treated observations and NC is the number of control

observations.1 Since we take this form as given, the focus of this paper is solely on

how best to estimate ĝi(Xi).

III Bias and Variance of Estimator

Bias of Estimator

We first turn our attention to the bias of the estimator. Given the definition of the

estimator in Equation (1), we have that

E[τ̂ ] =
1

N

∑
∀i

E

[
Yi − ĝi(Xi)

pi
Ti −

Yi − ĝi(Xi)

1− pi
(1− Ti)

]
(2)

Replacing Yi with τiTi + µi and noting that Ti · Ti = Ti and that Ti · (1− Ti) = 0, we

can write this expression as:

E[τ̂ ] =
1

N

∑
∀i

E
[τiTi
pi

]
+

1

N

∑
∀i

E
[µiTi
pi
− µi(1− Ti)

1− pi

]
− 1

N

∑
∀i

E
[ ĝi(Xi)Ti

pi
− ĝi(Xi)(1− Ti)

1− pi

]
Because the only randomness is in the treatment assignment, the terms τi, µi

and pi can be viewed as fixed with respect to the expectation. Therefore E
[
µiTi
pi

]
=

µiE[Ti]
pi

= µiE[1−Ti]
1−pi = E

[
µi(1−Ti)
1−pi

]
, which ensures that 1

N

∑
∀i E
[
µiTi
pi
− µi(1−Ti)

1−pi

]
= 0.

1Technically, NT is the expected number of treated observations, or NT = pN , where p is
the probability of being assigned to the treatment, and NC is the expected number of control
observations, or (1− p)N .
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Similarly, E
[
τiTi
pi

]
= τi which means the formula simplifies to:

E[τ̂ ] =
1

N

∑
∀i

τi −
1

N

∑
∀i

E
[ ĝi(Xi)Ti

pi
− ĝi(Xi)(1− Ti)

1− pi

]
(3)

which means the bias of the estimator defined in Equation (1) is given by:

B
(
τ̂
)

= − 1

N

∑
∀i

E
[
ĝi(Xi) ·

(Ti
pi
− (1− Ti)

1− pi

)]
(4)

Note that unlike µi, the value of ĝi(Xi) is not fixed. If, for example, one assumes

that ĝi(Xi) = β′Xi and estimates β using an OLS regression of Yi on Xi, the estimated

values of β will depend in part on the value of Yi, which in turn depends on whether

individual i is assigned to the treatment group or control group. This dependence

means that, unlike the case of µi, the value of ĝi(Xi) is different when i is treated

than when i is control, which means that E
[
ĝi(Xi) · Tipi

]
will not necessarily be equal

to E
[
ĝi(Xi) · 1−Ti1−pi

]
. However, this also implies the following sufficient condition:

Theorem 1. Suppose that for every i the value of E
[
ĝi(Xi)|Ti = 1

]
= E

[
ĝi(Xi)|Ti =

0
]
. Then B

(
τ̂
)

= 0.

This sufficient condition highlights the fact that any bias that controlling for

covariates induces in the estimates comes from the fact that ĝi(X) is estimated and

the potential that the estimation approach causes dependencies between the estimate

of ĝi(X) and i’s treatment assignment. This suggests that if one exercises care in the

estimation of ĝi(X), it might be possible to ensure that controlling for covariates does

not lead to any bias in the treatment effect estimate. A natural way to do this is

to partition observations into K subgroups in a way that knowing all the treatment

assignments of all individuals outside subgroup K ′ does not provide any information

on the treatment assignment of individuals within subgroup K ′, and then estimate

ĝi(X) using observations that are in a different subgroup than i. To formalize this,

we note the following theorem:

Theorem 2. Let A be any algorithm that inputs outcomes and covariates and outputs

a bounded function which itself inputs covariates and outputs a real number. Then

define an estimator that:
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1. Partitions the N observations into K subgroups such that E[Ti|T (−K)] = pi for

all i ∈ K, where T (−K) be the vector of treatment assignments for all observa-

tions not in subgroup K;

2. Calculates ĝi(X) using the algorithm A on observations that are in a different

subgroup than i;

3. Estimates the treatment effect using Equation (1).

Then that estimator generates an unbiased estimate of the average treatment effect.

