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Abstract 

 We present results from a meta-analysis of 37 contemporary experimental and quasi-

experimental studies of summer programs in mathematics for children in Grades pre-K-12, 

examining what resources and characteristics predict stronger student achievement. Children 

who participated in summer programs that included mathematics activities experienced 

significantly better mathematics achievement outcomes, compared to their control group 

counterparts. We find an average weighted impact estimate of +0.10 standard deviations on 

mathematics achievement outcomes. We find similar effects for programs conducted in higher- 

and lower-poverty settings. We undertook a secondary analysis exploring the effect of summer 

programs on non-cognitive outcomes and found positive mean impacts. The results indicate that 

summer programs are a promising tool to strengthen children’s mathematical proficiency outside 

of school time. 

 Keywords: Summer learning, summer programs, summer school, mathematics, learning 

loss 
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The Impact of Summer Programs on Student Mathematics Achievement: 

A Meta-Analysis 

The critical need to improve children’s mathematics performance is a widely documented 

problem. Three out of four low-income children in the U.S. fail to meet standards for 

mathematical proficiency in the fourth grade, as do 43% of middle-income children (McFarland 

et al., 2017), and sizeable income-related gaps in mathematics achievement are also evident in 

cross-national research (Chmielewski & Reardon, 2016). Due to the cumulative nature of 

mathematical knowledge (Hiebert & Wearne, 1996), early difficulties in mathematical 

understanding can diminish children’s likelihood of later success in advanced mathematics 

coursework—a key gatekeeper to science, technology, engineering, and mathematics (STEM) 

careers (National Research Council [NRC], 2011). Given the significant wage premium of 

STEM employment (Deming & Noray, 2020), unequal access for children from economically 

disadvantaged backgrounds can effectively inhibit opportunities for socioeconomic mobility and 

reinforce social inequality (Carter, 2006). 

To address these inequities, high-poverty school districts frequently operate summer 

programs to help struggling students recover academic ground and avoid grade repetition (Jacob 

& Lefgren, 2004; Mariano & Martorell, 2013; Matsudaira, 2008). These programs mostly focus 

on reading and mathematics, domains considered foundational for student learning. 

 Despite the ubiquity of summer school and the critical need to strengthen students’ 

mathematics ability, we lack contemporary evidence on the impacts of summer programs on 

mathematics learning, and an understanding of what features predict stronger student impacts. In 

the current study, we present results of a meta-analysis of the effects of summer mathematics 

programs. Specifically, we address the following research questions: 
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1. What are the main effects of summer programs on mathematics achievement? 

2. What program activities, resources, and study characteristics moderate the 

effectiveness of summer programs in mathematics? 

We also present one of the first efforts to synthesize the impacts of academic summer programs 

on outcomes beyond achievement through the following question: What is the relationship 

between summer mathematics learning programs and children’s non-cognitive outcomes, such as 

attendance and motivation? To address these questions, we use data from 37 contemporary 

studies. Both outcomes we examine, mathematics achievement and non-cognitive outcomes, are 

of strong relevance to research and policy (e.g., McKown, 2017).  

This work is especially timely given the impacts of COVID-19. While estimates of the 

educational ramifications of the COVID-19 pandemic to date have varied (e.g., Kuhfeld et al., 

2020; Pier et al., 2021), it is generally acknowledged that inequity has been exacerbated and that 

substantial efforts are needed to help low-income students recover (Darling-Hammond et al., 

2020). Summer school is a key policy mechanism for addressing these learning disruptions. A 

notable example is the American Rescue Plan Act of 2021, which allocated $29 billion for 

“planning and implementing activities related to summer learning and supplemental afterschool 

programs, including providing classroom instruction or online learning during the summer 

months.” 

The Importance of Summer Programs 

A robust history of research has investigated the potential for seasonal school closures to 

exacerbate inequalities in children’s learning. Early research studies comparing children’s 

learning trajectories across seasons often indicated that low-income children were 

disproportionately affected, particularly in reading (e.g., Cooper et al., 1996; Downey et al., 
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2004; Heyns, 1978), and that summer learning disparities may contribute to long-run 

achievement gaps (Alexander et al., 2007). These early studies drew attention to the influence of 

summer learning and were generative to the field; however, their focus was often limited to 

specific school districts or grade levels, and many used test scores that were not vertically linked 

(von Hippel & Hamrock, 2019). More recent research has posited the sensitivity of conclusions 

about summer gap widening to, for example, choice of whether pretest scores are included in 

models of summer learning gains (Dumont & Ready, 2020; Quinn, 2015). The issue of 

measuring summer learning and parsing its potential contribution to inequality remains an active 

source of scholarly inquiry (Atteberry & McEachin, 2021) and debate (e.g., von Hippel, 2019a, 

and Alexander, 2019). However, there is general agreement that children learn reading and 

mathematics more slowly during the summer than the school year, and that summer therefore 

affords children opportunities to catch up and to enrich their learning (e.g., von Hippel, 2019b). 

The challenge for policymakers and families is that during summer vacation, the school 

resources ‘faucet’ is turned off (Borman et al., 2005). As a result, children’s summer time use is 

often determined by family resources. Children from more advantaged families are more likely 

to participate in summer camps and enrichment activities, whereas low-income children are 

disproportionately exposed to TV (Burkam et al., 2004). Many attribute these patterns to cost: 

typical weekly summer program tuition in the U.S. in 2013 was $288, which is over 60% of the 

household income for a family of four at the federal poverty threshold (Afterschool Alliance, 

2015). In response to these issues, many school districts have adopted summer learning programs 

to advance remediation and equity goals, supported in part by research indicating that extending 

school time can support student learning for those at risk of school failure (Patall et al., 2010).  

Previous Reviews of Research on Summer Programs 
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 The first systematic review of the impact of summer programs was undertaken by Cooper 

et al. (2000) who conducted a meta-analysis of summer school programs focused on remediation, 

primarily in reading and mathematics. Pooling mathematics and reading outcomes, the review 

found that pretest-posttest only studies (with no control group) had an average effect size of 0.30 

SD (k = 81) using a random-effects model, while studies employing a comparison group had an 

average effect size of 0.09 SD (k = 44). The authors labeled results from randomized 

experiments as most trustworthy (d = 0.14, k = 11). Cooper et al. reported that the benefits of 

summer school were larger for middle-class than low-income children, but did not conduct 

moderator analyses separately for mathematics versus reading. By contrast, Kim and Quinn 

(2013) meta-analyzed summer reading programs and concluded that summer reading had larger 

impacts on lower-income children compared to mixed-income samples.  

Lauer et al. (2006) undertook a meta-analysis of the impacts of out-of-school time 

programs targeting students at risk for school failure. The authors reviewed 35 studies evaluating 

after-school and summer programs and reported a pooled mean mathematics effect size for 

summer programs of 0.09 SD (fixed-effects model). The authors did not find a consistent 

relationship between program duration and effect size magnitude, but did find that effect sizes 

were significantly greater than zero only for programs that lasted more than 45 hours. The review 

included 12 studies of summer school programs that reported mathematics achievement 

outcomes, only one of which was judged of high research quality. The most recent included 

study was published in 2002. In addition, because the study’s moderator analyses did not 

disaggregate after-school versus summer school programs, it could not disentangle specific 

factors that predict positive impacts of summer school. 
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More recently, there have been two narrative reviews of the research literature. McCombs 

et al. (2019) collected information on summer programs that met criteria for ‘evidence-based 

interventions’ required under the Every Student Succeeds Act (ESSA). The authors provided 

descriptive summaries of 43 programs that showed evidence of effectiveness, targeting domains 

including academics, social support, and employment/career readiness. The authors concluded 

that they were unable to determine why some summer programs were effective while others were 

not, due in part to limited available implementation data. Meanwhile, the National Academies of 

Sciences, Engineering, and Medicine (NASEM, 2019) conducted a narrative synthesis of the 

evidence of the impacts of summer youth programs that targeted physical and mental health, 

safety, social skills, and academic learning. Based on themes they gleaned from the literature 

along with expert opinions, they concluded that summer programs appeared to be more 

successful when content was aligned with both desired outcomes and student needs, when 

student attendance was high, and when programs were of sufficient duration.  

The Present Study 

 The current study differs from previous reviews in several key respects. First, the most 

recent research studies included in prior meta-analyses of summer mathematics programs are 

nearly two decades old, and use samples and methodologies that are now dated. As a point of 

reference, the What Works Clearinghouse generally does not review studies that are more than 

20 years old due to considerable changes in educational environments and interventions over 

time (WWC, n.d.). As noted above, recent research has synthesized the updated literature on 

summer reading (Kim & Quinn, 2013); our study synthesizes the contemporary evidence in 

summer mathematics. 
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We conjectured that using contemporary data, the overall estimated impacts of summer 

mathematics programs, as well as conclusions about relative effects in lower- versus higher-

income settings, may differ from Cooper et al. for two primary reasons. First, the mean effect 

size from the current meta-analysis may be expected to be smaller due to the stronger research 

designs generally employed in contemporary studies. The older literature synthesized in the 

Cooper et al. review tended to include designs whose results may have been upwardly biased, 

such as studies that only compared student learning pre- and post-intervention (no control group) 

and thus conflated program effects with maturation effects. Since the early 2000s, research 

agencies such as the Institute of Education Sciences (IES) have increasingly emphasized 

randomized controlled trials and other designs that support causal inference (Angrist, 2004), and 

more researchers have taken them up. Effect sizes from studies using such designs tend to be 

smaller in magnitude than those from non-causal designs commonly used in prior decades (e.g., 

Lortie & Inglis, 2019).  

Summer learning programs are often designed as compensatory programs to support 

children who are in need of additional learning time, including children from low-income 

backgrounds. Cooper et al. (2000) concluded that middle-class children benefited more 

academically from summer programs than did low-income children. However, the conclusions 

from the Cooper et al. review merit re-evaluation (Kim & Quinn, 2013). Income inequality has 

widened in the period since the Cooper et al. studies were conducted (Dabla-Norris et al., 2015), 

changing the contexts in which summer programs operate. High-income parents have increased 

their spending on their children in recent decades (Kornich & Furstenberg, 2013), and children 

spend their summers in neighborhoods that are increasingly segregated by family income 

(Owens, 2016). These trends suggest that the relative benefits of summer programming for 
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higher-income children may be smaller than decades ago, for instance if higher-income parents 

provide greater educational opportunities for their children in the control group, thus attenuating 

the treatment-control contrast of summer programs for higher-income children (Kim & Quinn, 

2013). We re-examine the robustness of Cooper et al.’s (2000) finding using contemporary 

research in the summer mathematics context. 

