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as schools or classrooms, while outcomes are measured for students. This research de-
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1 Introduction and Case Study

One common study design in education research is the clustered observational study (COS)

(Page et al. 2020). In a COS, an intervention is allocated non-randomly to intact groups

rather than to individuals. Given that treatment is non-randomly allocated, differences in

outcomes between those who are and are not treated may reflect pretreatment differences

rather than the effect of the treatment itself (Cochran 1965; Rubin 1974). Such pretreat-

ment differences may be measurable and thus constitute overt biases. Alternatively, these

differences may be unmeasured and form hidden biases. In a COS, investigators use special-

ized methods such as multilevel matching and/or multilevel regression models to adjust for

observed confounders and remove overt bias.

In any observational study, overlap or “common support” in the distribution of baseline

covariates is a key consideration. That is, investigators must ensure that treated and control

units overlap in terms of their covariate distributions. One strategy to ensure common

support is to prune observations where the empirical density of the control units and that

for the treated units do not overlap. Areas outside of common support are particularly

problematic, since they require extrapolation and therefore can generate considerable model

dependence. Typically, extrapolation occurs due to the fact that there are control units that

are far from the treated units in terms of the observed covariates. In such a situation, a

statistical model applied to the data will extrapolate over the covariate space where we lack

both treated and control units. This can lead to treatment effect estimates that are sensitive

to the control units that are far from the treated units; results will be sensitive to changes in

the model, since the estimates will depend on the model and not the data (King and Zeng

2006).

In short, when common support violations occur, treatment effect estimates will depend

on modeling assumptions rather than the data. In this paper, we review how issues of overlap

can be particularly acute in the COS design. We demonstrate how overlap issues can lead to
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a specific conundrum: a valid causal effect that may be useless. This is because the process

of solving the problem of overlap may result in a causal effect estimate that is far from what

the original study intended.

We demonstrate this issue with an investigation of the causal effect of Catholic schools.

The data we use are well-known and have been used by many to investigate the question

of whether Catholic schools produce better academic outcomes for students. Early evidence

suggested that Catholic schools were more effective than public schools in terms of higher

test scores despite spending considerably less money per pupil (Coleman et al. 1982; Hoffer

et al. 1985; Coleman and Hoffer 1987). Later research challenged these findings and argued

that Catholic school effectiveness was little different from public school effectiveness and that

observed achievement differences between these two types of schools stemmed more from their

serving different populations of students (Alexander and Pallas 1983, 1985; Goldberger and

Cain 1982; Noell 1982; Willms 1985). Studies that focus on various aspects of Catholic school

effectiveness have been ongoing for nearly two decades (Bryk et al. 1993; Neal 1997; Grogger

and Neal 2000; Altonji et al. 2005; Reardon et al. 2009). The question of Catholic school

effectiveness has also spurred considerable methodological debate and innovation regarding

how to make such comparisons most appropriately (Raudenbush and Bryk 2002; Morgan

2001; Morgan and Harding 2006; Morgan and Todd 2008). This papers contributes to this

debate by demonstrating how fragile estimates of the Catholic school effect can be.

The paper proceeds as follows. Section 2 reviews the COS design. Section 3 discusses

statistical adjustment strategies for common support violations. Here, we focus on how

enforcing common support can result in poorly defined causal estimands. We outline how

the tension between common support and well-defined estimands can be especially acute

in the COS context. In Section 4 we present our analysis of the Catholic school data to

demonstrate how to detect and correct for common support violations. In doing so, we

illustrate how enforcing common support can result in a causal estimand that is of little

interest. Section 5 concludes.
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2 Clustered Observational Studies: A Review

We begin with a review of the COS design. See Page et al. (2020) for a detailed treatment of

this topic. A COS is the observational study counterpart to the clustered randomized trial

(CRT). Just as in a CRT, treatment assignment occurs at the group level—in educational

contexts, typically the school or classroom level—while analytical interest is focused on unit

outcomes such as individual student test scores. In contrast to a CRT, however, groups in a

COS are purposefully selected into treatment and control regimes. Such non-random selec-

tion means that outcomes may reflect pretreatment differences in treated and control groups

rather than causal effects of treatment (Cochran 1965; Rubin 1974). Pretreatment differ-

ences in treated and control groups may be either those that are measurable, thus forming

overt biases, or those that are unmeasured and leading to hidden biases. In an observational

study, analysts use pretreatment covariates and a statistical adjustment strategy to remove

overt biases in the hopes of consistently estimating treatment effects. Next, we formalize

these ideas by introducing some notation. Throughout, we treat the school as the relevant

group-level unit.