A natural follow-up question is whether it is possible to partition N observations

into K subgroups such that E[Ti|T (−K)] = pi for all i ∈ K. Luckily, this partitioning

is possible under many of the common randomization approaches. Four examples of

partitions that satisfy this criteria are described below:

• Suppose that the treatment assignment is independently determined for each

observation. Then the criteria holds for any choice of K subgroups.

• Suppose that treatment assignment is done by drawing a fixed number of obser-

vations, which become the treated observations, from the set of all observations

in the study. Furthermore, suppose that the number of treated units is such

that is possible to partition the N observations into K subgroups with NK

observations, each of which has p · NK treated observations and (1 − p) · NK

control observations. Then the criteria holds when there are exactly p · NK

treated observations and (1− p) ·NK control observations in each subgroup.2

• Suppose that treatment is determined by stratified sampling, in which the full

set of observations are divided into a number of strata and the treatment as-

signment is done independently across the strata. Then the criteria holds when

using the strata as the K subgroups.

• Suppose that the researchers observe some a set of observations that are not in

the study. Then splitting the sample into two subgroups, one which consists of

observations in the study and one of observations outside of the study, satisfies

the criteria regardless of the treatment assignment mechanism.

2See proof in appendix. The idea is also easily extended to cluster randomized trial in which a
fixed number of clusters are randomly chosen and all individuals within the chosen cluster receive
the treatment and those in other clusters are considered controls. In this case, the clusters should
be partitioned in subgroups and each individual within a cluster is in the same subgroup.
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As can be seen in the examples above, while it is often possible to satisfy the

condition it does require some care in how researchers partition the sample. For

example, image a simple RCT in which half the 100 total observations are randomly

chosen and assigned to the treatment. In this case, the commonly used leave-one-out

approach of completely partitioning the sample into 100 subgroups each with one

observation would not satisfy the assumption, as knowing the treatment assignment

of the other 99 observations in the study provides enough information to determine

the treatment assignment of the 100th observation. However, partitioning the sample

into 50 subgroups of two observations each, one of which is treated and one is control,

would satisfy the assumptions of Theorem 2.

Variance of Estimator

The previous discussion suggests that under a number of common treatment assign-

ments it is possible to control for covariates in a RCT framework without adding bias

to the estimates. Perhaps surprisingly, it showed that if one is careful about determin-

ing the K folds, there are virtually no restrictions on how to control for covariates.

While the previous discussion suggests that it is possible to control for covariates

without biasing the estimate, however, the flexibility means the result above provides

little guidance on how one should do so. In this section, we calculate the variance of

the estimator, in order to guide the optimal choice of ĝi(Xi).

To do so, it will help to denote εi as the amount that ĝi(Xi) differs from µi + (1−
pi)τi, i.e. εi = ĝi(Xi)−

(
µi + (1− pi)τi

)
. We can substitute this expression and the

fact that Yi = µi + τiTi into Equation (1) to get that the variance of the estimate

corresponds to:3

V
(
τ̂
)

= V

(
1

N

∑
∀i

[
εi
pi
Ti −

εi
1− pi

(1− Ti)

])
(5)

Equation (5) highlights that as a general rule the more closely we can set ĝi(Xi)

to be equal to µi + (1− pi)τi, the more precisely we can measure the average effect of

the treatment. For example, if treatment assignment is done independently for each

observation and the probability for each observation to be assigned to the treatment

3See appendix for full derivation.
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was p, this expression reduces an sum of the squared-residuals times a constant, or:

V
(
τ̂
)

=
1

p(1− p)
1

N2

∑
∀i

ε2i (6)

More broadly, even with some correlations in the treatment assignment, it is likely

minimizing the sum of squared-residuals also comes close to minimizes the variance

of the average treatment effect estimate, i.e. a function chosen as:

ĝi(Xi) = arg min
gi(Xi)

((
µi + (1− pi)τi

)
− gi(Xi)

)2

(7)

is likely near optimal. Note that though the motivation and derivation is different,

this result gives the same formula as used in the doubly-robust estimation of average

treatment effects in observational studies, e.g. Equation 13.37 in (Tsiatis, 2006).

