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Abstract 

Despite policy relevance, longer-term evaluations of educational interventions are 

relatively rare. A common approach to this problem has been to rely on longitudinal research to 

determine targets for intervention by looking at the correlation between children’s early skills 

(e.g., preschool numeracy) and medium-term outcomes (e.g., first-grade math achievement). 

However, this approach has sometimes over—or under—predicted the long-term effects (e.g., 

5th-grade math achievement) of successfully improving early math skills. Using a within-study 

comparison design, we assess various approaches to forecasting medium-term impacts of early 

math skill-building interventions. The most accurate forecasts were obtained when including 

comprehensive baseline controls and using a combination of conceptually proximal and distal 

short-term outcomes (in the nonexperimental longitudinal data). Researchers can use our 

approach to establish a set of designs and analyses to predict the impacts of their interventions up 

to two years post-treatment. The approach can also be applied to power analyses, model 

checking, and theory revisions to understand mechanisms contributing to medium-term 

outcomes.  

Keywords: prediction, forecasting, non-experimental, intervention, evaluation 

  

  



REDUCING BIAS IN INTERVENTION IMPACT FORECASTS 

 

3 

Design and Analytic Features for Reducing Biases in Skill-Building Intervention Impact 

Forecasts 

Effective educational policy depends on evidence from the medium—to—long-term 

impacts of a proposed educational program or intervention (Martin et al., 2018). However, 

research on the medium and long term impacts of educational evaluations is scarce, difficult, and 

costly to conduct (Philips et al., 2017; Watts, Bailey, & Li, 2019). One solution to this problem 

has been to identify promising short-term outcomes (e.g., preschool numeracy) that are the most 

strongly correlated to later skills (e.g., first grade math achievement) using longitudinal 

observational data. However, forecasts about the medium-term impacts of interventions based on 

correlational analyses sometimes over-estimate (Bailey et al., 2018) or under-estimate (Li et al., 

2020) the observed experimental impacts measured at medium-term follow up.  

Experimental evaluations of skill-building interventions that successfully increased 

children’s early math skills have not yielded the expected medium-term impacts that 

correlational work predicted. Instead, many successful early math interventions evaluated with 

randomized controlled trials (RCTs) demonstrate effect sizes – on multiple cognitive and 

achievement outcomes– that decrease by half or more in effect size units by just a year after 

program completion (for review, see Bailey et al., 2018; Li et al., 2020). Contradicting what we 

would expect from persistent and strong associations between early math skills and later math 

skills (e.g., Duncan, 2007; Jordan et al., 2012).  These findings raise concerns about the 

usefulness of nonexperimental estimates for designing interventions for early academic skills to 

support children’s later skill-development. 

Our aim is to identify preferable intervention study designs – specifying how the 

measurement of covariates, the types of assessments used to measure skills, and the regression 
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models used– can best forecast the medium-term impacts of math skill-building interventions 

when short-term experimental data and medium-term nonexperimental data is available. We 

examine the performance of different forecasting approaches by comparing forecasted estimates 

to observed experimental benchmarks from two RCTs.  We use the term forecasting, to 

conceptualize this exercise as an attempt to predict a future unknown event using data from 

previous observed events. Specifically, we attempt to predict the intervention impact two years 

after program completion (as if it was an unobserved event) using pretests scores and posttest 

scores (the previous observed events) to determine how well our forecasts correspond with the 

and the observed medium-term treatment impact.   

To forecast medium-term effects, we run two series of regressions (shown in Figure 1 

Panel B): we first regress a short-term outcome on a randomly assigned treatment to estimate the 

short-term treatment impact (Figure 1 a experimental). Second, we regress a medium-term outcome 

(defined here as two years post-intervention1) on the short-term outcome using only data from 

the experimental control group to model a nonexperimental relation using the regression 

coefficient on the short-term outcome (Figure 1 bnonexperimental). Third, we multiply the short-term 

treatment impact from the first regression by the relation between the short and medium-term 

outcome from the second regression to calculate our forecast (a experimental * bnon-experimental). Lastly, 

we compare our forecasted estimate to the observed experimental benchmark from the original 

RCT (Figure 1 c experimental).  We try to identify best practices for using different measures of 

short and medium term outcomes and different covariates to reduce bias in the nonexperimental 

estimates of the effects of earlier skills on later math skills. 

 
1 Intervention designers may view impacts measured after two years of end-of-treatment as long-term impacts since the 

interventions were optimized to improve students’ outcomes for up to one-year after end-of-treatment. On the other hand, many 

proposed benefits of early math instruction relate to children’s longer-term outcomes. We find merit in both of these arguments 

and do not attempt a thorough critique of either of them here but see Bailey et al. (2020) and commentary by Schneider and 

Bradford (2020) for discussion of both views. 
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Forecast accuracy requires that a) the experimental treatment effect on the short-term 

outcome is unbiased (Figure 1 a experimental), b) the causal relationship between the short-term 

outcome and the medium-term outcome is unbiased (Figure 1 b non-experimental), and c) the short-

term outcome measures capture the full causal pathway from the treatment to the medium-term 

outcomes. While random assignment can address bias in the a experimental path, the b nonexperimental 

path may be biased if common cause variables are omitted.  For example, students’ underlying 

ability may cause observed test scores in short and medium term tests, but controlling for a 

pretest score that provides a measure of students’ ability can address some of the confounding 

that may occur between test scores.2 However, the relations of early and later skills are often 

derived from nonexperimental data (i.e., public longitudinal datasets) to estimate a range of 

plausible impacts for power-analysis, to determine which skills to target with educational 

interventions, to predict the longer-run impacts of a policy change, or to estimate plausible 

impacts for theory testing and revision.  