Formally, there are J schools. We write Zj = 1 if the school is treated and Zj = 0 if the

school receives the control. We define causal effects using the potential outcomes framework

(Neyman 1923; Rubin 1974). Prior to treatment, each student has two potential responses:

(yT ij, yCij), where for the ith subject yT ij is observed under Zj = 1, and yCij is observed

under Zj = 0. After treatment, we only observe each individual’s actual response, which

is a function of potential outcomes and treatment assignment: Yij = ZjyT ij + (1 − Zj)yCij.

Each school j contains nj > 1 students, i = 1, . . . , nj. We represent pretreatment covariates

with the matrix xij which typically includes characteristics at both the individual and group

levels. For example, xij might contain measures of student sex and race/ethnicity as well as

the percentage of students in the school who are proficient in reading based on standardized

test scores. Finally, uij is an unobserved, binary confounder.

4



In a COS, the investigator might focus on the average causal effect of the form E[yT ij −

yCij] or the average causal effect for the treated (ATT) of the form E[yT ij − yCij|Zj = 1].

These contrasts are referred to as estimands, since they refer to counterfactual quantities.

Our notation and estimand is consistent with the COS template, where the design focuses on

a treatment that is assigned at the school level. In the context of our Catholic school study,

the implication is that we have a population of intact schools, and some of these schools are

selected to be Catholic schools while others are public schools. The COS template is not

an entirely natural fit, since such a treatment assignment process is unlikely to occur in the

course of school formation or administration. Nevertheless, imagining such a process is a

useful thought experiment to encourage clarity regarding the causal effect(s) of interest. That

is, we would argue that we are primarily interested in how the school-level “intervention” of

being a Catholic school affects student-level test scores.

Of course, one might alternatively conceive of the Catholic school assignment process as

one where students (or their families) select into attending a Catholic school. The difficulty

is that in this context the assignment mechanism is not explicit. Unlike a school reform

that is applied to a set of existing schools, the Catholic school assignment mechanism is

necessarily ambiguous. However, the COS template is plausible for this research question

and helps to emphasize the need to consider overlap in covariate distributions at both the

individual and group levels.

Due to the fact that causal estimands are based on counterfactual quantities, we require

a set of assumptions that allow us to identify these counterfactual quantities using observed

data. First, we assume that the Stable Unit Treatment Value Assumption (SUTVA) holds

(Rubin 1986). SUTVA has two parts: 1) the treatment levels of Zj (1 and 0) adequately

represent all versions of the treatment, and 2) a student’s outcomes are not affected by

other students’ exposures. Generally, clustered treatment assignment is assumed to reduce

the likelihood of treatment spillovers as they must occur across schools. However, we allow

arbitrary patterns of interference among students within the same school, given treatment
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selection is at the school level.

Next, we assume that treatment assignment depends on observed covariates only. For-

mally, we must assume that:

πj = Pr(Zj = 1|yTj,yCj,xij,uij) = Pr(Zj = 1|xij).

This states that the probability of being treated (πj) could depend on potential outcomes,

observed data, and unobservables, but here we assume that this probability only depends

on observed data. In sum, the investigator asserts that there are no unobservable differ-

ences between the treated and control groups. Stated another way, we assume there are no

unobserved confounders. This assumption is nonrefutable, since it cannot be tested with

observed data (Manski 2007). When using a COS design, a key analytical step is testing

the sensitivity of results to potential violations to this assumption (Hansen et al. 2014; Page

et al. 2020).

We also assume that all schools have some probability of being treated such that 0 < πj <

1. This assumption is also referred to as the overlap or common support assumption, and it

is this assumption on which we focus in this paper. In a COS, violations to this assumption

result in large pre-treatment covariate imbalances which may occur due to treated clusters

that are very dissimilar from any control clusters. Under such circumstances, the treated

and control clusters are said to lack common support, since the covariate distributions do

not overlap. Unlike the assumption of no unobserved confounders, a lack of common support

can be verified with the data.