There is an important distinction that in RCTs the propensity scores are known

rather than estimated. This means that the treatment effect estimate is unbiased

even if ĝi(Xi) 6= µi + (1− pi)τi, subject to the constraints discussed in Section III. As

discussed more below, this gives more freedom in how one can estimate ĝi(Xi).

IV Proposed Method

Guided by the result of Theorem 2, our proposed method consists of four steps:

1. Partition the Sample;

2. Estimate Relationship Between Covariates and Outcomes;

3. Estimate the Treatment Effect;

4. Conduct Inference on the Estimated Effect.

Steps one and three are straightforward. Step one is to partition the N obser-

vations into K subgroups in a way that satisfies the criteria specified in Theorem

2; we discussed in Section III how this is possible in most randomization schemes.

Similarly, step three is to estimate the treatment effect, which can be done by using

the results of step two in Equation (1). Steps two and four, in contrast, are more

nuanced; we discuss them in more detail below.
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Estimating the Relationship Between the Covariates and Out-

comes

As we discuss above, we aim to choose ĝi(Xi) to be as close as possible to µi+(1−pi)τi,
in a way that ensures whatever approach is used satisfies the constraints discussed

in Section III to ensure that the resulting treatment effect estimate is unbiased. A

challenge, of course, is that we do not observe both µi and τi for each individual. It

will therefore be helpful to relate µi + (1 − pi)τi to the two potential outcomes for

individual i. We can do so by re-writing µi + (1− pi)τi as piµi + (1− pi)(µi + τi) since

we observe µi for control individuals and µi + τi for treated individuals. A natural

approach is therefore to set ĝi(Xi) = piĝi,0(Xi) + (1− pi)ĝi,1(Xi), where:

ĝi,0(Xi) = arg min
g0∈G

∑
∀js.t.Kj 6=Kiand.Tj=0

(
Yj − g0(Xj)

)2
+ λJ(g0) (8)

ĝi,1(Xi) = arg min
g1∈G

∑
∀js.t.Kj 6=Kiand.Tj=1

(
Yj − g1(Xj)

)2
+ λJ(g1) (9)

and Ki denotes the subgroup that i is partitioned into, G is the set of potential

functions, and λJ(g) is a penalization term meant to smooth g0 and g1.

There are, however, reasons to believe it is possible to improve on this approach.

Most notably, even when there is substantial treatment effect heterogeneity, it is

likely dwarfed by the amount of heterogeneity across individuals, i.e. variation across

individuals in τi is substantially lower than variance across individuals in µi. In this

case, the estimates of ĝi,0(Xi) and ĝi,1(Xi) should be similar and incorporating this

prior into the estimates is likely to improve the predictions.

We therefore propose a boosting-like approach, in which one starts by pooling all

the data and estimating a function ĥi(Xi) that predicts all outcomes well. It then

estimates two separate functions that separately predict the residuals in the treatment

and control. More formally, the first step is to choose ĥ(X̃i) such that

ĥi(Xi) = arg min
h∈G

∑
∀js.t.Kj 6=Ki

(
Yj − h(Xi)

)2
+ λJ(h) (10)

We then use this function to calculate the residuals, i.e. ri = Yi − ĥi(Xi). We next

estimate a function ĥi,0(Xi) that predicts the residuals well in the control group and
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another function ĥi,1(Xi) that predicts the residuals well in the treatment group, i.e.

ĥi,0(Xi) = arg min
h0∈G

∑
∀js.t.Kj 6=KiandTj=0

(
rj − h0(Xj)

)2
+ λJ(h0) (11)

ĥi,1(Xi) = arg min
h1∈G

∑
∀js.t.Kj 6=KiandTj=1

(
rj − h1(Xj)

)2
+ λJ(h1) (12)

We then set ĝi,0(Xi) = ĥi(Xi) + ĥi,0(Xi) and ĝi,1(Xi) = ĥi(Xi) + ĥi,1(Xi).