Since researchers evaluate the magnitude of experimental impacts on early skills relative 

to the relation of those early skills on indicators of later achievement. We provide a set of 

approaches that can leverage the strengths of experimental and nonexperimental data to enhance 

these types of forecasts and return to a specific example on these uses in the discussion section. 

Our work contributes new knowledge to current applied work in program evaluation (e.g., in 

calculating power to detect medium-term effects), intervention design (e.g., for identifying 

promising short-term outcomes to train and for power analysis for detecting longer-run impacts), 

to funding organizations interested in forecasting the effects of proposed interventions on student 

 
2 We would like to thank an anonymous reviewer for their suggestions for how to word this section, which substantially 

improved its clarity.  
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achievement years after the end of treatment, and for researchers and policy analysts attempting 

to model future program benefits. 

How Can We Use Previous Research to Forecast Intervention Impacts? 

A set of early skills that statistically predicts children’s later academic achievement may 

represent a set of targets for potential intervention, with the intent that improving early skills 

would produce greater educational and economic returns to children. However, while 

longitudinal nonexperimental studies provide large nationally representative samples to develop 

and test theories about human development, they are limited by a lack of causally informative 

research designs, leaving any estimated relations between programs or skills on children’s life 

outcomes susceptible to omitted variable bias (Bloom, Michaeloupoulos, and Hill, 2002). Thus, 

interventions targeting the skills that statistically predict later achievement may not necessarily 

produce the benefits predicted by these statistical models.         

Experimental designs address the omitted variable bias problem by randomly assigning 

children to an intervention, so that on average, measured and unmeasured variables are equally 

distributed between treatment and control groups, allowing for an unbiased estimate of a causal 

impact. However, conducting randomized experiments to assess the causal impacts of an 

intervention on early skills and the effect of early skills on later skills is expensive. This is an 

important reason why evaluations of interventions that target specific skills and then follow 

participants for many years after treatment are scarce. One approach to forecasting the medium-

term outcome of an intervention is using the short-term experimental outcomes and the 

correlations between short and medium outcomes from longitudinal data. 

Forecasts are often implicitly made when predictive relations between a preceding 

variable and a later variable – calculated by regressing the later variable on the preceding 
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variable and covariates – are used to justify the potential usefulness of intervening on the 

preceding variable to improve the later variable (Grosz et al., 2020; Reinhart et al., 2013; 

Robinson et al., 2013). An impactful example of such a forecast comes from Duncan et al (2007) 

where nonexperimental estimates are used to argue that improvements to early math skills should 

yield higher levels of later academic achievement across domains. 

We can extend this forecasting approach by combining short-run experimental impacts 

with internal or external estimates of the association between short-term and medium-term 

outcomes. For example, Deming (2009) calculated the estimated impact of Head Start 

participation on an index of outcomes in young adulthood and then multiplied this by the relation 

of the index of young adult outcomes on wages in adulthood from a separate cohort to project the 

impact on adulthood wages for Head Start participants. This is one way to mitigate the costs of 

collecting administrative data to observe the impact of programs on adult earnings. However, 

achievement-to-earnings correlations are substantially reduced when adjusting for a range of 

plausible confounders, highlighting the importance of how these effects are estimated (Watts, 

2020).  

Given these concerns, new forecasting methods have been developed to overcome the 

limitation of waiting to observe long-term impacts. Athey and colleagues (2019) test the 

accuracy of forecasting the impacts of a randomly assigned job assistance program – California’s 

Greater Avenues to Independence conducted in the 1980s – on participant employment rates and 

earnings 9-years after the program’s end. The authors found that by gathering measures of the 

impact of an employment program on employment rates and earnings across in the first 1.5 years 

into a surrogate index, they could forecast the mean impact on employment rates after nine years. 

Yet, there is a need to explore which analytical decisions improve forecast accuracy using both 
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experimental and nonexperimental data to predict child skill development and medium to long 

term program impacts. Ideally, identifying different approaches to forecast accurately would 

allow educational researchers to bypass the substantial time delay and resources required to 

observe the medium-term impacts of an educational intervention when evaluating interventions 

or making policy decisions. Below we describe potential sources of bias and methods to improve 

forecast accuracy.  