In the COS design, statistical adjustment requires specialized methods such as multilevel

regression. Recently, a specialized form of matching—known as multilevel matching—has

been developed for COS designs (Keele and Zubizarreta 2017; Pimentel et al. 2018). Both

multilevel regression and multilevel matching are designed to remove overt bias due to dif-

ferences in the covariate distributions of the treated and control group. Recently, Keele
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et al. (2021) demonstrated that multilevel matching combined with outcome modeling is the

preferred analytic strategy for COS designs. Next, we outline a specific conundrum that can

arise that is particularly acute in the COS design.

3 The Tension Between Common Support and Well-

Defined Estimands

When the empirical covariate distributions of the treated and control units do not overlap,

the primary solution is to prune observations until overlap is achieved. Retaining observa-

tions that are outside the area of common support can be particularly problematic since

they require extrapolation, which can generate considerable model dependence. That is,

treatment effect estimates will depend on modeling assumptions. Indeed, the farther the

extrapolation is from the data, the more severe the model dependence can become. That

is, if we must depend on extrapolation, our inferences depend on our model rather than the

data, since relevant empirical observations do not exist in the data. The literature in statis-

tics has developed a number of methods to handle this challenge by trimming observations

to ensure overlap. For example, Crump et al. (2009) recommend discarding all units with

estimated propensity scores that fall outside a set of pre-specified thresholds. They provide

a set of guidelines for pre-specification of these thresholds. Alternatively, optimal subset or

cardinality matching were also developed to enforce overlap (Rosenbaum 2012; Zubizarreta

et al. 2014). These methods of matching not only pair units but also seek to retain the

largest set of treated and control units for which common support holds by discarding the

set of treated units that do not overlap with the control units.

These techniques, designed in the context of individual-level treatment assignment, have

been adapted to the COS context. For example, multilevel matching can be used with

a form of optimal subset matching, which allows investigators to trim treated groups to

enforce overlap (Pimentel et al. 2018). Here, trimming can occur in two ways; one can

trim either treated schools or treated students. However, common support violations tend
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to arise in school-level covariates due the fact that treatment selection tends to depend on

school-level characteristics. While student-level trimming can occur in multilevel matching,

its need arises more incidentally due to differences in sample sizes. As we show below, in the

Catholic school data, the common support violations all occur at the school level.

In any context, trimming treated units to ensure overlap is not without consequence.

Specifically, discarding treated units changes the causal estimand. In our application, the

ATT is a natural target estimand, as it aligns with our interest in the effect of Catholic

schools among those who attend them. However, if trimming is necessary to ensure overlap,

the estimand is no longer the ATT, but some more local version based on whichever treated

units are retained in the analysis. In short, if we trim any Catholic schools, the estimand

would no longer be the Catholic school effect, but a more local Catholic school effect.

Formally, let’s assume we exclude schools with covariates outside set A, a subset of

school-level covariates. 1xij∈A is an indicator function for the event that xij is an element

of the set A. For example, let 1xij∈A be an indicator that a school is co-ed, thus excluding

all single-sex schools from the sample. The estimand is now 1xij∈AE [yT ij − yCij | Zj = 1], a

subsample treatment effect defined by the school-level covariates in A, as the estimand now

depends on school-level covariates. Generally changing the estimand in this way is viewed as

unproblematic if the goal is to estimate the effect of a treatment in cases where the data do

not represent a well-defined population (Rosenbaum 2012). As such, discarding treated units

is a reasonable decision in an observational study when interest is in a marginal population

that might or might not receive the treatment of interest rather than a known, a priori

well-defined population.

In COS designs, however, the treated units are often well-defined populations. For ex-

ample, in a COS, it is common for the intervention to be applied to a well-defined set of

schools, as in the population of Catholic schools throughout the US. In such instances, dis-

carding treated units may result in a study with a causal effect that tells us less than the

initial effect of interest. To further complicate matters, overlap issues are likely to be more
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common in COS designs. Why? Often sample sizes are simply more limited in a COS. In

the context of education, this is because many school-level interventions are implemented

within a single district, which this limits the number of schools in a given study. Even very

large school districts may have only few hundred schools. When the pool of control units is

limited, issues of overlap tend to be more acute. Next, we demonstrate this tension using

the Catholic school data.