Note that the method is so far agnostic regarding the specific technique used

to estimate ĥi, ĥi,0, and ĥi,1. Rather than focusing on whether to estimate these

functions using lasso or random forest, which will depend on the form of µi and τi,

we instead focus on what variables the algorithms should aim to predict. Nearly any

supervised learning algorithm can then be used to estimate these functions (Hastie et

al., 2009; Tibshirani, 1996; Zou and Hastie, 2005; Breiman, 2001; Hill, 2011). In the

simulations below, we estimate the functions once using lasso and once using random

forest and then average the two estimates to generate our estimate of ĝ. Finally, it

is worth noting that in an unpenalized linear model, this approach is equivalent to

to the first approach defined in Equations (8) - (9). In our simulations, however, we

find that the boosting approach significantly improves the out-of-sample predictions

and lowers the variance of the treatment effect estimates.

Employing an Auxiliary Sample

It is often the case that even in small-scale RCTs researchers have access to a much

larger auxiliary sample consisting of observations that did not participate in the study,

such as administrative data on the full population of interest. From Theorem 2, we

see that using these observations to estimate ĝ will not bias the treatment effect

estimate, as long as they are not included in the final estimate given by Equation

(1). As we discuss in the Appendix and show in the simulations, even if there is some

non-random selection into the study use of the auxiliary sample can further reduce

the variance.
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Conducting Inference on the Estimated Effect

Understanding the precision of the effect estimates presents its own set of challenges.

One approach is to calculate an exact p-value of the sharp null hypothesis, i.e. the

hypothesis that the treatment effect is zero for everyone or τi = 0 for all i, using ran-

domization inference. Under this null, none of the individuals’ outcomes depend on

whether they were assigned to the treatment or control, so it is possible to determine

the distribution of estimated effects under the null by simulating the randomization

process multiple times and each time repeating the process above to generate an

estimated “effect” given the specified treatment assignment. The p-value then corre-

sponds to the proportion of these estimate effects that are larger (in absolute value)

than the estimated effect using the true treatment assignment. Versions of this ap-

proach can similarly be used to generate confidence intervals or to test more complex

null hypotheses (Ding et al., 2014; Caughey et al., 2017). While randomization in-

ference gives exact p-values, however, it can be computationally intensive; we discuss

approximation approaches in the Appendix.

V Empirical Simulations

Simulation Specification

To explore how well the method works, we conduct a simulation using school-level

New York City administrative data for our simulation. We also conducted additional

simulations, which are discussed in the Appendix. For our hypothetical experiment,

we randomly select a subset of the schools to participate in the hypothetical study

aimed at improving students’ math scores. To capture the potential of non-random

selection into the study, we only employ schools that applied for the Attendance

Improvement and Dropout Prevention (AIDP) program as potential treated schools.

We then randomly assign one-quarter of the participating schools to the treatment;

the other three-quarters were considered the control schools.

We then simulate a treatment effect that captures the idea that hypothetical

treatment has a bigger impact on schools that: a) have higher poverty; b) struggle

more initially with student attendance. To do so, we define:

τi = α +
C

1 + atratei ∗ (1− povi)
(13)
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atratei is the baseline attendance rate at the school, povi is the baseline poverty rate

at the school. The two constants α and C chosen to make the average treatment

effect equal to 0.15 and the standard deviation of the treatment effect equal to 0.05.

Note that the functional form we use is different than the functional form we use

to estimate treatment effect heterogeneity, so we are if anything biasing against our

proposed approach being useful.

We assume that µi, school i’s outcome if they are untreated, is equal to the

outcome we observe in the data. Again, this means that we are not biasing the

simulation toward our advantage by assuming a functional form for µi.

For covariates, we use baseline measures (i.e. measures for the two years prior to

the hypothetical intervention) of the: racial/ethnic composition of the school, gender

composition of the school, fraction of the school in poverty, diagnosed with a disability,

or in temporary housing; average math and English test scores, attendance rate and

fraction of students who are chronically absent.

Estimators Used

After each simulated random assignment, we estimate the effect using three ap-

proaches described below:

1. No Covariates: As a benchmark, we estimate the effect using the standard

approach of comparing treatment to control outcomes, without adjusting for

covariates.