 Second, the more recent syntheses of the literature are narrative reviews rather than 

formal meta-analyses, and thus do not present quantitative estimates of mean pooled impact nor 

of characteristics that predict outcomes. 

Third, to our knowledge, no prior meta-analysis has examined the impacts of academic 

summer programs on children’s non-cognitive1 outcomes—a topic that the NASEM (2019) panel 

report highlighted as a ‘priority research need.’ A sizable body of research finds that non-

cognitive outcomes, such as academic motivation, school attendance, and social skills, predict 

both academic achievement and long-run educational attainment and career results (Heckman & 

Kautz, 2014; Steinmayr & Spinath, 2009). Students with stronger school attendance (Gottfried, 

2017) and more positive academic beliefs (Yeager & Walton, 2011) tend to demonstrate better 

academic performance. In recent decades, employment and earnings growth have been especially 

strong in careers that require both mathematics and social skills (Deming, 2017). Of urgent 

concern, the COVID-19 pandemic precipitated stark declines in students’ social-emotional well-

being and mental health, leading to a pressing need for policy options to help students to rebuild 

non-cognitive skills (Hamilton & Gross, 2021). 

 
1 Because personal attributes and skills beyond those measured by achievement tests also involve 

cognition, ‘non-cognitive skills’ is a misnomer (e.g., West et al., 2016). We retain the term here 

as it is in widespread use in the research literature. According to Duckworth and Yeager (2015), 

“debate over the optimal name for this broad category of personal qualities obscures substantial 

agreement about the specific attributes worth measuring” (p. 237).  
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Socioeconomic disparities in children’s social and emotional skills may be exacerbated 

during the summer, when children have reduced access to school-based supports for social-

emotional learning and enrichment (NASEM, 2019). In theory, common summer program 

elements, such as a focus on hands-on inquiry and small class sizes, may improve children’s 

motivation, which could carry over into the school year. Gaining skills during the summer may 

also bolster students’ confidence in learning mathematics, begetting more skills (e.g., Ceci & 

Papierno, 2005). On the other hand, it is possible that academic summer programs could 

diminish students’ attitudes and other non-cognitive outcomes, for example if students lose out 

on recreation opportunities. Notwithstanding the relatively small number of studies reporting 

impacts on domains beyond achievement, compiling the emerging evidence is important given 

well-documented income gaps in these outcomes (e.g., Downey et al., 2019), and the importance 

of non-cognitive skills for overall educational and career success. 

Lastly, unlike prior meta-analyses, which pooled programs across subject areas or across 

summer school and afterschool when examining moderators, we explicitly test for summer 

program characteristics that predict stronger mathematics learning. This is important given 

variability in findings of recent evaluations. For example, a randomized evaluation of the BELL 

summer program reported mostly non-significant findings on reading, mathematics, and social-

emotional outcomes (Somers et al., 2015). However, a randomized study of summer programs in 

five school districts found positive impacts on mathematics scores after the first year, but null 

results for reading, social-emotional skills, and effects at longitudinal follow-up (McCombs et 

al., 2020).  

Specifically, summer programs vary on several malleable programmatic features that 

may explain disparities in their results. In recent decades, scholars have produced new studies 
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that include components that did not exist in summer learning programs from previous decades. 

Whether we would expect the inclusion of these elements to strengthen or attenuate the observed 

mean effects of summer programs is not obvious. As we discuss below, newer programs often 

incorporate elements that may be expected to lead to stronger learning impacts, including novel 

curricula that reflect reform-oriented mathematics standards and social-emotional learning goals. 

Newer studies often provide more information about program implementation, allowing us to 

examine moderators of program impact in greater detail. However, novel formats such as online-

only summer programs may be expected to show smaller effects. In the following section, we 

describe these potential moderators, which as we note below were adapted from prior literature 

in summer reading (Kim & Quinn, 2013) and updated to reflect a focus on summer mathematics. 

Programmatic Features of Summer Programs that May Moderate Effects 

 Summer programs may focus on either remediation, including review of material from 

the previous year (Cooper et al. 2000), or on non-remedial goals, including enrichment and 

preview of future coursework. Programs may be broad or subject-specific in their programmatic 

focus. Inclusion of instruction in other academic subjects (e.g., reading, science, social studies) 

may hypothetically improve mathematics learning, for example, if there is cross-domain transfer 

such that reading instruction strengthens mathematics outcomes (e.g., Glenberg et al., 2012). On 

the other hand, it is conceivable that focusing on mathematics alone may have resulted in 

stronger mathematics learning, for example if this meant that more program resources, such as 

teacher professional learning and curriculum support, were directed to mathematics instruction. 

In light of research pointing toward positive relationships between time on task and student 

learning gains (e.g., Stronge et al., 2011), we also sought to examine whether program impacts 

varied by overall program duration as well as daily time allocated specifically to mathematics.  
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Summer programs may be conducted in-person or fully online. With the rapid 

proliferation of educational media for children, school districts have increasingly implemented 

online summer programs with the goal of lessening summer learning loss at low cost (Lynch & 

Kim, 2017), and this trend may be growing in the wake of schools’ widespread use of virtual 

learning during the COVID-19 pandemic. However, a growing body of evidence documents that 

online instruction is less effective than in-person school for children across grade levels 

(Woodworth et al., 2015); further, earlier research has documented that learning risks may occur 

when children are left to learn mathematics independently, without support from a teacher 

(Erlwanger, 1973).  

Lastly, given widespread calls in mathematics education for increased attention to 

students’ engagement with core disciplinary concepts and practices (NRC, 2011), we examined 

whether each program’s content as described included student activities aligned with the 

National Council of Teachers of Mathematics (NCTM, 2000) process standards (e.g., problem 

solving, communication) and/or Common Core State Standards (CCSS) for mathematical 

practice (National Governors Association Center for Best Practices, Council of Chief State 

School Officers, 2010). Children may engage with deeper mathematical thinking, including 

applications and problem solving, via hands-on project-based learning, in which students are 

involved in investigations of authentic problems (e.g., Meyer et al., 1997). Another feature that 

may enhance students’ mathematical learning is engagement in group work (Zakaria et al., 

2010), via mechanisms that encourage students to discuss, challenge and defend points of view 

(Gilbert-Macmillan & Leitz, 1986). The use of textbook exercises in summer program curricula 

may strengthen student learning by, for example, providing guidance to teachers in sequencing 

lessons and structuring lesson plans (Mesa, 2004); it is also conceivable that textbook use in a 
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summer program could result in lower levels of learning, if students find textbook activities 

unengaging and lose motivation. The commercial availability of curriculum materials is of policy 

interest because it aids replication of a key summer program element. 

The resources available to summer programs may also predict the strength of students’ 

learning benefits (Cooper et al., 2000; Kim & Quin, 2013). Interventions that provide 

mathematics teachers with high-quality professional development have positive effects on 

student achievement, on average (Lynch et al., 2019). The provision of lesson plans to teachers 

may reduce their preparation burden during the summer, thus enhancing lesson quality and 

subsequent student learning (Cai, 2005). Bus transportation and the provision of free school 

meals have also been linked to improved school attendance (Gottfried, 2017) and learning 

(Schwartz & Rothbart, 2020). Small class sizes are another resource that may strengthen learning 

(e.g., Krueger, 2003). 

In summary, the current review synthesizes the recent empirical literature on summer 

learning programs in order to understand what characteristics and contextual factors are 

associated with stronger student outcomes in mathematics. It explores the impacts of summer 

learning programs on non-cognitive outcomes, and highlights directions for future research. 

Method 

We conduct a meta-analysis of the experimental and quasi-experimental literature on 

summer learning programs in mathematics. Meta-analysis allows us to pool information across 

multiple studies, and to examine multiple hypothesized moderators of program impact. 

Search Procedures 

For this review, we define summer mathematics programs as summer programs that aim 

to improve children’s academic achievement in mathematics, including both mandatory 
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programs, such as district-required summer school programs for students who have failed the 

previous grade, as well as optional programs, such as those parents may elect for enrichment or 

child care purposes. Summer programs may be either classroom-based, with children attending 

in person at local schools or other community sites, such as college campuses; or home-based, 

with mathematics activities given to the child to complete at home, either alone or with family 

members. Although our definition did not exclude ex ante alternative types of home-based 

programs (such as mathematics books or packets mailed to children), the only qualifying studies 

of home-based summer mathematics programs that we found in the literature were of virtual 

(online) interventions. We include interventions that focused exclusively on mathematics, as well 

as more broad-based programs that also provided instruction in additional content areas. 

We developed a database of studies via a four-phase search process similar to that used in 

Kim and Quinn (2013) for reading. We searched these channels from August 1998, as this was 

the last date for which searches were conducted in the previous comprehensive meta-analysis of 

the literature on summer school in mathematics (Cooper et al., 2000). Our review period is 

similar to that of the What Works Clearinghouse’s (WWC, n.d.) 20-year review time limit. 

Searches were completed through April 2020. In the first search phase, we conducted an 

electronic search using the databases Academic Search Premier, Education Abstracts, ERIC, 

PsycINFO, EconLit, and ProQuest Dissertations and Theses, for the period August 1998 through 

April 2020. Searches were conducted using subject-related keywords relating to summer 

programs and methodology-related keywords designed to capture experimental and quasi-

experimental designs, adapted from Kim and Quinn (2013).2 Second, we searched targeted 

 
2 The specific search strings applied were as follows: (“summer program*” OR “summer school*” OR “summer 

math” OR “summer science” OR "summer STEM" OR "summer engineering" OR “summer enrichment” OR 

“summer remedia*” OR “summer instruction*” OR “summer education*” OR  “summer learning”) AND 
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internet sites including the What Works Clearinghouse, MDRC, NBER, RAND, AIR, 

Mathematica, Wallace Foundation, and the National Summer Learning Association. We also 

searched the abstracts of the Society for Research on Educational Effectiveness (SREE) 

conference. Third, we scanned the reference lists of previous review articles (Alexander et al., 

2016; Bodilly & Beckett, 2005; Lauer et al., 2006; McCombs et al., 2011, 2019; NASEM, 2019; 

Terzian et al., 2009). Lastly, via a RAND report (Marsh et al., 2009), we identified U.S. states 

and districts that may have had required summer school, and contacted government agencies in 

these localities requesting any relevant research reports.  

The search procedures described above yielded 2,544 records identified via database 

screening, and an additional 17 records identified through other sources (see Figure 1 for 

screening flowchart). After removing duplicates, we were left with 1,960 records. 