4 Empirical Analysis

In our analysis, we use data that are a public release of the 1982 High School and Beyond

(HS&B) survey. This public release includes records for 7,185 high school students from

160 schools. Of these schools, 70 are Catholic schools and are thus considered treated in

this application, while the remainder are public high schools and thus serve as a reservoir

of controls from which we will identify matched comparisons. In the data, we observe some

measures at the student level and other measures at the school level. The data are a subset

of the data used in a pioneering article on the use of multilevel regression with education

data by Lee and Bryk (1989). A version of these data are also used in Raudenbush and Bryk

(2002).

The data we use here contain three student-level covariates. The first measure is an

indicator for whether or not the student is female; the second measure is an indicator for

whether a student belongs to a particular racial/ethnic group, and the final measure is a

scale for socioeconomic status (SES). Three of the school-level measures are simply school-

level averages of these student-level measures. That is, we have a measure of the percentage

of students in the school that is female, the percentage that is minority, and the average

school-level SES. Three additional school-level measures are also available: total enrollment;

the percentage of students on an academic track; and a measure of disciplinary climate. The

disciplinary climate variable is a composite measure created from a factor score on measures

of the number of attacks on teachers, fights, and other disciplinary incidents. Our outcome
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is interest is student performance on a standardized test of mathematics achievement in the

second year of high school. Replication files for our analysis can be found at X.

4.1 Common Support

One sensible practice in data analysis for a COS is checking that treated and control units

overlap in terms of the covariate distributions. Figure 1 contains boxplots that compare

the distributions of three of the school-level covariates by school type. The results are

illuminating on several fronts. First, Figure 1a shows the distribution for the percentage

of students on an academic track. It is immediately clear that there is limited overlap in

the distributions. The same is true for the disciplinary climate covariate plotted in 1b. Of

particular interest is the difference across sex distributions for Catholic and public schools

in Figure 1c. Notably, none of the public schools are single sex, and no public school has

a student body that is either more than 70% female or less than 35% female. As might be

expected, however, 38 of the 70 Catholic schools are either all female or all male and another

school is nearly 98% female. These boxplots highlight the danger of not enforcing overlap

in an observational study. Including the single-sex Catholic schools in our analysis would

confound the Catholic school effect with the single-sex school effect. To ensure common

support on this covariate, we must exclude the 38 single-sex Catholic schools, since we have

no comparable control units among public schools. Per the discussion above, discarding

these 38 schools changes the estimand. Now we will no longer estimate the Catholic school

effect. Instead, the best we can do is focus on the co-ed Catholic school effect. Arguably,

this is still a highly relevant effect, but it is notably distinct from the Catholic school effect.

4.2 Balance

Next, we examine the data before matching to understand the level of comparability across

Catholic and public schools prior to matching. Table 1 contains balance statistics for the

data after removing the 38 single sex Catholic schools. The table includes means as well as

the standardized differences in means. A standardized difference is the difference in treated
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Figure 1: Boxplots of distributions for three covariates in the HS&B Catholic school data.
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and control means divided by the standard deviation before matching for the unmatched

sample. The literature suggests that the standardized difference should be less than 0.20

(Ho et al. 2007; Stuart 2010), though a more stringent criterion of 0.10 is suggested by

others (Mamdani et al. 2005; Rosenbaum 2010). The results in Table 1 demonstrate that

the Catholic and public school populations are quite similar on some covariates but very

different on others. In particular, public schools have much larger enrollments, a smaller

share of students on an academic track, considerably different disciplinary climates, and

students from lower SES backgrounds, on average.

Table 1: Balance Before Matching

Catholic School Mean Public School Mean Std. Diff.

Student-Level Covariates

Minority Student 0.30 0.25 0.10
Student SES 0.15 -0.15 0.39

School-Level Covariates

% Students Minority 30 25 0.15
Enrollment 797.33 1309.34 -0.94
% Students on Academic Track 71 37 1.86
Disciplinary Climate Scale -0.82 0.54 -2.08
School SES Average 0.15 -0.15 0.76

Note: “Std. Diff.” refers to the standardized difference in means.