2. Proposed Approach: We use the algorithm defined in Section IV using the

schools that participated in the study.

3. Employing an Auxiliary Sample: We also estimate the effect using the algorithm

defined in Section IV using administrative data from all NYC schools, regardless

of whether they participated in the study. Note that while we use administrative

data from all NYC schools to estimate ĝ(Xi), we only use observations in the

study to estimate the treatment effect via Equation (1). Despite using data

outside the study to estimate ĝ(Xi), the resulting ATE is therefore still unbiased.

We discuss more details on how this is implemented in the Appendix.

For approaches two and three, we estimate the relationship between the covariates

and the outcome using the method described twice, once using lasso and once using
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random forest regressions. We then average the two results and use these as the

ultimate values for ĝi,0(Xi) and ĝi,1(Xi).

Results

Figure 1 is a violin plot showing the distribution of estimated effects over 100 simu-

lations using each of the three estimation approaches defined above, when the overall

study includes forty schools; the white dots indicate the median estimate, the box

indicates the 25th and 75th percentile-range, and the outer shape indicates the ker-

nel density estimate. As can be seen, the proposed approach significantly reduces

the variance of the estimated effects. More concretely, the variance of the proposed

approach is approximately 45% the variance of a simple difference-in-means estima-

tor. Employing the auxiliary sample to better estimate the relationship between the

outcome and covariates further reduces the variance; the variance of this approach

is about one-third as large as the simple difference-in-means estimator. Stated dif-

ferently, the proposed approach when using the auxiliary sample provides an effect

estimate in a study with 40 schools with the same level of precision as a study with

120 schools that used the traditional approach to estimate the effect.

Figure 2 shows that the benefits of using the proposed approach extends to cases

where the study size is larger. As the sample size increases, the variance of the simple

difference-in-means decreases; the variance of the proposed approaches also decreases,

however, at a roughly equivalent rate. Table 1 in the Appendix shows that the ratio

of the variation of the proposed approach to the variance of the simple difference-

in-means approach actually decreases as the sample size gets larger, due to the fact

that larger sample sizes improve the estimation of how the outcome is related to the

available covariates. The value of reducing the variance may be larger for smaller

sample sizes, when the results of the simple difference-in-means estimates are more

likely to be inconclusive. In addition, the value of employing the auxiliary sample

decreases as the sample size gets larger; in large studies, the relationship between

the covariates and outcomes can be well-estimated without relying on the auxiliary

sample.
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Figure 1: Estimated Effect Distributions When N = 40
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Note: This graph shows the results of 100 simulations in a context when 10 schools
out of 40 schools are treated. For each simulation, we estimated the effect using three
approaches described in Section V. The results of the simulations are shown in violin
plots, in which the median estimate is shown as a white dot, the box indicates the
25th and 75th percentile-range, and the area shows the kernel density of the estimates.
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Figure 2: Effect Standard Error for Different Study Sizes
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Note: This graph shows the results of 100 simulations for a range of sample sizes;
regardless of the sample size, one-quarter of the schools were randomly chosen to be
treated. For each simulation, we estimated the effect using three approaches described
in Section V.
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VI Conclusion

In this paper, we study how machine learning methods can be used to improve the

precision of small-scale RCTs. To start, we show that under common randomization

schemes it is possible to control for covariates in a way that does not bias the resulting

effect estimate, even in finite samples. We use this result, along with our examination

of the variance of the estimate, to propose a new way to include covariates in the

analysis of an RCT. The degree to which employing these methods will increase the

precision of the estimates will depend on the context, and in particular how well the

available covariates can explain variation in the outcome of interest. In our simulation,

the new approach reduces the variance of the treatment effect estimate by over 50%,

relative to a traditional comparison of the treatment and control means, without

adding bias.

We also discuss how the result that the treatment effect estimates can be unbiased

regardless of how one controls for the covariates hints at a way researchers can use

data on observations outside of the RCT to help improve the precision of the RCT

itself; these observations can be used to help model the relationship between the

outcome and covariates. When we implement this in our simulation, we find that this

approach reduces the variance of the estimates by an additional 20% in the smallest

experiment we simulate, relative to the approach that uses machine learning but not

the auxiliary sample.