Study Inclusion Criteria 

In addition to being published after August 1998, we required that studies meet the 

following criteria to be included in the meta-analysis: (1) Evaluate the impacts of a summer 

mathematics intervention; (2) Present mathematics learning outcomes for treatment and control 

groups of students; (3) Include students who were in Grades pre-K-12 following their enrollment 

in a summer mathematics intervention; (4) Compare the performance of students in a treatment 

group to the performance of students in a control group who did not participate in the treatment 

or an alternative treatment; and (5) Present sufficient information to calculate one or more effect 

sizes (Hedges’s g). Included studies could be conducted in any country, and also needed to 

provide evidence that the achievement levels of treatment and control groups were comparable at 

 
("*experiment*" OR "control*" OR "regression discontinuity” OR “compared” OR “comparison” OR “field trial*” 

OR “effect size*” OR “evaluation”). 
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baseline, as discussed below. We admitted studies that used randomized experimental and 

regression discontinuity designs, as well as quasi-experiments that met standards for group 

equivalence at baseline. Following guidance from the What Works Clearinghouse, if studies 

presented information on student achievement outcomes for which pretest differences were 

between 0.05 and 0.25 SD, we required that the authors had performed statistical adjustments for 

pretest differences (e.g., ANCOVAs); in cases where these were not presented in study reports, 

we manually calculated a difference-in-differences adjustment by subtracting the standardized 

pre-intervention difference from the standardized difference in outcomes, per What Works 

Clearinghouse guidelines (WWC, 2020).  

Study Screening  

We conducted screening in two phases. First, two raters screened each of the studies' 

titles and abstracts to identify potentially relevant studies, advancing studies to the second phase 

when they met criteria #1-4. All studies flagged as potentially relevant by either rater were 

reviewed by one of the authors, who made a final decision about advancing the study forward. 

This screening round resulted in the exclusion of many reports that were off-topic, such as 

articles on summer institutes for college faculty or summer research for college students, and 

descriptive articles about the phenomenon of summer learning loss. A total of 103 studies met 

the initial relevance criteria and proceeded to full-text screening. 

         In the second screening phase, two raters working independently, including at least one 

study author, examined the full text of each study and applied a more detailed set of 

methodological inclusion criteria. We required that studies present sufficient information to 

calculate an effect size (criterion #5), along with evidence that the treatment and control groups’ 
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achievement levels were comparable at baseline, as discussed above.3 We excluded summer 

programs with no mathematics component, such as programs focused exclusively on social skills 

or book reading. We required that participating students were entering Grades pre-K-12; because 

of our conceptual interest in summer learning during seasonal school closures, we excluded 

studies that examined only preschool children who had no formal schooling prior to participating 

in a summer program. The most frequent exclusion reasons were for characteristics of the 

intervention (e.g., off-topic, did not evaluate the effects of a classroom- or home-based summer 

mathematics intervention; n = 17), methodological issues [e.g., no control group, n = 8; no 

pretest data or pretest data not equivalent at baseline; n = 22 (e.g., Kendall, 2009)], and lack of 

outcome data (i.e., did not present mathematics learning outcomes for treatment and control; n = 

14) (e.g., Hart et al., 2016). Note that some studies had multiple exclusion reasons (see Figure 1). 

These search procedures netted a total of 37 studies that met the full review inclusion 

criteria and advanced to study coding. Of these, only two were included in Lauer et al.’s (2006) 

synthesis, and none were included in Cooper et al.’s (2000) synthesis. The number of studies 

included in the final dataset is in the same range as that included in Kim and Quinn’s (2013) 

meta-analysis of summer reading programs (k = 35), Lauer et al.’s (2006) meta-analysis of out-

of-school time programs for at-risk students (k = 35), and Cooper et al.’s (2000) meta-analysis of 

remedial summer programs (k = 41). In situations where study authors produced multiple reports 

on the same study, we used all available study documents to locate information about the 

intervention and study impacts, and used the most recent version (often the peer-reviewed 

version) for final impact estimates. Many studies contributed multiple effect sizes because they 

 
3 We did not require demonstration of outcome-specific baseline equivalence for non-cognitive outcomes. 

Pretest data for these outcomes was often not reported, and for certain outcomes (e.g., dropout) there is no 

directly corresponding baseline variable. 
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reported information for multiple outcome measures, multiple samples, multiple versions of the 

same program with a common control group, and/or multiple programs. 

The final meta-analytic sample includes 149 effect sizes nested within these 37 studies. 

The sample includes a separate effect size for each treatment contrast, each measure of 

mathematics achievement and non-cognitive outcomes, and each sample of students that the 

study reported. (See Online Appendix B for references for the included studies.) 

Study Coding 

Study authors and trained graduate research assistants conducted full-text coding using 

the following procedures. Before beginning double-coding, we established inter-rater reliability.  

We began by having each member of the team code studies separately, then we held meetings to 

reconcile disagreements and refine codebook descriptions. We repeated this procedure until we 

reached a stable set of codes and an 80% agreement threshold. Each study was then coded by 

two researchers, including at least one study author. Each researcher coded the studies 

independently, then the coding pair met and reconciled discrepant codes via discussion.4  

Outcome Variables 

We examine two categories of dependent variables, mathematics achievement outcomes 

and non-cognitive outcomes. The first, mathematics achievement outcomes (112 effect sizes 

 
4 Inter-rater agreement from independent coding prior to reconciliation was computed as follows: study 

design (randomized experiment or regression discontinuity design vs. other quasi-experiment): 0.95; 

publication type, 0.92; sample grade level, 1.00; poverty level (percentage of students low-income or 

FRPL eligible), 0.74; high-poverty sample flag, 0.92; program hours per day, 0.79; program timespan, 

0.82; total program hours, 0.82; hours per day spent on mathematics, 0.88; broad academic focus, 0.92; 

remediation or preview focus,  0.85; fully online versus in person, 1.00; alignment with NCTM or CCSS 

standards, 0.72; activity participation in hands-on projects, 0.97; textbook exercises, 0.85; group work, 

0.95; computer-based skills practice, 0.92; teacher professional development, 0.87; explicit direction for 

summer instruction, 0.90; provision of transportation, 0.87; on-site meals, 0.85; average class size, 0.85. 
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contributed from 37 studies), comprises outcomes from both standardized mathematics 

achievement tests (96 effect sizes extracted from 34 studies), such as tests administered  

by U.S. states and those available through commercial vendors (e.g., NWEA, ITBS), as well as 

broader school mathematics attainment outcomes (16 effect sizes pooled from six studies), which 

we define to include mathematics course grades, mathematics course-taking, and completing a 

STEM degree. Both test scores and course grades and attainment outcomes are important 

outcomes for policy (Kautz & Heckman, 2014). As such, we pool both types of outcomes in our 

primary analyses. However, as a sensitivity check, we also re-fit all models using test score 

outcomes only.    

We defined three categories of non-cognitive outcomes aligned with Farrington et al.’s 

(2012) conceptual framework of non-cognitive factors related to academic performance. The first 

category assessed academic mindsets, attitudes, and effort, including students’ tendency to 

persevere in schoolwork, psychosocial attitudes, and mindsets about academics. The second 

category included types of social skills and behavioral adjustment, such as interpersonal skills 

and school discipline. The third category, academic behaviors, indexed “the visible, outward 

signs that a student is engaged and putting forth effort to learn” (Farrington et al., 2012, p. 8), 

including attendance and absenteeism. We identified 37 relevant effect sizes from eight studies 

encompassing outcomes such as absenteeism, self-efficacy, self-regulation, and social skills. 

When outcomes were from scales that included items from multiple categories (e.g., Devereux 

Student Strengths Assessment) the outcome was classified into the category that matched most 

closely. See Online Appendix Table A5 for a list of the included non-cognitive outcomes. 

Effect Sizes Calculation 

Standardized mean difference effect sizes were calculated using Hedges’s g: 
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g = J×
(YE 
̅̅ ̅̅ -YC 

̅̅ ̅̅ )

S*   

Here, 𝑌𝐸 
̅̅̅̅  represents the average treatment group outcome, 𝑌𝐶 

̅̅ ̅represents the average control 

group outcome, and 𝑆∗ represents the pooled within-group standard deviation. 𝐽 represents a 

correction factor that adjusts the standardized mean difference to avoid bias in small samples: 

J = 1-
3

4×(NE+Nc-2)-1
, 

In this equation, 𝑁𝐸 represents the number of students in the treatment group and 𝑁𝐶  represents 

the number of students in the control group (Borenstein et al., 2009). Effect sizes were calculated 

using the software package Comprehensive Meta-Analysis (CMA).5 In three cases, study authors 

presented information about an outcome that was insufficient to calculate an effect size. All 

came from studies that did report an effect size for at least one additional outcome, which meant 

that no studies were dropped from the analysis due to missing outcomes. We exclude these 

missing outcomes in the primary analyses, but then conduct a sensitivity check in which we 

impute a range of plausible values for these outcomes, then re-estimate our models.  

Empirical Strategy 

Estimating Effects of Summer Programs 

 
5 We used the following decision rules to calculate effect sizes: If the authors reported Hedges’s 

g, we used this effect size and calculated its standard error when necessary (12% of effect sizes).  

If the authors reported a standardized mean difference effect size, such as Cohen’s d or Glass’s 

delta, we converted author-reported effect sizes to Hedges’s g (72% of effect sizes). If authors 

did not report a standardized mean difference effect size but did report a covariate-adjusted 

unstandardized mean difference (e.g., a coefficient from a multilevel model) and raw standard 

deviations, we calculated a standardized mean difference and converted to Hedges’s g (4%). If 

covariate-adjusted mean differences were not reported, we calculated effect sizes based on raw 

posttest means and standard deviations (5%). In the remaining cases, effect sizes were calculated 

from other results (e.g., studies that reported the results of analyses of variance [ANOVAs]; 7%). 
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Study authors often measure interventions’ impacts on several different outcomes, raising 

a frequent issue in meta-analysis: single studies that present multiple effect sizes. Effect sizes 

nested within a single study are likely to be correlated, which violates the assumption of 

statistical independence. Previous meta-analyses of the impacts of summer programs have 

approached this problem either by averaging effect sizes, or by selecting a single effect size per 

study to ‘represent’ that study in analyses. Here we use a robust variance estimation (RVE) 

approach (Tanner-Smith & Tipton, 2014) so that we can include multiple effect sizes per study 

while accounting for the nested nature of our data. This method adjusts standard errors to 

account for the dependencies among effect sizes within the individual studies, in a comparable 

manner to adjusting standard errors in ordinary least squares (OLS) regression models for 

heteroscedasticity (e.g., using Huber–White standard errors) or to account for the nesting of data 

within clusters (e.g., clustered standard errors). This approach permits us to include multiple 

effect sizes from a single study in our analysis (see Tanner-Smith & Tipton, 2014), and we have 

used a similar method as described below in our prior research (Lynch et al., 2019).  