Next, we seek to use matching to find a set of public schools that are comparable to the

remaining set of co-ed Catholic schools. We use the matchMulti package in R to implement

a match that is designed to balance both student- and school-level covariates optimally (Pi-

mentel et al. 2018; Keele and Pimentel 2016). See Keele et al. (2021) for an introduction

to this type of matching in educational applications. This multilevel matching allows for

matching at either the group level or both the group and individual level. In this appli-

cation, we paired schools but not students within schools, since the group-level treatment

is administered to all students within a school. In the remainder of our discussion, we do
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not report balance results for student-level covariates, since they were well balanced under

all of the matches we completed. Table 2 contains the balance results for a match without

any additional balance constraints. While this first match improves on the balance from the

unmatched data, there are still very large imbalances. One way to improve further balance is

to prioritize balance on covariates with large imbalances. With prioritization, we can focus

on balancing the covariates with the largest imbalances. In the second match, we prioritized

balance on the academic track and disciplinary climate covariates. In the software, prior-

itization is implemented by ordering the covariates in terms of priority in a prioritization

list. As the results in Table 2 show, this prioritization does little to improve balance. In a

third match, we increased the prioritization on these two covariates, but again balance fails

to improve.

Table 2: Balance results for five different matches seeking to find comparable public schools.

Unmatched Match 1 Match 2 Match 3 Match 4 Match 5

% Students Minority -0.14 0.25 0.15 0.12 0.20 0.04
Enrollment -1.03 -0.91 -1.08 -1.11 -1.08 -0.70
% Students on Academic Track 1.75 1.48 1.29 1.32 0.62 0.55
Disciplinary Climate Scale -1.84 -1.40 -1.45 -1.51 -1.11 -0.97
School SES Average 1.22 0.85 0.69 0.66 0.09 -0.20

Note: Cell entries are standardized differences in means.
Match 1 includes no balance refinements.
Match 2 prioritizes balance on Academic Track and Disciplinary Climate.
Match 3 refines the balance prioritization on Academic Track and Disciplinary Climate.
Match 4 Retains 20 Catholic schools.
Match 5 Retains 10 Catholic schools.

When large imbalances remain after matching, the source of the problem is typically

a lack of overlap, as was evident in Figure 1. The next step in the matching process is

to trim treated units. In a COS design, trimming treated units implies discarding entire

schools. We adjust the algorithm so that it will discard the most dissimilar set of Catholic

schools and produce the optimal balance for the subsetted data. We applied this optimal
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subsetting to the data next. First, from the 32 co-ed Catholic schools, we discarded 12

Catholic schools resulting in a match with 20 Catholic schools and 20 public schools (Match

4). Next, we discarded 22 Catholic schools resulting in a match with 10 Catholic schools

and 10 public schools (Match 5). Table 2 contains the balance statistics for these two

additional matches. The use of optimal subsetting improves balance significantly. However,

even optimal subsetting is unable to reduce all the of the standardized differences to an

acceptable level.

Table 3: Estimates of the effect of Catholic Schools on Math
Achievement Scores

Point Estimate 95% Confidence Interval p-value

Matching Only

Match 1 0.25 [0.11, 0.39] 0.001
Match 2 0.22 [0.08, 0.36] 0.003
Match 3 0.22 [0.08, 0.36] 0.003
Match 4 0.01 [-0.11, 0.31] 0.343
Match 5 0.02 [-0.21, 0.26] 0.818

Matching and Outcome Adjusted

Match 1 -0.015 [-0.18, 0.15] 0.849
Match 2 0.002 [-0.16, 0.17] 0.979
Match 3 -0.019 [-0.19, 0.15] 0.818
Match 4 0.08 [-0.14, 0.3] 0.451
Match 5 0.082 [-0.43, 0.6] 0.647

Note: Outcome is standardized math achievement score. Results
are from a mixed model with random intercept.

To estimate the treatment effect estimate for Catholic schools, we used hierarchical linear

models. Specifically, we regressed student-level math scores on the school-level treatment

indicator using the matched data, and we included a random effect for the intercept. We

report two sets of estimates. In the first set, we did not include school-level covariates in

the model used to estimate treatment effects. In the second set, we included the school-

level covariates in the model. Including these covariates in the outcome model allows for

additional bias reduction (Keele et al. 2021). We estimated the treatment effect for all five
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matches and report results in Table 3.