These results highlight an important point: while most of the discussion surround-

ing machine-learning methods tends to focus on “big data” contexts, many of the key

concepts such as sample-splitting and coefficient penalization are particularly relevant

when the sample size is small. This paper illustrates one way to apply these insights

to the analysis of RCTs, leading to more precise and still unbiased estimates of the

treatment effect.
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A Appendix

Variance Derivation

To derive the variance, we substitute the εi = ĝi(Xi)− (µi + (1− pi)τi) and the fact

that Yi = µi + τiTi into Equation (1) to get that the estimator is equal to:

τ̂ =
1

N

∑
∀i

µi + τiTi −
(
µi + (1− pi)τi + εi

)
pi

Ti

− 1

N

∑
∀i

µi + τiTi −
(
µi + (1− pi)τi + εi

)
1− pi

(1− Ti)

Some algebra reduces this expression to:

τ̂ =
1

N

∑
∀i

τi −
1

N

∑
∀i

[
εi
pi
Ti −

εi
1− pi

(1− Ti)

]
(14)

Thus, the variance of the estimate corresponds to:

V
(
τ̂
)

= V

(
1

N

∑
∀i

[
εi
pi
Ti −

εi
1− pi

(1− Ti)

])
(15)

Proof of Theorem 1

Proof. From Equation (4), we get that:

B
(
τ̂
)

= − 1

N

∑
∀i

E
[
ĝi(Xi) ·

(Ti
pi
− (1− Ti)

1− pi

)]
(16)

Using the law of iterated expectations, we get that:

B
(
τ̂
)

= − 1

N

∑
∀i

E
[
E
[
ĝi(Xi)|Ti

]
·
(Ti
pi
− (1− Ti)

1− pi

)]
(17)

Under the assumption that E
[
ĝi(Xi)|Ti = 1

]
= E

[
ĝi(Xi)|Ti = 0

]
, we then get that
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E
[
ĝi(Xi)|Ti

]
= E

[
ĝi(Xi)

]
and can write that:

B
(
τ̂
)

= − 1

N

∑
∀i

E
[
ĝi(Xi)

]
· E
[(Ti
pi
− (1− Ti)

1− pi

)]
(18)

which equals zero, since E
[(

Ti
pi
− (1−Ti)

1−pi

)]
= 0 for all i.

Proof of Theorem 2

Proof. From above, if we can show that:

E

[
ĝi(X) ·

(
Ti
pi
− 1− Ti

1− pi

)]
= 0 (19)

for all i, then it follows that the estimator defined in Equation (1) is unbiased. To

prove this, we will denote T (−k) to be the vector of treatment assignments for all

observations not in subgroup K.

We then note that

E

[
ĝi(X) ·

(
Ti
pi
− 1− Ti

1− pi

)∣∣∣∣∣T (−k)

]
= ĝi(X) · E

[(
Ti
pi
− 1− Ti

1− pi

)∣∣∣∣∣T (−k)

]
(20)

since conditioning on treatment assignments for those outside of k is equivalent to

conditioning on outcomes for those outside of k, at which point ĝi(X) is fixed and

can be pulled out of the expectation.4

The assumption regarding the choice of subgroupK’s then ensures that E
[
Ti
pi

∣∣∣T (−k)
]

=

1 = E
[
1−Ti
1−pi

∣∣∣T (−k)
]

and so E
[(

Ti
pi
− 1−Ti

1−pi

)∣∣∣T (−k)
]

= 0. Since this is true for generic

i, it is true for all observations and therefore the sum of the expectations over all

observations is also zero.

Lemma 1. Suppose that treatment assignment is done by drawing a fixed number of

observations, which become the treated observations, from the set of all observations

in the study. Then if the number of treated units is such that is possible to partition

4This assumes that ĝi(X) is a deterministic function; however, this assumption can be relaxed as
long as the uncertainty in ĝi(X) conditional on the outcomes is uncorrelated with the treatment as-
signment. This would be the case in estimators that incorporate some uncertainty into the estimates
such as random forests.
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the N observations into K subgroups with NK observations, each of with has p ·NK

treated observations and (1 − p) · NK control observations, it is possible to partition

the sample such that E[Ti|T (−K)] = pi for all i ∈ K.