      We compute the weight for effect size i in study j using the following formula: 

𝑤𝑖𝑗 =
1

{(𝑣∗𝑗+𝜏2)[1+(𝑘𝑗−1)𝜌]}
, 

where 𝑣∗𝑗 is the mean of within-study sampling variances (𝑆𝐸𝑖𝑗
2 ) within each study, 𝜏2 is the 

estimate of the between-studies variance component, 𝑘𝑗 is the number of effect sizes within each 

study, and 𝜌 is the assumed correlation between all pairs of effect sizes within each study. The 

formula assigns lower weight to effect sizes from studies contributing more effect sizes and with 

higher sampling variances. We use the recommended default value of 𝜌 = .80, with 𝜌 assumed 

constant across studies (Tanner-Smith & Tipton, 2014), and also conduct a series of sensitivity 

checks to gauge the robustness of our findings to alternative values of 𝜌. All analyses except the 
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computation of F tests were conducted in Stata, with the robumeta package in Stata 15 (Tanner-

Smith & Tipton, 2014) used to estimate our RVE models, including the recommended small-

sample correction (Tipton & Pustejovsky, 2015). We conducted F tests using the robumeta and 

clubSandwich packages in R, to test the joint significance of the program features included in the 

RVE models (Fisher & Tipton, 2015).  

Effect size heterogeneity is addressed somewhat differently in RVE compared with 

traditional meta-analysis methods. The RVE developers explain that the core objective of this 

method is to estimate fixed effects, specifically meta-regression coefficients, rather than to model 

effect size variation; thus, tests for heterogeneity presented in traditional meta-analysis are 

unavailable within RVE (Tanner-Smith & Tipton, 2014; Tanner-Smith et al., 2016). For each of 

our primary models, however, we report the method-of-moments estimate of τ2 as measures of 

between-study heterogeneity in effect sizes. To estimate average impacts of summer programs, 

we fit separate RVE models for the two categories of dependent variables: mathematics 

achievement outcomes and non-cognitive outcomes. 

Examining Predictors of Summer Programs’ Effectiveness 

To identify potential moderators of summer program impact for coding and analysis, we 

began by adapting codes from a prior meta-analysis of summer reading programs (Kim & Quinn, 

2013), revising items as appropriate to reflect a focus on mathematics. We then identified other 

potential moderators of program impact by examining prior meta-analyses and reviews of the 

literature on summer learning, out of school time, and instructional effectiveness in mathematics. 

Based on this review, we labeled overarching categories of potential moderators (e.g., activities, 

foci, resources), as well as specific codes (e.g., computer-based skills practice, group work, 

textbook exercises) that frequently emerged in the literature. After compiling a draft codebook, 
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we jointly coded a sample of studies, iteratively refining the codes as needed until we reached a 

stable set of codes. 

We grouped potential moderators of program impact into five categories: (1) study design 

and sample characteristics; (2) duration/intensity; (3) program foci; (4) program activities; and 

(5) program resources (see below for descriptions). To examine whether specific features in 

each category moderated program impact, we then fit five sets of conditional meta-regression 

models with RVE, including the coded features as moderators and treating these moderators as 

fixed. Within each category, following recent meta-analyses (e.g., Garrett et al., 2019; Lynch et 

al., 2019), we first modeled the effect of each code separately, then probed their joint 

relationships by fitting a model with all codes in the category together. In cases for which there is 

within-study variability in program features (e.g., among studies with multiple treatment arms), 

we included the study-level mean value of each covariate and moderator (Tanner-Smith & 

Tipton, 2014). For covariates with within-study variability in at least 10% of studies, we also 

included a within-study version of the covariate by subtracting the study-level mean values from 

the original covariate values. All models controlled for whether the study used a randomized 

controlled trial (RCT) or regression discontinuity (RD) design, and an indicator for whether the 

study was conducted with elementary students. We do not fit these models examining 

moderators on non-cognitive outcomes due to data limitations; we provide a descriptive 

summary of the impacts. 

 Below, we describe the five categories of coded moderators of program impact. 

Study Design and Sample Characteristics. We coded each study on a set of 

methodological criteria, categorizing whether the study design was a randomized experiment or 

regression discontinuity design versus another type of quasi-experiment. We captured 
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publication type, indexing whether the study was a peer-reviewed journal publication, 

dissertation, or technical report including contract researchers’ reports, conference reports, and 

district, state, or federal government reports. To identify moderators related to study sample, we 

coded for whether the summer program included elementary students (pre-K-Grade 5) or was 

focused on middle/high school students. To operationalize poverty level, we coded the 

percentage of students in the sample reported as low-income or as eligible for free or reduced-

price school lunch (FRPL). If the study did not report FRPL information for the sample but did 

report FRPL information for the school or district from which the sample originated, following 

Kim and Quinn (2013), we used that information to code the study’s sample. We also created a 

dichotomous indicator indexing whether the study was conducted with a high-poverty sample, 

which we operationalized as studies in which low-income children comprised greater than 75% 

of program participants. 

Duration/Intensity. We captured information about the duration of the program, using 

codes for program hours per day, timespan in weeks over which the program was conducted, the 

total program hours offered (summing across years for multiyear programs), and the number of 

program hours per day spent specifically on mathematics. 

The remaining three categories of codes captured summer program characteristics. We 

coded program characteristics as ‘present’ if the study report indicated the feature was present, 

and ‘not present’ either if the report indicated that the feature was not a part of the intervention, 

or if the report was silent on the feature (following e.g., Garrett et al., 2019). 

Program Foci. The first set of codes examined the summer program’s focus. We 

classified each program as focused on either mathematics only, or as possessing a broad 

academic focus, including other academic subjects (e.g., reading, science) in addition to 
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mathematics. We classified the goals of each program as primarily focused on either remediation 

or on preview of future coursework. We captured whether the summer program was conducted 

fully online versus in person. We used a dichotomous indicator to index whether each program’s 

content as described included student activities aligned with NCTM or CCSS standards. 

Program Activities. A second set of codes examined the activities in which children 

participated during the summer program. We coded each study for evidence that children 

participated in hands-on projects, completed textbook exercises, engaged in group work, and/or 

completed computer-based skills practice, over the course of the summer program. We also 

computed a composite index of the total number of these activities that were reported per study, 

and coded whether the curriculum materials used were commercially available. 

Program Resources. A third set of codes indexed the resources available at each 

summer program. We coded each study for information about summer program staffing, 

including evidence that the summer program instructors received professional development, as 

well as whether teachers received explicit direction in preparing for summer instruction, such as 

pre-made lesson plans. We examined district and community supports, including whether 

programs provided transportation for students (i.e., bus rides) and whether the program provided 

free meals on site (breakfast and/or lunch); however, this information was unreported in many 

studies. Lastly, we captured information about the average class size in the summer program. 

Publication Bias 

A common concern in research syntheses is the possibility that estimates of average 

effects may be influenced by publication bias. We used three strategies to examine this issue 

(Kim et al., 2021). We first examined whether peer reviewed status was a significant predictor of 

effect size magnitude. We then used a trim-and-fill analysis (Duval & Tweedie, 2000), and 
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plotted a cumulative meta-analysis forest plot (Borenstein et al., 2009). We further conducted 

leave-one-out meta-analysis as an additional sensitivity check (StataCorp, 2021). 

Results 

The results section is organized as follows. First, we present descriptive information on 

the included studies and samples. Next, we present estimates of the pooled mean effects of 

summer programs on mathematics outcomes. We then analyze moderators of program impacts. 

Lastly, we explore the relationship between summer programs and non-cognitive outcomes. 

Descriptive Information for the Included Studies and Programs 

Table 1 presents descriptive statistics regarding the studies and summer programs 

included in our dataset. Thirty percent of included studies were randomized experiments or 

regression discontinuity designs, including several large-scale studies conducted in large, high-

poverty urban school districts (e.g., Jacob & Lefgren, 2004; Mariano & Martorell, 2013; 

McCombs et al., 2020). The remaining 70% of studies employed propensity score matching or 

other quasi-experimental designs that demonstrated satisfactory group equivalence at baseline, as 

described above. These studies included evaluations of large programs such as Upward Bound 

Mathematics and Science (Olsen et al., 2007) and Building Educated Leaders for Life (BELL) 

(Somers et al., 2015), along with smaller programs conducted at the school and district levels. 

The studies comprised peer-reviewed journal publications (19% of reports), dissertations (43%), 

and technical reports including contract researchers’ reports, conference reports, and district, 

state, or federal government reports (38%). All but two studies were conducted in the United 

States: Davies et al. (2019) examined the Summer Numeracy Program in Ontario, Canada; and 

Gorard et al. (2015) investigated a summer school model established by the Future Foundations 

in England. Of the included mathematics achievement effect sizes, 86% were standardized test 
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outcomes, and 14% were school attainment outcomes, such as course grades; 22% of studies (k = 

8) presented one or more non-cognitive outcomes. 

The programs examined in our dataset primarily served low-income students. Among 

studies with available data (k = 32), the mean percentage of low-income participants was 65%. 

The National Center for Education Statistics has characterized high-poverty schools as those 

where more than 75% of students are FRPL eligible (Irwin et al., 2021). 41% of included studies 

had greater than 75% of program participants classified as FRPL eligible or low-income. Only 

6% of studies had 25% or fewer low-income program participants, the NCES benchmark for 

low-poverty schools. Among the 18 studies that reported information about students' English 

language learner (ELL) status, 29% of students were ELLs. Among the 24 studies that reported 

full sample student race, on average 72% of students were non-White. Programs served a mix of 

elementary students (46% of studies) and middle/high school students (54% of studies). 

Table 1 also presents study-level frequencies for summer programs’ characteristics, 

including duration, foci, activities, and resources. Most summer programs evaluated were 

conducted in person (89%), while 11% were fully online. Among studies that reported on 

program time, mean program duration was 158.2 hours (reported in k = 31 studies), and the 

average timespan over which the programs were spread in a summer was 5.2 weeks, with five 

studies examining multiyear programs. Mean reported length of the program day was 4.6 hours 

(k = 28 studies), and mean hours per day spent on mathematics was 2.1 hours (k = 22 studies). 

Most programs (78%) were focused on remediation of previous years’ academic content. 