One clear pattern emerges. In the first three matches, which include all 32 co-educational

Catholic schools, we observe a clear Catholic school effect, such that students in Catholic

schools outperform students in public schools, on average. The difficulty is that we do not

know if these effects are produced by a genuine treatment effect or the fact that, as the

balance tables showed, Catholic schools are very different from this set of matched public

schools. That is, a considerable amount of overt bias remains after matching. We removed

that bias in two different ways. First, we aimed to reduce this bias using optimal subsetting.

Second, we included school-level covariates in the outcome model. Under either approach,

the estimated Catholic school effect is reduced substantially and is no longer statistically

significant. In sum, one we fully adjust for observed confounders, there is little evidence of

a Catholic school effect.

However, an additional, more subtle, issue is at play here. For the moment, let’s assume

that the data are balanced after we use trimming to handle the non-overlapping covariate

distributions (e.g., Matches 4 and 5). If so, we could interpret the estimates from Matches 4

or 5 as valid treatment effects assuming that no unobservable factors influence the assignment

of the Catholic school treatment. The difficulty is that in this application, our estimand, the

causal quantity of interest, has been altered by the adjustment for the observed confounders.

As we noted above, none of the estimates in Table 3 are estimates of the ATT, since we

discarded the 38 single-sex Catholic schools. Thus for matches 1-3, the estimand is the ATT

for co-ed Catholic schools. For matches 4 and 5, however, the causal estimand now depends

on the observed covariates, since we trimmed the treated group further. For matches 4 and 5,

the estimand is the ATT for the subset of co-ed Catholic schools with observed covariates like

those in the Table 2. Given the highly specific form of this estimand, a legitimate question

is whether one can interpret the treatment effect estimates for matches 4 and 5 as Catholic

schools effects at all. The final subset of Catholic schools that look like public schools share

little in common with the population of Catholic schools in these data and are likely do not
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resemble the broader Catholic school population. In short, in seeking to remove the common

support violations, we are left with an uninterpretable estimand—one that can no longer be

reasonably interpreted as any sort of Catholic school effect. A different solution to this issue

would be to expand the control group to include more public schools that are comparable to

Catholic schools, but this would require a new data source.

Is this particular pathology related to matching itself? The answer is no. In fact, we

would argue that regression is a particularly inferior method of covariate adjustment for

causal questions of this type. First, a regression model will simply extrapolate over the

lack of common support, and our inference would rely solely on the modeling assumptions.

Moreover, the treatment effect estimate from a regression model is also a weighted combina-

tion of treated and control units, but the weighting scheme isn’t transparent (Aronow and

Samii 2016; Morgan and Winship 2014). More troubling, any remaining imbalance after

adjustment via regression is also not apparent to the investigator. A key benefit of matching

is that it encourages clarity in describing the sample that is comparable and the extent to

which imbalances remain after statistical adjustments.

5 Discussion

Our case study exemplifies key difficulties that arise in the analysis of clustered observational

data. While common support violations are likely in any observational study, they tend to

arise commonly in COSs given that the number of clusters tends to be small. We illustrate

how a common technique for alleviating overlap violations, trimming the data, can lead

to uninterpretable estimands. That is, once too many treated units are trimmed from the

data, the estimand may no longer correspond to an interpretable quantity, and associated

estimates may not generalize well to any population of interest. In our case study, our

estimate likely pertained to an idiosyncratic subset of Catholic schools that differed from the

broader population of Catholic schools in the data. Unfortunately, the best solution would

be to obtain additional data to expand the pool of controls schools. Of course, additional
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data collection may be impossible in some contexts and especially when working with an

extant data set.

One question is whether this problem is likely to be widespread. We have encountered

this problem in related work (Keele et al. 2021). In general, we expect this problem to be

more common when an analysis is restricted to a single school district or when treatment

selection of schools is highly purposeful. Our results clearly demonstrate that analysts need

to carefully assess whether there is overlap in covariate distributions and understand how

comparable the treated and control units are after adjustments for balance have been made.

Moreover, information about overlap and covariate balance should be clearly communicated

to readers, so they can understand how comparable the treated and control groups are after

statistical adjustment and how procedures to achieve balance influence interpretability and

generalizability of results.
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