Proof. There are exactly
(
NK

p·NK

)
possible treatment assignments with assignments for

all individuals not in K being T (−K) and, given the way the treatment assignment is

done, we know that each one is equally likely. Of these, there are
(
NK−1
p·NK−1

)
in which

individual i is chosen to be treated and
(
NK−1
p·NK

)
in which individual i is not chosen to

be treated. Thus, we have that:

E[Ti|T (−K)] =

(
NK−1
p·NK−1

)(
NK

p·NK

) =
p ·NK

NK

= p

Inference Approximations

As a shortcut, we might be able to use Equation (5) as a guide. The challenge is

that we cannot calculate εi ≡ ĝi(Xi)−
(
piYi(0) + (1− pi)Yi(1)

)
, since we only observe

one of Yi(0) or Yi(1). We can, however, either calculate εi,0 ≡ ĝi,0(Xi) − Yi(0) or

εi,1 ≡ ĝi,1(Xi)− Yi(1), depending on whether i is treated or not. A feasible approach

is therefore to simply use εi,0 or εi,1 in place of εi, roughly assuming that the ability

to predict two potential outcomes for individual i is similar. This also implicitly

assumes that the randomization does not have a large impact on ĝi,1(Xi) or ĝi,0(Xi),

since they are considered fixed in the approach. Further assuming that the treatment

assignment is sufficiently independent, we could then approximate the variance of the

estimate using the following equation:

V̂ =
1

N

(
1

N

∑ ε̂2i
pi(1− pi)

)
(21)

where ε̂i = εi,1 if treated and εi,0 if control. Despite the many assumptions implicit

in this approximation, in the simulation discussed below it does a good job reflecting

the true variance of the estimated effect.

To see how well this approach works, Table 1 compares the standard error esti-

mates given by Equation 21 to the true standard error of the estimates as calculated
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over the 100 simulations. Despite the numerous assumptions implicit in Equation

21, in this simulation the standard error estimates tend to be quite close to the

true standard errors regardless of the sample size. The estimates tend to be slightly

conservative, overestimating the standard error but never by more than 15%.

Table 1: Variance Reduction and Approximation for Different Study Sizes

Sample Size Proposed Approach With Auxiliary Sample Proposed Approach With Auxiliary Sample
40 0.48 0.39 1.04 0.99
80 0.31 0.27 1.12 1.14

120 0.34 0.33 1.07 1.07
240 0.32 0.31 1.05 1.05

Ratio of Variance to Variance of Difference-
in-Means Estimator

Ratio of Variance Approximation to True Variance

Note: The left two columns of the table shows how the proposed method, with and
without an auxiliary sample, impacts the variance of the estimated effects as the
sample size grows from 40 observations to 240 observations. For each sample size, we
conduct 100 simulations in which one-quarter of the sample is randomly chosen to
be treated schools. The variance is calculated as the variance of the estimated effect
over the 100 simulations and the number reported is the ratio of the variance when
using the proposed method to the variance when simply comparing the treatment
and control averages. The right two columns compare this approximated variance,
using the formula discussed in Section III to the variance of the estimates.

Employing an Auxiliary Sample

The theoretical analysis suggests that using observations outside the study to model

the relationship between the covariates and outcomes may help improve the precision

of the estimates. We now provide more details on how this can be done in practice,

using the simulation described in Section V as the example. To do so, we define X̃i as

the covariate vector Xi plus an dummy variable Si the indicates whether observation

i was part of RCT study or in the auxiliary sample and, in the case of a linear model,

any interactions between the sample indicator and the covariates. We furthermore

create an additional fold and assign all of the data in the auxiliary sample into the

K+ 1th fold. Since none of the auxiliary sample receives the treatment, we finally set

Ti = 0 for all of the auxiliary sample.5

5While we believe it is usually the case that none of the observations in the auxiliary sample
will have received the treatment, the method allows for some or all of the auxiliary sample to have
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With this set-up, we estimate ĝ(X̃i) using Equations (10 -12) using both the

data in the RCT study and the data in the auxiliary sample. We then use only the

observations that were part of the RCT study to estimate the treatment effect using

Equation (1).