Threats to Accurate Forecasts              

We describe potential biases in intervention forecasts in the context of forecasting the 

impact of a first-grade math intervention with follow-up at third grade, using the short-term first-

grade outcomes to predict the treatment impacts on children’s math achievement at the end of 

third grade, as the medium-term outcomes. We also detail how threats to accuracy relate to the 

real-world limitations of evaluating interventions at scale. In Figure 2, we demonstrate our causal 

assumptions using directed acyclical graphical (DAG) notation (Pearl, 2009) where directed lines 

represent the causal impact of one variable on another. In contrast to Figure 1, where we show 

simplified analytical model forecasting, in Figure 2 we explain our conceptual assumptions about 

the ways in which measured and unmeasured variables may bias the forecast calculation.  

In Figure 2, solid lines reflect measured relations between variables and dashed lines 

reflect assumed unmeasured relations. We conceptualize the causal impact of a treatment on a 

short-term outcome test score as the measured impact on Skill 1 at time T1 (the skill intended to 

be targeted by the intervention). Then, we assume Skill 1 T1 (end of first grade) to influence the 

same Skill 1 at time T2 (end of third grade), which we measure with the medium-term outcome 

test score. For this assumption to be true, Skill 1 T1 must be a truly causal mediator of Skill 1 T2, 

whereby the causal effect of the treatment on Skill 1 T2 is occurring through Skill 1 T1. In our 
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example, Skill 1 represents the same skill measured at an earlier and later time point making this 

a safe assumption to make. However, there is the possibility that there exist other mediators 

through which the treatment may impacts Skill 1 T2, which we discuss further below. In the 

simplest case, we would forecast the impact of the intervention on Skill 1 T2 by multiplying the 

observed treatment impact on the short-term outcome test score by the estimated relation of a 1-

unit change in the short-term outcome test score on the medium-term outcome test score (as 

shown in Figure 1 Panel B). In some cases, the estimated relation between short-term outcome 

test scores on the medium-term outcome test scores could be obtained from an external 

nonexperimental longitudinal dataset that includes similar tests and age ranges as the 

intervention study of interest. However, in the current study, we estimate the effect of short-term 

outcome test scores on the medium-term outcome test scores internally using the data from the 

control group of the randomized controlled trial (RCT). We continue to walkthrough Figure 2 in 

the following sections. 

Sources of Over-Prediction 

Multiplying short-term outcome treatment impacts by the short-to-medium term outcome 

relation, using only data from the experimental control group, may bias our forecast of the 

medium-term outcome treatment impacts upward for two reasons: omitted variable bias and 

over-alignment. Omitted variable bias can occur when forecasting does not account for an 

unmeasured variable that influences the correlation between both the short-term outcome and the 

medium-term outcomes.  For example, unmeasured stable individual and environmental 

variables such as student working memory or family income plausibly cause student math test 

scores in first and third grade to some extent. Therefore, a forecast of third-grade math skills will 

over-state the impact of first grade skills if factors like student working memory are not 
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controlled for (Bailey et al., 2018). Omitted variable bias is shown in Figure 2 with dashed 

arrows pointing towards both Skill 1 T1 and Skill 1 T2; we expected these to upwardly bias the 

relation of Skill 1 T1 on Skill 1 T2 in external nonexperimental datasets as well as in the control 

group of the experimental dataset that we use.   

To reduce omitted variable bias, researchers may include an extensive set of individual 

and environmental covariates in their specifications, however the desirable covariates may not 

always be available in nonexperimental datasets. 

The second potential cause for over-predicting medium-term outcomes is the over-

alignment (or the extent of content overlap) of outcome measures with the content that was 

taught in the intervention. A test is over-aligned if it measures content taught in the intervention 

(e.g., fact memorization) that reflects a shallower understanding of the material than observed in 

similarly scoring children who did not receive the intervention (What Works Clearinghouse, 

4.0). For example, a test would be over-aligned with an intervention to the extent that it measures 

student’s memorization of this exact math problem 3 x 2 = 6; if this specific item was taught 

repeatedly in the intervention.  In Figure 2, over-alignment is shown as the dashed line from 

treatment to the short-term outcome test score. Over-alignment would occur when the treatment 

increases a student’s short-term test score (e.g., answering 3 X 2 = 6 correctly) but does not have 

the same impact on Skill 1 T1 (e.g., being able to multiply). Over-alignment upwardly biases the 

estimated impact of the treatment on the short-term outcome test score which inflates impacts 

relative to the actual unobserved treatment impacts on Skill 1 T1. 

Overstated improvements on high stakes testing may reflect score inflation and 

inappropriate test preparation (Koretz, 2001). Thus, educational interventionists have the 

difficult task of identifying conceptually proximal assessments that accurately measure the 
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specific knowledge targeted by and gained from the intervention without relying too much on 

material that is repeatedly presented during the intervention.  

Sources of Under-Prediction 

In some cases, addressing over-alignment bias may lead to underestimating the impact of 

a treatment on the medium-term outcome due to under-alignment bias. To address over-

alignment bias, the What Works Clearinghouse recommends using outcome measures that are 

“broadly educationally relevant” (p.79) to capture a broad and comprehensive measure of skill 

change. However, interventionists often raise a valid concern with this approach; an under-

aligned measure with content that is conceptually distal to the intervention may fail to capture 

growth. For example, if a multiplication intervention focuses on children’s conceptual 

understanding of the multiplication procedure but assess the impact of the intervention with 

measures of multiplication, division, and geometry, the impacts on the broader measure may be 

less sensitive to children’s growth of conceptual understanding of the multiplication procedure. 