Most were also broad-based in academic focus, with 78% offering instruction on a range of other 

academic subjects in addition to mathematics. Approximately a third of programs (32%) 

reportedly used curriculum materials or activities aligned to CCSS and/or NCTM standards. 
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Nearly all in-person programs that provided information on teachers’ qualifications were taught 

by either certified teachers or a mix of teachers and aides. Most studies (54%) reported that 

instructors received professional development; 27% of studies reported that specific lesson plans 

or structures were provided. Among in-person programs, 47% reported providing transportation, 

and 46% reported that meals were provided; however, this information was unreported in many 

studies. Among studies reporting class size data, mean class size was 17 students. 

Did Summer Programs Impact Students’ Mathematics Learning Outcomes? 

Compared to control group students, students who participated in summer programs that 

included mathematics activities experienced significantly greater improvements on average in 

mathematics learning. We found an average weighted impact estimate of +0.10 standard 

deviations on mathematics outcomes (Table 2, Column 1). Examining specifically outcomes on 

standardized mathematics achievement tests (Table 2, Column 2), we found an average weighted 

impact estimate of +0.10 standard deviations. To contextualize the magnitude of this effect, a 

typical treatment group student who participated in a summer program would be expected to 

rank approximately 4 percentile points higher than a typical control group student (Lipsey et al., 

2012). The pattern of results for broader attainment outcomes (e.g., subsequent mathematics 

course grades and course-taking) is similar (Table 2, Column 3), albeit less precisely estimated 

given the smaller number of studies reporting such effects. Pooled across both types of 

mathematics achievement outcomes (standardized tests and school mathematics attainment), of 

the 112 effect sizes included in the meta-analysis, 72 were positive in sign (64%), and 29 of 

these were statistically significant. Thirty-seven effect sizes were negative in sign (33%), and 

only 2 of these were statistically significant. Three effect sizes had point estimates of zero (3%). 

(See Table S1 [online only] for a summary of included outcomes and effect sizes.) 
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Table S2 (online only) shows that there were not statistically significant differences in 

effect sizes for mathematics learning outcomes based on whether the study employed a 

randomized experimental or regression discontinuity design versus other quasi-experimental 

designs; on whether or not the study was a dissertation; or on student grade level (elementary 

versus middle/high school). (For a breakdown of estimated mean effect sizes based on 

unconditional RVE meta-regression models by grade level, see Table S3 [online only].) 

Features That Moderate Program Impacts 

We next examine factors that may moderate impacts on mathematics learning outcomes. 

Poverty Level of Sample 

As discussed above, the extant research was conducted mostly in low- and mixed-income 

settings, consistent with the populations many summer learning programs primarily aim to 

support. We did not find a significant relationship between the poverty level of the student 

sample and program impacts (Table 3). For this analysis, poverty level was operationalized using 

a continuous indicator for the proportion of program participants classified as low-income or 

eligible for free or reduced-price school lunch. These results indicate that studies of summer 

programs tended to show similar, positive impacts on children’s learning when conducted with 

both higher poverty and relatively lower poverty samples. We also explored whether the impacts 

on mathematics learning were different for higher versus lower income children attending the 

same summer program. Following Kim and Quinn (2013), we conducted within-study analyses 

that compared the magnitude of effect sizes for children from low-income versus mixed-income 

backgrounds using the subset of six studies that reported outcomes broken out by student poverty 

level. This analysis employed random-effects meta-analysis to summarize pooled mean effect 

sizes for the low- and higher-income samples within studies, then compared these magnitudes. 
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We did not find significant within-study differences in impacts by student poverty level. The 

results are consistent with a conclusion that children in both lower- and higher-income settings 

garner similar, positive mathematics learning impacts from summer program participation.  

Duration/Intensity 

We turn next to summer programs’ duration and intensity (Table 4). We did not observe 

significant relationships between total program hours or program hours per day and students’ 

mathematics outcomes. The results are consistent with a pattern of larger mean effect size 

magnitudes among programs that spent more hours per day on mathematics (+0.10 SD); 

however, as only 22 of the 37 studies provided data on this indicator, caution is warranted in 

interpreting this finding (Tipton & Pustejovsky, 2015). 

Program Foci 

Next, we examined the associations between the focus of the summer program and effect 

sizes via a series of models (Table 5). Average effect sizes were larger among programs focused 

specifically on mathematics, as compared with those having a broader focus on multiple 

academic subjects (+0.18 SD, p < .05). This result remained significant in the final model which 

controlled for other program foci indicators. As another robustness check, we sought to examine 

whether the advantage of mathematics-only programs versus combined programs was retained if 

the duration of mathematics content was controlled, by fitting a model containing both variables 

jointly (Table 5). In the joint model, the magnitudes of the indicators are positive but not 

statistically significant; however, as in the prior model including mathematics hours, caution is 

warranted in interpreting this model due to missing data (e.g., only 5 studies of mathematics-

specific programs also provided information on content hours) (Tipton & Pustejovsky, 2015). 

Neither a focus on remediation, as compared with preparation for future coursework, nor the 
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inclusion of content judged to be aligned with NCTM standards and/or CCSS was a significant 

predictor of effect size magnitude. Descriptively, programs that were fully online had smaller 

impacts on average than did in-person programs, although as noted above, the number of fully 

online programs was relatively small, and this relationship was not statistically significant. 

Program Activities 

We then turned to the relationships between effect sizes and summer program activities 

(Table 6). We found that the use of textbook exercises was significantly associated with effect 

size magnitude. This association was negative (-0.11 SD, p < .05), indicating that summer 

programs that reportedly assigned mathematics textbook work had smaller impacts than those 

that did not, on average. We did not find significant relationships between any of the other 

program activities for which we coded—use of a commercially available curriculum, hands-on 

projects, group work, or computer-based skills practice—and the magnitude of effect sizes. 

Program Resources 

Table 7 displays the results from models investigating the relationships between summer 

program resources and effect sizes. None the activities for which we coded, including the 

provision of teacher professional development, teacher direction in lesson planning, student 

transportation, and average class size, were significantly associated with effect size magnitude, 

either individually or in the combined model. 

We note that programs that lack features associated with larger-than-typical effect sizes 

may still have positive impacts on student outcomes, on average. Therefore, in Table S3 [online 

only], we display the results of these moderator analyses summarized using regression-adjusted 

mean effect sizes. We first present average effect sizes based on subgroup analyses without 

controls for additional program features, which are derived from unconditional meta-regression 
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models estimated using RVE to account for the nesting of effect sizes within studies. We next 

display mean effect sizes based on conditional meta-regression models, corresponding to the 

primary moderation analyses, with each predictor included separately and controlling for the 

same program features as discussed above. Lastly, we display average effect sizes corresponding 

to our final moderator analyses with all predictors within each category included simultaneously. 

Below for parsimony we discuss only those program features that were statistically significant 

moderators of effect size magnitude in the primary models. 

As shown in Table S4 [online only], the mean effects of summer programs that did and 

did not have the moderators analyzed were typically positive. Even among programs that did not 

have the features previously identified as predictors of larger effect sizes, summer programs 

typically had positive impacts on mathematics learning. For example, programs that did not 

focus specifically on mathematics had positive effects, on average (𝑔𝑐+̅̅ ̅̅ ̅ = 0.07, 𝑔𝑐̅̅ ̅ = 0.07, 𝑔𝑢𝑐̅̅ ̅̅̅ = 

0.06, puc < .01), as did programs that incorporated the use of mathematics textbook exercises 

(𝑔𝑐+̅̅ ̅̅ ̅ = 0.02, 𝑔𝑐̅̅ ̅ = 0.03, 𝑔𝑢𝑐̅̅ ̅̅̅ = 0.04, puc < 0.05), and programs that dedicated relatively fewer 

hours per day specifically to mathematics (𝑔𝑐̅̅ ̅ = 0.21, 𝑔𝑢𝑐̅̅ ̅̅̅ = 0.07, puc > .10). The differences in 

mean effect sizes based on estimating unconditional and conditional models are generally similar 

in direction and magnitude. Lastly, in Table S5 [online only], we show the results of fitting an 

omnibus model including all predictors simultaneously except those correlated above 0.6; 

however, fitting this model results in significant loss of information, retaining only 38% of the 

study pool (k = 14), and given the sample size restrictions across predictors, the model findings 

must be interpreted with caution (Tipton & Pustejovsky, 2015). Similar to other recent meta-

analyses (e.g., Garrett et al., 2019), the non-omnibus models are our preferred models given 

these data restrictions. The limitations of RVE with larger numbers of moderator variables and 
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study pools typical in education and the social sciences have been previously discussed in the 

literature and are a subject of ongoing research (e.g., Tipton & Pustejovsky, 2015).  

Additional Study Design and Sample Moderators 

We report results from examining the associations between additional study design 

features and the magnitude of effect sizes in Table S6 (online only). No significant differences in 

effect size magnitudes were observed related to whether the study was conducted in an urban or 

nonurban setting, whether the study setting was one district, multiple districts, and/or states, nor 

the gender composition of the sample. Lastly, we examined other study design features, 

including whether the study design was a randomized trial; whether students with low attendance 

were dropped from the analysis; whether the study reported sizeable student attrition (20% or 

more of participants); amount of time elapsed between the summer program and the assessment; 

and the treated sample size; however, attendance and attrition information were unreported in 

many studies. None of these features were significantly related to effect size magnitudes. 

Did Summer Programs Impact Students’ Non-Cognitive Outcomes? 

 With our data, we had a unique opportunity to explore the impacts of summer programs 

on outcomes beyond achievement. A total of eight studies presented information on the impacts 

of summer programs on 37 non-cognitive outcomes aligned with Farrington et al.’s (2012) 

conceptual framework. The relatively small number of studies reporting non-cognitive outcomes 

is consistent with other domains of educational interventions (e.g., teacher professional 

development; Yoon et al., 2007) where synthesists previously found few rigorous impact studies. 

We urge future primary researchers to measure and report noncognitive outcomes to permit 

moderator testing. 
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Compared with control group students, students who participated in summer programs 

that included mathematics had significantly better average non-cognitive outcomes. We found an 

average weighted impact estimate of +0.11 standard deviations (Table 2, Column 4). To put the 

magnitude of this effect into context, a typical treatment group student who participated in a 

summer program would be expected to rank approximately 5 percentile points higher on non-

cognitive skills than a typical control group student (Lipsey et al., 2012). We summarize the 

effect sizes and outcomes in Table S7 (online only). Of the 37 effect sizes included in the meta-

analysis, 27 were positive in sign (73.0%), with 10 being statistically significant. Seven effect 

sizes were negative in sign with one being statistically significant. Three effect sizes had point 

estimates of zero.  