By including both both Si and the interactions between Si and Xi, we allow for

the possibility of non-random selection into the study. In fact, if ĝ(X̃i) is estimated

as a linear function of X̃i and no penalization term is included, the auxiliary sample

is essentially used only to estimate selection into the study. Thus, the auxiliary

sample would have no impact on the value of ĝ(X̃i) for the observations in the RCT

study and therefore no impact on the estimated treated effect. However, when a

penalization term is included or a when a non-linear function is estimated, the model

does use the auxiliary sample to estimate the relationship between the covariates and

the outcome, unless that relationship is sufficiently different in the auxiliary sample

than in the RCT sample to warrant including the interaction term in the estimated

model.

Additional Simulations

We conduct two additional simulations, using data from two relatively large RCTs.

In the first study, Eskreis-Winkler et. al. (Eskreis-Winkler et al., 2019), about half

of 2,000 high school students were randomly chosen to give advice to middle school

students. They then showed that giving advice increased students’ grades is the

quarter after they gave advice. The second study, Ludwig et. al. (Ludwig et al.,

2012), is an analysis of the Moving to Opportunity (MTO). Here, roughly two-thirds

of 4,000 households were given a voucher to move from a poor neighborhood to a

rich neighborhood; the Ludwig et. al. (Ludwig et al., 2012) paper we use shows that

moving increased individuals’ subjective well-being 10-15 years after being given the

voucher.

For both studies, we conduct the simulation as follows. We first randomly sample

a set of observations to be in the hypothetical study, stratifying by treatment status

to ensure that the same fraction of individuals are treated in our sample as in the

full study. We also stratify by school for the Eskreis-Winkler et. al. study and

by city in the Ludwig et. al. study, to ensure that the distribution across sites is

Ti = 1.
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the same in our sample as in the overall study. We then assume that researchers

observe all the observations randomly sampled to be in the hypothetical study as

well as the rest of control observations not randomly sample; these additional control

observations are what we consider to be the auxiliary sample. We then estimate the

effect for hypothetical study by: a) taking the mean-difference between the treatment

average and control average; b) implementing the approach developed in this paper

using only observations in the hypothetical study; and c) implementing the approach

developed in this paper using both observations in the hypothetical study and in

the auxiliary sample. As discussed above, we only use observations in the auxiliary

sample to estimate ĝ(Xi) and in all cases only use observations in the hypothetical

study to estimate the treatment effect using Equation (1). When conducting the

residualization, we use as covariates all of the exogenous variables the researchers

include in their publicly available data.6

We repeat this simulation 100 times for three different study sizes. A downside of

these simulations is that we do not know the “true” average treatment effect; however,

as we prove in Theorem 2 all three approaches we use are unbiased and so we can

judge the estimators based on the standard deviation of the estimated treated effect.

The results, illustrated in Figures 3 and 4, show a similar pattern as the simulation

we discuss in Section V. The proposed approach significantly decreases standard de-

viation of the estimated effect relative to a simple mean-difference, and this reduction

holds regardless of the sample size of the study. Furthermore, employing the auxil-

iary sample to improve residualization further reduces the standard errors, especially

when the sample size is quite small.

6The publicly available data for Ludwig et. al. is synthetic data, modified slightly to ensure
confidentiality. Using these as covariates is thus likely a lower-bound on the benefit of using our
method on the original individual-level data. See (Ludwig et al., 2013-03-14) for more information
on how the synthetic data was created.
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Figure 3: Eskreis-Winkler et. al. Simulation
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Note: This graph shows the results of 100 simulations for a range of sample sizes;
regardless of the sample size, one-quarter of the schools were randomly chosen to be
treated. For each simulation, we estimated the effect using three approaches described
in Section V.
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Figure 4: Ludwig et. al. Simulation
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Note: This graph shows the results of 100 simulations for a range of sample sizes;
regardless of the sample size, one-quarter of the schools were randomly chosen to be
treated. For each simulation, we estimated the effect using three approaches described
in Section V.
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