In Figure 2, the dash-and-dot arrow from treatment to an unmeasured Skill 2 T1 (conceptual 

understanding of multiplication in this example) reflects what occurs when the treatment 

influences a skill that is not measured with a short-term test score. Under-alignment downwardly 

biases the estimated impact of the treatment on the medium-term outcome by not failing to 

capture other contributing skills accurately with short-term outcome measures.  

An important distinction between measures that are conceptually proximal to an 

intervention is that they may be well-aligned or over-aligned measures. We would not expect 

impacts on over-aligned measures to transfer to broader conceptually distal math assessments. 

For example, a student’s memorization of a few math facts is not indicative of conceptually 

understanding multiplication thus a proximal measure of math fact memorization may not be 
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measuring the same thing in the treatment (e.g., memorizing math facts) and control group (e.g., 

arithmetic fluency).  However, impacts on a proximal well-aligned measure of efficient 

multiplication strategies might forecast gains on a distal assessment of math knowledge, because 

the development of efficient multiplication may contribute to later math learning, and thus the 

proximal measure may not over-predict longer-run impacts in the presence of strong baseline 

covariates. 

Current Study  

The goals of the current study are to estimate the net direction of bias, its approximate 

magnitude, and how different approaches best reduce bias in our forecasts to better inform the 

design and study of effective interventions. Although we focus on math interventions, we believe 

this general approach can inform efforts to forecast the impacts of interventions in other areas of 

educational research. We examine the following research questions: (1) how do design features, 

specifically the inclusion of demographic and cognitive pretests, influence the accuracy of 

forecasts? (2) How do different analytical approaches to forecast the impact of early math skills 

and later math skills influence the accuracy of forecasts? (3) How do analytical decisions about 

the types of measures used to assess outcomes influence the accuracy of forecasts? 

Hypotheses 

Prior to addressing our research questions, we developed the following hypotheses of the 

specific design features and analytic decisions that we would expect to bias our forecasts of 

medium-term outcomes conditional on short-term outcomes. 

(1) Using demographic and pretest covariates should reduce forecast bias. Estimates of the 

causal impact of an early math skill on a later math skill should approach the experimental 

benchmark when a full set of covariates is included in the model. 
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(2) Estimates from forecasts that assume that early math skills influence later math skills 

through the partially overlapping pathways (overlapping mediators) will yield smaller, more 

accurate forecasts than estimates from forecasts that assume that early math skills influence later 

math skills through fully independent pathways. Since increasingly complex mathematical 

concepts continue to build on basic number competencies modeling them separately might 

“double count” short-term impacts that manifest in more than one short-term outcome measure 

such as measuring the ability to add by using word problems or number sentences. We explain 

the two alternative modeling approaches in the analytical strategy. 

(3a) Using the short-term outcomes that are conceptually proximal (closely aligned) with the 

intervention to calculate forecasts will yield over-estimated treatment impacts. Since 

conceptually proximal measures consist of items closely related to the narrower skills taught 

during the intervention, these skills will show more optimistic improvements than if we were to 

consider the complex impacts of all the untrained math skills that impact medium-term math 

achievement. 

(3b) Using the short-term outcomes that are conceptually distal (less closely aligned) with the 

intervention to calculate forecasts will yield under-estimated treatment impacts. If we fail to 

measure the true extent of skill growth post-intervention by measuring a skill too broadly, we 

may expect a smaller impact in the medium-term math achievement than that which is observed. 

(3c) We hypothesize that the most accurate forecasts would be calculated by using two short-

term outcomes, one that is conceptually proximal and one that is conceptually distal to the 

treatment. Using both kinds of outcomes could serve to bracket the forecast since an optimal 

measure would consist of both a (1) proximal measure to capture variance in the skills targeted 
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by the intervention and a (2) distal measure to reduce over-alignment bias by accounting for 

relevant underlying skills not targeted by the intervention.  

Method 

Data Design 

            We conducted a secondary analysis of the Number Knowledge Tutoring (NKT) data. The 

NKT data were collected as part of a randomized controlled trial assessing a tutoring program’s 

effects on first graders’ emerging simple arithmetic competence (Bailey, 2019; Fuchs, Geary, et 

al., 2013). Students were randomly assigned within classrooms to either one of two treatment 

arms, where students received one-on-one tutoring on the conceptual basis for arithmetic paired 

with either speeded (treatment 1) or non-speeded practice (treatment 2), or to the control group 

who received business-as-usual instruction. 