The 37 outcomes were grouped into three categories, including academic mindsets, 

attitudes, and effort; social skills and behavioral adjustment indicators; and academic behaviors. 

Due to missing data in study reports, the number of studies and effect sizes represented in each 

category is small; as such, and given that power in the context of dependent effect sizes and with 

the inclusion of moderators is an area of ongoing research (Pigott, 2012), we interpret the 

estimated mean effect sizes by category from unconditional RVE meta-regression models 

depicted in Table S8 (online only) with caution. While not statistically significant, the magnitude 

of the pooled effect for academic behaviors (i.e., attendance and chronic absenteeism) is larger 

than those for the other categories, which are close to zero. The pattern of findings suggests that 

summer programs’ average positive non-cognitive impacts may be driven by improvements to 

students’ subsequent academic year attendance, a hypothesis that warrants follow-up. 

The summer programs we examined used different approaches to support students’ non-

cognitive outcomes. Although we do not conduct formal moderator tests due to data limitations 
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in this category, in this section we discuss program elements that the study authors emphasized 

as relevant to their reported non-cognitive impacts. 

A common theme identified among several of the programs that demonstrated positive 

impacts on non-cognitive outcomes was an explicit program focus on improving social-

emotional and/or behavioral skills and well-being. The Horizons National Student Enrichment 

Program (Scher, 2018) was among the most intensive interventions studied, with an explicit goal 

of having students enroll for multiple summers, and participants in the impact evaluation having 

attended for four or more summers. A key feature of the program was that Horizons teachers 

“create positive relationships with students that are sustained across many years, and students 

develop friendships that also encourage multi-year attendance” (Scher, 2018, pp. 1-2). In 

addition to academics, the program also provided “access to cultural and recreational 

opportunities like those enjoyed by their peers in middle-income households” (Scher, 2018, p. 1). 

Study participants were found to have better subsequent school attendance and fewer high school 

disciplinary referrals than their nonattending matched peers. On the other hand, Mac Iver and 

Mac Iver’s (2015) evaluation of a 5-week STEM robotics program for middle school students in 

a high-poverty urban district suggests that a less intensive program may also be beneficial. 

According to the authors, “participation in the robotics enrichment was expected to increase 

student engagement in general (measured by attendance the following year)” (p. 5). The authors 

found that participating students had better attendance the following school year; attendance 

impacts in the follow-up year were positive in sign but not statistically significant. 

Meanwhile, McCombs et al.’s (2014, 2020) randomized evaluation of five voluntary 

summer programs is instructive both because of its rigorous methodological design and because 

the programs it examines were district-run and likely similar to those offered in many urban 
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school districts, albeit adhering to study-specific implementation standards. Although program 

details differed across each district (Boston; Dallas; Duval County, FL; Rochester, NY; 

Pittsburgh), participating districts committed to providing 5 weeks of full-day programming for 

two summers, with at least 3 hours per day of language arts and mathematics instruction taught 

by certified teachers. Experimental impacts of the programs on self-regulation and self-

motivation skills, attendance, and suspensions after the first and second summers of 

programming, and three years later, were mostly positive in sign, but small in magnitude and not 

statistically significant. In hypothesizing why null results were found after the first summer, 

McCombs et al. (2014) noted that only one out of the five programs took specific actions to 

focus on social-emotional skills by providing teachers with professional development on the 

topic. They stated that “the effect estimate in this district is positive and larger than the other 

districts, although not statistically significant” (p. xiii). Summarizing the analyses across years, 

the authors concluded that “we do not see evidence of program effects for outcomes that were 

not directly targeted by programming, such as suspension and attendance rates during the school 

year” (McCombs et al., 2020, p. 20). 

It is also worth noting that even among programs that did not highlight a specific 

emphasis on non-cognitive skills, most impact estimates were positive in sign. The one impact 

estimate that was statistically significant and negative was for school suspensions, reported in 

Harlow and Benson’s (2001) study of Wake Summerbridge, a middle school summer enrichment 

program focused on preparing students to succeed in high school, attend college, and become 

leaders. The authors reported that summer participants were more likely to be suspended during 

the school year; however, they were also significantly less likely to drop out of school. One 

possibility is that the summer program may have helped some students at risk for school 
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suspension avoid dropout, leading to an observed uptick in the school suspension rate for 

summer participants. This finding suggests the importance of collecting evidence on dropout 

along with discipline records, particularly in high school. Overall, the pattern of mostly positive 

findings is consistent with the conclusion that there is unlikely to be a tradeoff or harm to non-

cognitive skills from participating in academic summer programs. Rather, the evidence, albeit 

suggestive, points in the direction of positive non-cognitive benefits from summer programs.  

Publication Bias 

Finally, we examined the potential role of publication bias using three sensitivity 

analyses that used the aggregate mean effect size per study as the unit of analysis (e.g., Kim et 

al., 2021). First, we employed trim-and-fill analysis (Duval & Tweedie, 2000). This analysis 

indicated no studies missing from the funnel plot representing potentially unpublished studies 

with smaller mean effects, a scenario consistent with a lack of influence of publication bias on 

estimates of mean effects. We next plotted a cumulative meta-analysis forest plot (Borenstein et 

al., 2009), which depicts how the average effect size varies with the inclusion of smaller studies 

by adding one study at a time to each subsequent analysis (Figure S1 [online only]). The results 

suggest that while the mean effect size shifted upward as small-sample studies were added to the 

meta-analysis, we retain the overall conclusion of average positive impacts of summer 

mathematics programs. Lastly, we conducted leave-one-out meta-analysis (StataCorp, 2021), 

which performs a series of meta-analyses that exclude one study from each analysis to 

investigate the influence of each study on the overall effect size estimate (see Figure S2 [online 

only]). The overall mean effects remained generally similar and positive when individual studies 

were omitted. The combined checks are consistent with the conclusion that the results are robust 

https://journals.sagepub.com/doi/full/10.1177/23328584211004183
https://journals.sagepub.com/doi/full/10.1177/23328584211004183
https://journals.sagepub.com/doi/full/10.1177/23328584211004183
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to publication bias. A series of additional sensitivity checks are reported in Tables S9-S16 

[online only]. 

Discussion  

In summary, we found that studies of summer programs in mathematics had positive 

effects on mathematics achievement outcomes, on average, with a mean pooled effect size across 

studies of +0.10 standard deviations. Summer programs had similar positive impacts on 

standardized mathematics tests (+0.10 SD) and broader school mathematics attainment 

outcomes, such as course grades (+0.11 SD).   

To contextualize the magnitude of these achievement impacts, prior research has 

estimated that a typical teacher who raises student achievement on standardized tests by +0.14 

SD produces marginal gains of approximately US$7,000 per child in present value future 

earnings (Chetty et al., 2014). Extrapolating from this, the estimated average test score impact of 

summer programs of +0.10 SD would be expected to net approximately US$5,000 in present 

value future earnings per child. Summer programs have larger mean achievement effects than do 

several other categories of school-based interventions summarized in Fryer (2017), such as 

teacher merit pay, teacher professional development, data-driven instruction, and school choice, 

and the typical impact of summer programs is similar to the pooled estimate of the causal impact 

of charter schools. Considered a different way, if children were to accrue the pooled average 

benefit every summer in grades K-12 and these results were to accumulate linearly, the 

cumulative benefit would be greater than the size of the Black-White test score gap in fourth-

grade mathematics (i.e., a potential +1.30 SD gain; McFarland et al., 2017). The current overall 

estimate of the mean impact of summer programs on mathematics achievement is in the same 

range as Cooper et al.’s (2000) estimate of the impacts of summer mathematics and reading 
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programs derived from studies with comparison groups (0.09 SD) as well as Lauer et al.’s (2006) 

estimate from a fixed-effects model (0.09 SD). Our findings thus confirm prior syntheses’ 

substantive conclusion that summer mathematics programs tend to produce positive learning 

impacts. 

Another relevant benchmark is the potential cost-benefit ratio of summer school as an 

investment. The following example adapted from Matsudaira (2008) provides one point of 

comparison. Examining the results of the Tennessee STAR experiment, Krueger (2003) 

estimated that reducing class size in the early grades by one third improved student achievement 

by 0.20 SD, at an estimated cost per student of roughly $13,000 (in current dollars). By contrast, 

Matsudaira (2008) and Augustine et al. (2016) reported summer school costs per student in 

major urban districts of approximately $1,500-3,300 in current dollars. If summer programs 

improve student achievement on standardized mathematics tests by approximately 0.10 SD, as 

suggested by the meta-analytic findings, extrapolating from the above would imply that the cost-

benefit payoff of summer school may be more than twice as large as a class-size reduction with 

respect to boosting student achievement, consistent with Matsudaira’s (2008) conclusion. Cost-

benefit estimates should be considered suggestive in nature. Detailed intervention cost data 

would allow us to estimate comparative payoffs more precisely, and we encourage future studies 

to report this information. Moreover, summer programs often provide benefits beyond improved 

academic achievement, such as extracurricular experiences and child care coverage (Augustine et 

al. 2016; Cooper et al., 2000); these affordances are not captured in standard cost-benefit 

analyses. As a different yardstick, Augustine et al. (2016) found that three district-run summer 

programs had hourly costs per student that were lower than the school year per-pupil hourly 
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costs, both within the district and compared to the national average.6 Together, the combined 

evidence is broadly consistent with a conclusion that summer programs provide a positive return 

on districts’ investments. 

Features Associated With Summer Mathematics Program Effectiveness 

 Via a suite of analyses, we examined the extent to which summer program characteristics 

and contextual factors predicted the magnitude of impacts on student mathematics achievement. 

One characteristic significantly associated with stronger than typical student mathematics 

learning outcomes was focusing program content specifically on mathematics. This finding is 

consistent with a sizeable body of research linking time on task to student achievement (e.g., 

Stronge et al., 2011), and indicating that programs tend to improve outcomes in the specific 

domains that they target (Kraft, 2020). However, this predictor did not retain its significance 

when modeled jointly with mathematics content hours, although joint analysis of these variables 

was limited because many studies lacked content hours data. Meanwhile, programs that targeted 

a broader variety of academic subjects may well have produced academic benefits in other 

subject areas that we did not capture in the present synthesis, given our specific interest in 

mathematics. Since summer programs with mathematics and reading content (Kim & Quinn, 

2013) tend to improve each of these outcomes, respectively, policymakers may wish to match 

summer programs’ foci to students’ areas of perceived need. Indeed, some U.S. states appear to 

have adopted such a targeted approach in their COVID disaster recovery spending, by directing 

summer programs to focus on literacy for early elementary children, and mathematics for older 

students (e.g., Massachusetts Department of Elementary and Secondary Education, 2021). 