Participants 

The sample includes 639 first-grade students from 40 schools and 233 classrooms in a 

southeastern metropolitan district who were evaluated as at-risk for having persistent math 

difficulties. Further description of the study participant recruitment and screening is available in 

Appendix A. We excluded 138 students who completed the pretests but did not complete all the 

short-term outcomes (n= 45; 7%) or all the medium-term outcomes (n=90; 14%).  The remaining 

analytical sample consisted of 501 students that were mostly African American (70%), followed 

by white/Caucasian (19%), Hispanic (7%), and students of another race or who did not indicate a 

race (3%) who were grouped together as we cannot determine why the race indicator was 

missing. Half of the participants were male, most received free or reduced priced lunch (80%), 

and a few learned English as a second language (2%). Our analytical sample has a higher (2%) 

proportion of African American children and a smaller proportion of white children (1%), 
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mixed/other race children (2%), children receiving free or reduced-price lunch (4%) and English 

language learners (1%) than the original study sample (Fuchs et al., 2013). Our sample is thus 

similar but not identical to the Fuchs et al. (2013) sample as we included students that had at 

least one short-term outcome completed and at least one medium-term outcome completed. 

There were 17 cases of missing data for free-or-reduced price lunch and race, 421 cases had 

missing data on years that they received special education, and 20 cases had missing data on 

whether the student learned English as a second language. We created a separate variable as an 

indicator for missing cases to include the cases in all analyses. Each student with missing data 

for classroom was coded to have a unique identifier for classroom, such that we could cluster 

their standard errors at the classroom level. 

Procedure 

Students in both treatment groups were tutored one-to-one on the same content for 30-

minute sessions three times a week for 16 weeks totaling 48 tutoring sessions from late October 

to March. The key difference between the treatment groups was the activity conducted during the 

last five minutes of the tutoring session. In the speeded practice condition students were 

encouraged to use the more efficient counting strategies to quickly answer math problems shown 

on flashcards within 90 seconds. In the non-speeded practice condition students were encouraged 

to use multiple different counting strategies (e.g., number lists, arithmetic principles, efficient 

strategies, manipulatives) to arithmetic problems presented in the form of a game and the tutor 

corrected any mistakes. A more detailed description of the study has been provided in Fuchs, 

Geary, et al. (2013). 

The short-term outcomes, collected at the end of first grade, are measures of latent 

student skill 1 at time T1 as show in Figure 2. The short-term measures include different 
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assessments that are either conceptually proximal or distal to the content taught in the 

intervention. The medium-term outcomes were collected at the beginning of third grade, they 

represent an observable measure of latent student skill 1 at time T2 as shown in Figure 1. These 

medium-term outcomes include one measure that is conceptually proximal (e.g., Facts correctly 

Retrieved) to the intervention content and four measures that are conceptually distal (e.g. 

Number Sets, Wide Range Achievement Test–3 Arithmetic, Number Line, and Key-Math 

Numeration) to the intervention content. We further refer to conceptually proximal measures as 

outcome measures that assess skills that were closely related to the content that was taught to the 

treatment group. We further refer to conceptually distal measures as outcome measures that 

assess broad domain skills that consists of some, but not all, of the skills taught in the 

intervention. 

Analytic Strategy 

We used a within study comparison design (shown in Figure 2) to determine how well 

our forecasts of medium-term intervention impacts approximated the experimental benchmarks 

observed from the NKT program. We define medium-term impacts as the longest-run 

intervention impacts that were measured, which in this case were two years after end-of-

treatment. All measures were standardized in control group standard deviations allowing 

comparisons of changes across time to the counterfactual condition. First, we estimated the 

experimental benchmarks (c experimental in Figure 2 Panel A path) by regressing each medium-term 

outcome on each of the two treatment conditions while controlling for child demographic and 

math pretest covariates using classroom level clustered standard errors. Second, we calculate the 

experimental impact on each short-term outcome (Figure 1 Panel B path a Experimental) by 

regressing each short-term outcome on each of the two treatment conditions while controlling for 
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child demographic and math pretest covariates using classroom level clustered standard errors. 

The a experimental and c experimental  regression coefficients and standard errors are shown in Table 1 

in separate columns for each treatment condition. Third, we calculate the relation between each 

short-term outcome on each medium-term outcome (Figure 1 Panel B path b non-experimental) by 

regressing each medium-term outcome on each short-ter, outcome, using only the control group 

data. The b nonexperimental paths were estimated differently based on the analytical approach (which 

we describe below in the model specification section), and the regression coefficients and 

standard errors are shown in Supplementary Table 3 and 4 in separate columns testing the 

sensitivity of these estimates to the addition of demographic and pretest covariates. 

Fourth, we multiplied the short-term impact (Figure 1 Panel B path a Experimental) by the 

relation between short-term test scores and medium-term test scores (Figure 1 Panel B path b Non-

experimental) to calculate the forecast. Calculating the forecasts entails numerous regression model 

specifications made at the researcher’s discretion. We model alternative decisions about the 

covariates and measures used to explore how different analytical decisions relate to forecast 

accuracy. 

Model Specifications 

We attempt to identify an approach to forecasting to address the problem that 

developmental psychologists and educational program evaluators often encounter: “What is our 

best estimate for the longer-run impacts of an intervention, based on a pattern of observed or 

hypothetical short-term impacts of the intervention and the pattern of (partial) correlations 

between our short—and longer—term outcome measures?” In this case, long-run impacts of this 

hypothetical intervention have not already been observed in previous implementations (as 

required by Athey and colleagues, 2019). After discussion, we identified three conceptually 



REDUCING BIAS IN INTERVENTION IMPACT FORECASTS 

 

18 

different variations of this approach, shown in Figure 3, that could be tested for their usefulness 

for forecasting the impact of an intervention on medium-term outcomes. 

Model A: Forecasting Using a Single Short-term Outcome 

The first approach we chose to model assumes that only a single short-term outcome was 

measured at the end-of-treatment, we show this in Figure 3 Model A and hereafter refer to this 

approach as forecasting using a single short-term outcome. In model A we estimate paths a and b 

using multiple linear regressions where: Path a1 in Figure 3 Model A is the regression coefficient 

of treatment 𝑇𝑅𝑇𝑖𝐺1 on each short-term outcome 𝑆𝑇𝑂𝑖𝐺1  

𝑆𝑇𝑂𝑖𝐺1 = 𝛽0 + 𝛽1 𝑇𝑅𝑇𝑖𝐺1 + 𝛽2 𝑋𝑖𝐺1 + 𝜖𝑖𝐺1 + 𝜇𝐺1 

where i represents individual students in G1 first-grade classrooms, 𝑋𝑖𝐺1 is a vector of 

student demographic covariates and pretests, 𝜖𝑖𝐺1 is a child level residual, 𝜇𝐺1 and is the 

classroom level residual since students are clustered in classrooms. Path b1 is the regression 

coefficient of the short-term outcome  𝑆𝑇𝑂𝑖𝐺1  on each medium-term outcome  𝑀𝑇𝑂𝑖𝐺3 

𝑀𝑇𝑂𝑖𝐺3 = 𝛽0 + 𝛽1 𝐸𝑂𝑇𝑖𝐺1 + 𝛽2 𝑋𝑖𝐺1 + 𝜖𝑖𝐺1 + 𝜇𝐺1 

A key difference in the b path estimation is that these are estimated with only the control 

group data, and we estimate the impact of  𝑆𝑇𝑂𝑖𝐺1 on  𝑀𝑇𝑂𝑖𝐺3 with the stepwise inclusion of 

covariates where 𝑋𝑖𝐺1 will include (1) no covariates, (2) covariates only, (3) covariates and 

proximal pretests, and (4) covariates, proximal, and distal pretests. The forecasted impact of each 

short-term outcome is calculated by multiplying path a and b for each combination of the 8 

short-term outcomes predicting each of the 5 medium term outcomes for each of the two 

treatment arms, resulting in 80 forecasts that are plotted in Figure 4. Figure 4 presents the 

magnitude of the experimental benchmark on the x-axis and the forecasted impact on the y-axis; 

the diagonal line represents the trend we would expect if there were perfect correspondence 
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between the two. If forecasts are over-estimating the experimental benchmark, they will fall 

above the diagonal line; however, if they under-estimate the experimental benchmark they will 

fall below the diagonal line. 

Model B: Forecasting Assuming Multiple Independent Effects 

 The second approach assumes that a medium-term outcome is independently influenced 

by different short-term outcomes, we show this in Figure 3 Model B and hereafter refer to this 

approach as forecasting assuming multiple independent effects. In Model B we estimate paths 

a1…n and b1…n  in the same way as model A (exact model estimates are shown in Supplementary 

Table 3). However, the forecast for each medium-term outcome is calculated by multiplying 

paths a and b are for each of the 8 short-term outcomes, and then summed. This procedure is 

repeated for each of the 5 medium term outcomes. Because there are two treatment arms and 5 

medium-term outcomes, this calculation yields 10 forecasts, which are plotted in Figure 5 Plot A. 

Both plots in Figure 5 follow the same plot formatting conventions as those in Figure 4.    

Model C: Forecasting Assuming Multiple Non-Independent Effects 

The third approach assumes that an intervention can impact a medium-term outcome 

through multiple dependent mediators with overlapping paths of influence from the short-term 

outcomes to the medium-term outcomes, we show this in Figure 3 Model C and hereafter refer to 

this approach as forecasting assuming multiple non-independent effects. In model C we estimate 

paths a1…n and b1…n using multiple linear regressions where Path a1 in Figure 3 Model C is the 

regression coefficient of treatment 𝑇𝑅𝑇𝑖𝐺1 on each short-term outcome  𝑆𝑇𝑂𝑖𝐺1 

𝑆𝑇𝑂𝑖𝐺1 = 𝛽0 + 𝛽1 𝑇𝑅𝑇𝑖𝐺1 + 𝛽2 𝑋𝑖𝐺1 + 𝛽3 𝑂𝑆𝑇𝑂𝑖𝐺1 + 𝜖𝑖𝐺1 + 𝜇𝐺1, where 𝑂𝑆𝑇𝑂𝑖𝐺1  
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is a vector containing all the other short-term outcome measures? The b paths in Figure 3 

are the regression coefficients on all the short-term outcomes 𝑂𝑆𝑇𝑂𝑖𝐺1  as predictors of each 

medium-term outcome 𝑀𝑇𝑂𝑖𝐺3. 