 
6 Estimated average summer program hourly cost per student was $6.70 in 2014; school-year costs in the same 

districts ranged from $7.65 to $20.06, and the 2013 per-student national average school-year costs were $10.52 per 

hour (Augustine et al., 2016). 
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The moderator analysis also suggested a negative link between textbook use and effect 

size magnitude. This finding may seem counterintuitive given that textbooks are generally 

considered an important contributor to students’ potential opportunity to learn (Tornroos, 2005) 

and a key support for teachers (Mesa, 2004). However, it is possible that student engagement 

may have suffered if summer programs too closely mirrored typical school year offerings 

through the use of textbooks (McCombs et al., 2011). 

Mathematics Learning Impacts for Children of Different Family Income Backgrounds 

We found that summer programs serving lower-income children and those serving 

children from a mix of higher income backgrounds were similarly beneficial to children’s 

mathematics learning. We analyzed impacts by income level within studies as a sensitivity check 

and found the pattern of findings was consistent with the study-level analysis. 

By contrast, Kim and Quinn (2013) found that the impacts of summer reading programs 

were larger for low-income children than their higher income counterparts. One possible 

explanation for these differences in mathematics versus reading is that income-based patterns in 

the home activities that children do over the summer may differ by subject area. Children in 

higher income families tend to read more at home during the summer than their lower income 

peers (Heyns, 1978); thus, summer programs may induce a greater differential boost in summer 

literacy habits for low-income students than for higher income students (Kim & Quinn, 2013). It 

is also conceivable that few students of any income level do a significant amount of mathematics 

at home during the summer (Cooper et al., 1996), which may make the treatment-control contrast 

of summer mathematics programs similar for children across income groups. Overall, the finding 

that summer programs improve mathematics learning for children across income levels is 

important for policy given both the broad need to strengthen students’ STEM opportunities, and 
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the current pressing demand for malleable policy factors that can aid in COVID learning 

recovery. 

The Relationship Between Summer Learning Programs and Non-Cognitive Skills 

The current findings support the notion that summer programs can improve students’ 

non-cognitive outcomes. The potential for positive non-cognitive impacts is noteworthy because 

prior ethnographic research has suggested that “summer inequities in nonacademic learning may 

be even more egregious than the academic disparities that past research has emphasized” (Chin 

& Phillips, 2004, p. 206). In their study of social-class differences in children’s summer 

experiences, Chin and Phillips (2004) found that middle-class children, via their opportunities to 

attend camps and participate in structured enrichment, received exposure to new environments 

with the potential to catalyze their future interest in areas such as science, history, arts, and 

culture. These opportunities promoted middle-class children’s pride in their skills grown and 

satisfaction in their accomplishments over the summer. Meanwhile, poor and working-class 

children were more likely to spend their summers in circumscribed environments. The authors 

concluded that social-class differences in children’s opportunities to develop their talents during 

summer likely contribute to “both a ‘talent development gap’ and a ‘cultural exposure gap,’ 

which, if exacerbated each summer, contribute to disparities in children’s future life chances” (p. 

206). The excess time that low-income children spend watching TV during the summer as 

compared with their higher income peers amounts to the equivalent of approximately a full 

month of school days (Gershenson, 2013), a concerning level given that television viewing has 

been linked to aggressive behavior (e.g., Manganello & Taylor, 2009) and obesity (Rey-López et 

al., 2008). The current findings provide supportive evidence that summer learning programs 

targeted toward low-income children have the potential not only to aid students academically, 
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but also to counteract inequities in nonacademic skills that may grow during summer vacation 

(for broader discussion of the effects of universal and targeted interventions on learning and 

equity, see Ceci & Papierno, 2005; also, e.g. Fuchs et al., 2001). 

Study reports suggested that targeting social-emotional skills specifically in 

programming, such as via providing teacher professional development on the topic or including 

relationship-building and positive engagement as program goals, may have been linked to 

stronger impacts; however, not all studies that reported positive impacts had such an emphasis. 

We were unable to empirically test moderators of summer programs’ impacts on non-cognitive 

outcomes given data limitations; however, this analysis would be a fruitful avenue for future 

research after more original studies presenting impacts on non-cognitive outcomes are 

conducted. Meanwhile, evidence-based approaches to helping children build personal and social 

skills in other out-of-school time settings, such as active learning and a focus on such skills, are 

likely also beneficial in the summer program context (Durlak et al., 2010).  

Limitations and Future Research Directions  

The limitations of this study point toward several potentially productive avenues for 

future research. Missing data presented the first challenge. A common issue in research 

syntheses is that programs subjected to rigorous evaluations may not fully represent the kinds of 

programs that children are typically offered (Institute of Education Sciences & National Science 

Foundation, 2013). Many of the study reports identified for the current review were evaluations 

of district-run, classroom-based summer school programs. While these evaluations reflect often- 

typical programming, more data on alternative types of programs would aid our understanding of 

how a broader range of program modalities may influence outcomes. For example, a large body 

of research indicates the effectiveness of tutoring in mathematics (e.g., Ritter et al., 2009). 
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However, most research on mathematics tutoring has been conducted in schools during term-

time. We identified no studies of summer mathematics tutoring, yet such research could shed 

light on how to design effective tutoring programs for children when they are away from daily 

school mathematics practice. Similarly, a growing number of school districts are turning to 

online programs as a low-cost strategy to encourage summer mathematics practice (e.g., Lynch 

& Kim, 2017). Yet despite the popularity of such programs, the evidence base on their efficacy is 

thin as we were able to identify only four studies that examined online-only interventions. Online 

offerings also lack many of the affordances of in-person programs, such as meals, socialization, 

physical fitness, and child care for working parents. In addition, although we did not exclude 

studies based on country setting, all but two of the studies that met our methodological and 

substantive inclusion criteria were conducted in the United States. Future design and efficacy 

research on new and understudied kinds of summer programs, including studies conducted in 

multiple country settings, would move the field forward, and could help schools and districts to 

structure their summer programs more effectively.  

The observation that summer programs improved children’s mathematics learning, on 

average, spurs inquiry into what makes some summer programs more effective than others. 

While a handful of studies presented informative portraits of children’s classroom activities (e.g., 

McCombs et al., 2014; Roderick et al., 2003), in many study reports detailed information about 

children’s and teachers’ activities during the intervention was lacking. Missing data thus 

precluded us from examining some moderators that prior researchers have hypothesized to 

influence program impact. For example, Cooper et al. (1996) hypothesized that procedural 

knowledge in mathematics may be more subject to forgetting over the summer than conceptual 

knowledge. The study reports often lacked detail about the contents of the assessments 
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administered, and as such we were unable to examine this issue, nor potential differential 

impacts of summer programs by mathematical domain. In addition, although we originally hoped 

to analyze attendance as a moderator of program impact, given evidence on a link identified in 

some primary studies (e.g., Augustine et al., 2016), too few reports provided sufficient 

attendance details to make this analysis feasible. Instead, following Lauer et al. (2006), we 

examined program duration, which captures potential for program exposure. Comparative data 

documenting how far behind summer participants were academically compared to their average-

achieving peers was also often missing from reports, precluding us from probing the extent to 

which summer participants were on par with grade level performance by the fall. Many studies 

also presented outcomes from only one posttest; more consistent reporting of follow-up data 

would permit a more detailed examination of potential fade-out effects.  

A longstanding focus in the design and funding of summer programs has been on 

supporting low-income children with high levels of need (Borman & D’Agostino, 1996). 

Consistent with this emphasis, the samples of students included in the research studies identified 

for the current synthesis were primarily low-income. We have limited data on the impacts of 

summer learning programs in higher-income contexts. Such research could illuminate disparities 

in program offerings for low- versus high-income children, and point toward programmatic steps 

that could be taken to reduce those inequities. In addition, although we had initially hoped to 

examine impacts for student subgroups by race/ethnicity and ELL status, too few studies 

reported this information to permit this analysis. This information would allow us to examine 

impacts by these characteristics, and we urge future research to report this data.  

Although we examined a sizable pool of studies to estimate mean impacts on 

mathematics achievement, we could examine non-cognitive impacts using only a smaller 
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subsample of studies that reported these outcomes. As such, we consider these analyses 

exploratory. More consistent reporting of non-cognitive outcomes in study reports would 

facilitate more precise estimation of these impacts. Especially in the aftermath of the COVID 

pandemic, the potential for summer programs to support social-emotional development is 

noteworthy. School closures and social isolation have harmed students’ mental health and well-

being (Hamilton & Gross, 2021). Many students suffered lower attendance, or dropped out of 

school (Korman et al., 2020). The data present a form of existence proof for the notion that 

summer programs can also support non-cognitive outcomes.   

Lastly, ethnographic research studying the summer experiences of children across 

sociodemographic lines could illuminate other means by which summer programs can better 

support children and families (Cooper et al., 2000). We could identify only one ethnographic 

study of children’s summer experiences (Chin & Phillips, 2004); although this study is quite 

informative, it was conducted in a single elementary school over two decades ago. Parents often 

choose to send their children to summer programs for reasons beyond improving academics, 

such as for socialization, physical activity, and child care (Chin & Phillips, 2004). Qualitative 

studies, including interviews and observations of children that vary by geographic regions, 

family resources, and local availability of summer programming, could shed light on summer 

program structures and features that may provide holistic benefits beyond improved academic 

achievement. 

However, despite the noted limitations, we compiled the evidence from dozens of studies 

synthesizing over two decades of the most rigorous extant evidence on the impacts of summer 

programs on children’s mathematics learning. In summary, contemporary summer programs are 

a malleable factor to improve children’s mathematics learning, including in high-poverty settings 
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where children possess a persistent need for support. By bolstering children’s mathematics 

learning, summer programs have the potential to advance long-run STEM educational 

opportunities and outcomes.  
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Tables and Figures 

 

Table 1 

Categories and Descriptions of Codes 

 

Code Code description 
Code 

present a 

Effect size type   

     Standardized mathematics        
     test outcome 

Percentage of mathematics achievement outcomes that are 

standardized test scores. 

86% 

     School mathematics  

     attainment outcome 

Percentage of mathematics achievement outcomes that are 

school attainment measures (e.g., mathematics course 

grades). 

14% 

     Non-cognitive       
     outcomes 

Percentage of studies contributing one or more non-

cognitive outcomes. 