𝑀𝑇𝑂𝑖𝐺3 = 𝛽0 + 𝛽1 𝑂𝑆𝑇𝑂𝑖𝐺1 +  𝛽2 𝑋𝑖𝐺1 + 𝜖𝑖𝐺1 + 𝜇𝐺1 

Thus, Model C differs from Model B in that all the medium-term outcomes are 

simultaneously included in each regression equation to account for their covariance (exact model 

estimates are shown in Supplementary Table 4). The forecasts for Model C are shown in Figure 

5 Plot B. In summary, forecasts from Figure 3 Model A are shown in Figure 4 and 

Supplementary Table 5 columns 2 and 3, forecasts from Figure 3 Model B are shown in Figure 5 

Plot A and Supplementary Table 5 column 4, and forecasts from Figure 3 Model C are shown in 

Figure 5 Plot B and Supplementary Table 5 column 5. Of all the forecasts shown, Models A and 

C in Figure 3 performed best when pretest covariates – which account for omitted variables that 

confound the association between the short-term and medium-term outcomes– were included.   

We tested if over-estimation bias from conceptually proximal measures and under-

estimation bias from conceptually distal measures could be reduced using three heuristics. First, 

we consulted with the intervention’s designer and classified conceptual proximity based on the 

extent to which the content in the measures overlapped with the content of the intervention.  

Then, we tested three heuristics (1) forecasting using the conceptually proximal short-term 

outcome with the smallest treatment impact, (2) forecasting using the conceptually distal short-

term outcome with the largest treatment impact, and (3) forecasting using the average of both the 

conceptually proximal short-term outcomes with the smallest treatment impact and the 

conceptually distal short-term outcome with the largest treatment impact. It is important to note 

that the over- or under-prediction problem that we explore in this work may have potentially 
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different implications for educational interventions than fadeout. For example, fadeout implies 

that appropriate post-treatment supports may be necessary for sustaining impacts. On the other 

hand, the clearest implications for over- or under-prediction are methodological (e.g., including 

more baseline covariates and a range of outcome measures), rather than applied from a 

practitioner perspective. Still, understanding the sources of over- and under-prediction may be 

useful for improving practitioners’ understanding of the mechanisms through which the long-run 

impacts of educational interventions emerge. 

Bias Calculation 

            To identify the most accurate forecasts we estimate bias by subtracting the forecasts for 

each medium-term outcome from the experimental benchmark. In this calculation, the most 

accurate forecasts should yield a degree of total bias closer to 0. We follow Shadish, Clark, and 

Steiner (2008) in measuring absolute bias as the absolute difference between each forecast 

(Figure 2 Panel B) and the experimental benchmark (Figure 2 Panel A). Additionally, we 

calculate the average bias of the forecasts used to predict each medium-term outcome for each 

treatment. Lastly, we measure the accuracy of the forecasts of each medium-term outcome for 

each treatment as the average bias squared.  

Measures 

Students’ age, sex, race, eligibility for free-or-reduced priced lunch, English learner 

status, and pretest scores for all measures were included as baseline covariates. A more detailed 

description of measures appears in Fuchs et al. (2013). Supplementary Table 1 lists the 

descriptive statistics for all the covariates included in our models split by condition. We follow 

Bailey and colleagues (2020) and the intervention designer’s guidance in categorizing the short-

term and medium-term mathematics outcome measures as measuring skills that are either 
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conceptually proximal or distal to the intervention. Conceptually proximal measures assess skills 

that were closely related to the content that was taught to the treatment group. Conceptually 

distal measures reflect assessments of a broad domain that consists of some, but not all, of the 

skills taught in the intervention. All these measures were used both as separate indicators and 

grouped as proximal or distal indicators to determine which combination of short-term outcomes 

would best forecast the treatment impact on the medium-term outcomes. 

Conceptually Proximal Measures 

The First-Grade Mathematics Assessment Battery (Fuchs, Hamlett, & Powell, 2003) was 

used to measure students’ ability to add and subtract with digits from 5-12 with the Arithmetic 

Combinations subtests (Cronbach’s α =.96) and with double digits like 28 + 48 with and without 

regrouping with the Double-Digit subtests (Cronbach’s α = .94). It should be noted that, although 

we classify this measure as proximal, it was less proximal than the other measures in this 

category, because many students did not reach the lessons that addressed double-digit 

calculations, and instruction regarding double-digit calculation was minimal. The main 

difference between the treatment arms was that during the last 5 minutes of the speeded practice 

condition students played a game to meet or beat their score where they had 90 seconds addition 

(answers less than equal to 18) and subtraction problems (minuends less than equal to 18), 

whereas the non-speeded condition played non-speeded games on the same pool or arithmetic 

problems as in the speeded condition. Thus, children in the speeded condition answered more 

problems in the same timeframe. The Facts Correctly Retrieved assessment (from Geary et al., 

2007) tests children’s ability to answer simple addition problems verbally without the use of a 

pencil or paper and the use of efficient counting strategies. This measure is proximal to both the 

speeded and non-speeded treatment conditions because the efficient counting strategy was taught 
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and used in both treatment conditions. The total score is the amount of addition problems the 

students solved without using the counting fingers strategy. Overall, these three proximal 

measures broadly sampled first-grade mathematical content closely aligned with the intervention 

treatment arms which included units on addition and subtraction with problem sets of numbers 

from 5-12, adding double digit numbers from 10 to 19, and generating and solving story 

problems using addition and subtraction. 