22% 

     Adjusted for covariates Effect size is adjusted for covariates (e.g., pretest score). 92% 

Study design and sample characteristics  

     RCT or RD 
Study used a randomized controlled trial or regression 

discontinuity design. 
30% 

     Publication type Study is a dissertation. 43% 

 Study is a peer-reviewed journal publication. 19% 

 
Study is a technical report including contract researchers’ 

reports, conference reports, and district, state, or federal 

government reports. 

38% 

     Grade level – Elementary  
Study sample included elementary (pre-K-5) students 

(versus middle/high school). 
46% 

     Poverty level Percentage of students reported eligible for free or reduced-

price school lunch. 
65% 

 

Duration/intensity   

     Duration in weeks 

 

Average timespan in weeks over which the summer 

program occurred. 

5.2 

     Total program hours Average number of total summer program hours.  158.2 

     Program hours per day Average hours per day that the summer program met. 4.6 

     Hours per day on     

     mathematics 
Average hours per day dedicated to mathematics. 2.1 

 

Summer program focus   

Mathematics-specific focus The summer program focused specifically on mathematics, 

in contrast to broad-based programs that also included 

other academic subjects (e.g., reading, science, social 

studies). 

22% 

     Program goals The summer program focused on remediation, learning 

loss, or ‘catch up.’ 
78% 

 The summer program focused on future coursework or the 

next grade level via preparation and/or preview of future 

content.  

22% 
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     Standards alignment The summer program content was aligned with NCTM 

standards and/or CCSS. 
32% 

     Online only Study examined a summer program conducted exclusively 

online. 
11% 

Summer program activities   

Children’s activities  Variables indexing children’s participation in hands-on 

projects, textbook exercises, group work, and computer-

based skills practice, as well as total number of activities 

reported (range 0–3).  

0.92 

Curriculum: Commercial 

program 
The study reported the summer program’s use of a 

commercially available curriculum. 
27% 

 

Summer program resources   

Staffing Program instructors received PD, either prior to or during 

the summer. 
Teacher direction (lesson plans or structure) was provided. 

54% 

 
27% 

District/community support b Transportation was provided. 
Meals (breakfast and/or lunch) were provided. 

47% 
46% 

Average class size Average class size 16.6 

Note. N = 37 studies. NCTM = National Council of Teachers of Mathematics; CCSS = Common 

Core State Standards; PD = professional development. 
a Figures in the third column include the percent of studies which feature the row code for binary 

variables, or the sample average calculated at the study level for continuous variables. For 

studies that had the feature present in one treatment arm but not another treatment arm, the code 

is counted as present if it is present in any treatment arm. 
b Conditional on the summer program being offered in person. 
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Table 2 

 

Results of Estimating Unconditional Meta-Regression Models With Robust Variance Estimation 

(RVE) 

  

  Dependent 

variable:  

All mathematics 

outcomes effect 

size  

(Hedges’s g) 

Dependent 

variable:  

Standardized 

mathematics 

achievement 

tests 

effect size  

(Hedges’s g) 

Dependent 

variable: 

School 

mathematics 

attainment 

outcomes 

effect size 

(Hedges’s g) 

Dependent 

variable: 

Non-cognitive 

skills effect size 

(Hedges’s g) 

Constant 0.096** 0.101***  0.111 0.114* 

  (0.024) (0.025) (0.074)  (0.049) 

N effect sizes 112 96  16 37 

N studies 37 34  6 8 

𝜏2 a  

 

0.008 

 

0.008 

 

0.015 

 

0.032 

95% 

prediction 

interval b 

 

(-0.076, 0.268) (-0.071, 0.273)  (-0.127, 0.348) (-0.234, 0.463) 

 

Note. We assume the average correlation between all pairs of effect sizes within studies is 0.80. 
a τ2 is the method of moments estimate of the between-study variance in the underlying effects 

provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  
b The 95% prediction interval is calculated as the estimated average effect size +/- 1.96* 𝜏. 

*p < .10. **p < .05. ***p < .01. 
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Table 3 

 

Results of Estimating Meta-Regression Models With Robust Variance Estimation (RVE) for 

Mathematics Achievement Outcomes Including Sample Characteristics (Poverty Level of 

Sample) as Moderators  

 

  Dependent variable: Effect size (Hedges’s g) 

Between-study effects  

    % of sample low-income 

    (standardized)  

 

-0.039 

(0.037) 

 

N effect sizes 105 

N studies 32 

𝜏2 a 0.009 

 

 Weighted mean: 

Effect size (Hedges’s g) 

High-poverty sample (% low income 

>0.75) 

0.083*** 

Mid-low poverty sample (% low 

income<=0.75) 

 

0.122* 

Note. We assume the average correlation between all pairs of effect sizes within studies is 

0.80. Models include controls for randomized controlled trial or regression discontinuity 

study design and elementary school sample at the between-study and within-study levels. 

RVE = robust variance estimation. 
a 𝜏2 is the method of moments estimate of the between-study variance in the underlying 

effects provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  

*p < .10. ***p < .01. 
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Table 4 

 

Results of Estimating Meta-Regression Models With Robust Variance Estimation (RVE) for 

Mathematics Achievement Outcomes Including Program Duration/Intensity Indicators as 

Moderators  

 

  Dependent variable: Effect size (Hedges’s g) 

Between-study effects    

     Total program hours 

 

0.000 

(0.000) 

  

     Program hours per day 

 

 -0.004 

(0.016) 

 

     Hours per day on  

     mathematics 

 

  0.095* 

(0.043) 

N effect sizes 100 73 54 

N studies 31 28 22 

 

𝜏2 a 
 

0.009 

 

0.010 

 

0.006 

Note. We assume the average correlation between all pairs of effect sizes within studies is 0.80. 

Models include controls for randomized controlled trial or regression discontinuity study design 

and elementary school sample at the between-study and within-study levels. RVE = robust 

variance estimation. 
a 𝜏2 is the method of moments estimate of the between-study variance in the underlying effects 

provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  

*p < .10. 
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Table 5  

 

Results of Estimating Meta-Regression Models With Robust Variance Estimation (RVE) for 

Mathematics Achievement Outcomes Including Summer Program Foci as Moderators 

 

 Dependent variable: Effect size (Hedges’s g)  

Between-study effects        

     Mathematics-specific    
     focus 

 0.176* 

(0.078) 
    0.170** 

(0.061) 
0.124 

(0.204) 

     Program goal:     
     Remediation   

-0.128 
(0.086)   

-0.104  
(0.065)  

     Standards-aligned 
   

0.075 

(0.067)  
0.025 

(0.052)  

     Online-only program 
   

 -0.056 
(0.089) 

-0.094 
(0.061)  

     Hours per day on      

     mathematics    

   0.066 

(0.062) 

 
N effect sizes  112 112 

 
112 

 
112 

 
112 54 

N studies  37 37 37 37 37 22 

 

𝜏2 a 
  

0.010 0.011 0.012 0.012 
 

0.010 0.006 

 
Results of joint F test 

  

   

F = 2.47, 

df = 4, 
p = 0.152 

 

Note. We assume the average correlation between all pairs of effect sizes within studies is 0.80. 

Models include controls for randomized controlled trial or regression discontinuity study design 

and elementary school sample at the between-study and within-study levels. RVE = robust 

variance estimation. 
a 𝜏2 is the method of moments estimate of the between-study variance in the underlying effects 

provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  

*p < .10. **p < .05. 
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Table 6 

 

Results of Estimating Meta-Regression Models With Robust Variance Estimation (RVE) for 

Mathematics Achievement Outcomes Including Summer Program Activities as Moderators 

 

  Dependent variable: Effect size (Hedges’s g) 

Between-study effects        

     Commercially      
     available curriculum 

-0.016 

(0.060)  
      

     Hands-on projects 

  
0.062  

(0.089)    

0.077 
(0.101)  

     Textbook exercises 
  

-0.112** 

(0.042)   
-0.115** 
(0.044)  

     Group work   
 

-0.016 

(0.089) 
 -0.044 

 (0.087) 
 

     Computer-based  
     skills practice   

  -0.003  

(0.074) 
-0.026 
(0.079) 

 

     Number of summer     
     program activities    

     -0.024 
(0.039) 

        

N effect sizes 112 112 112 112 112 112 112 

N studies 37 37 37 37 37 37 37 

 

𝜏2 a 
 

0.013 
 

0.012 
 

0.015 
 

0.012 
 

0.012 
 

0.017 
 

0.014 

        

Results of joint F test     

 

 F = 0.283, 

df = 4, 
p = 0.881 

Note. We assume the average correlation between all pairs of effect sizes within studies is 0.80. 

Models include controls for randomized controlled trial or regression discontinuity study design 

and elementary school sample at the between-study and within-study levels. RVE = robust 

variance estimation. 
a 𝜏2 is the method of moments estimate of the between-study variance in the underlying effects 

provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  

**p < .05. 

 

  



SUMMER MATHEMATICS PROGRAMS    

   

 

67 

Table 7  

 

Results of Estimating Meta-Regression Models With Robust Variance Estimation (RVE) for 

Mathematics Achievement Outcomes Including Summer Program Resources as Moderators 

 

  Dependent variable: Effect size (Hedges’s g) 

Between-study 

effects 

     

     Teacher PD 0.007  

(0.053) 

  -0.040 

(0.068) 

 

     Lesson plans 

  

0.069  

(0.075)  

0.081  

(0.080)  

     Transportation 

  

-0.024 

(0.053) 

-0.024 

(0.065)  

     Class size   

 

  0.013  

(0.009)  

N effect sizes 112 112 105 105 51 

N studies 37 37 34 34 17 

𝜏2 a 0.009 0.013 0.013 0.018 0.006 

Results of joint F test    F = 0.436, df = 3,  

p = 0.731 

Note. We assume the average correlation between all pairs of effect sizes within studies is 0.80. 

Models include controls for randomized controlled trial or regression discontinuity study design 

and elementary school sample at the between-study and within-study levels. Studies of online-

only programs are excluded from the analysis of transportation. Average class size information 

was available for a subset of studies. There are no statistically significant effects at the p < .10 

level. RVE = robust variance estimation. 
a 𝜏2 is the method of moments estimate of the between-study variance in the underlying effects 

provided by the robumeta package in Stata 15 (Tanner-Smith & Tipton, 2014).  
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Figure 1 

 

PRISMA Flow Diagram 

 

 

 
 

Source. Moher, Liberati, Tetzlaff, Altman, and The PRISMA Group (2009). 

Note. PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 

 
 


	Korman, H., O’Keefe, B., & Repka, M. (2020, October). Missing in the margins: Estimating the
	scale of the COVID-19 attendance crisis.
	von Hippel, P. T. (2019b). Summer learning: Key findings fail to replicate, but programs still have promise. Education Next.