Conceptually Distal Measures 

Measure of mathematics content not directly taught during the intervention and broader 

achievement tests were included as distal outcome measures. We categorize these measures as 

distal to the intervention because although they include some simple arithmetic, they also include 

broader mathematic problems to gauge performance relative to other students in older and 

younger grades. Thus, these tests measure skill in domains that were not explicitly taught in the 

intervention. The Number Sets Test (Geary, Bailey, & Hoard, 2009) measured students’ speed 

and accuracy in operating with small numerosities of objects and linking them to the 

corresponding Arabic numeral. The test-retest reliability for the number sets test is .89 (Bailey et 

al., 2018) and this measure has been found to predict individual differences in math achievement 

more strongly than reading achievement (Geary, 2011), however it assesses a much broader 

numerosity construct than what was taught during the intervention. The Story Problems measure 

consists of 14-word problems that are read out-loud to students and requires them to combine, 

compare, or change two quantities to solve a simple arithmetic problem. Students have 30 

seconds to answer the story problems and they can ask for the story to be re-read until they 

answer (Jordan & Hanich, 2000). This measure has a Cronbach’s a = .86. The Wide Range 

Achievement Test–3 Arithmetic (WRAT-Arithmetic; Wilkinson, 1993) subtest measured 
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students’ ability to answer calculation problems that increase in difficulty. Although, WRAT-

Arithmetic contains a few items that are proximal to the content taught in 1st grade they also 

cover content that spans across multiple grades making them less sensitive to treatment effects 

and more distal to the intervention. KeyMath–Numeration (Connolly, 1998) was used to measure 

students’ ability to orally respond to questions about identifying, sequencing, and relating 

numerals; problems were presented with increasing difficulty. Lastly, the Number Line 

Estimation 0-100 (Siegler & Booth, 2004) measured students understanding of relative numeric 

magnitudes. The percent absolute error from the position on the number line that the response is 

supposed to be is calculated for each student where lower score indicates better performance. To 

simplify the comparison between all the measures the scores were reverse coded so that higher 

numbers indicated better performance. 

Results 

Baseline Equivalence 

Little’s MCAR test did not provide strong evidence (χ2 = 249.11, df = 249, p = 0.87) to 

reject the null hypothesis that data are not missing completely at random (Little, 1988). Further, 

we conduct additional sensitivity analyses using case wise deletion and find results were robust 

to this estimation strategy (Supplementary Figure 4). Demographic information and test scores 

are shown in Supplementary Table 1 split by experimental condition. Students across the three 

experimental conditions did not significantly differ in baseline measured with the exception that 

more students were eligible for free-or-reduced price lunch in the control group than in the non-

speeded practice group. 

Replicating and Addressing Omitted Variable Bias 
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            We hypothesized that using demographic and pretest covariates should reduce forecast 

inaccuracy caused by omitted variables bias by accounting for measures of confounding 

variables. In this study we are not concerned about omitted variables confounding treatment and 

outcomes, because treatments are randomly assigned, and pretest scores are available. However, 

associations between end of treatment skills and later skills are plausibly confounded by skills 

and environments that affect learning during this period but are not affected by the interventions. 

We modeled omitted variables bias by forecasting the medium-term impact of an intervention 

using the relation between a short-term outcome on a medium-term outcome calculated without 

covariates. By not accounting for common confounding variables that exert a positive influence 

on both short and medium term outcomes, such as previous knowledge, we illustrate the 

importance of addressing omitted variables bias. To demonstrate this, we plot our forecasted 

impacts on the y-axis and compare these to the experimental benchmarks on the x-axis in Figure 

4. If the forecasts land on a value that is above the diagonal line this would indicate an over-

estimation of the experimental benchmark, if the forecast falls below the diagonal line, this 

reflects an under-estimation of the experimental benchmark. 

            Figure 4, plot A shows forecasts calculated with a single short-term outcome and without 

any controls. The triangles and circles positioned above the diagonal line reflect over-estimated 

forecasts that predicted a treatment impact of 0.20 SD or more when the observed experimental 

benchmark reflected a treatment impact close to zero. Most of the over-estimated forecasts were 

calculated using conceptually proximal short-term measures (shown in black). Some forecasts 

landed along the diagonal line and others below the diagonal line demonstrating under-

estimation. Most of the forecasts that landed below the diagonal were calculated by conceptually 

distal short-term measures (shown in gray). The average of all these forecasts (0.123 SD) is 
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shown in Table 2 Column (2), this is the value of the black square which is more than double the 

experimental benchmark of 0.052 SD. We only show the average of all the forecasts on the table 

for simplicity to allow for comparison across the three regression specification models (see 

Supplementary table 5 column 2). As we hypothesized excluding demographic and pre-tests 

yields largely over-estimated treatment impacts for most, but not all medium-term outcomes.   

            In contrast, once we include all the demographic and pretest covariates forecasts were 

reduced by 55% and approximated the experimental benchmark demonstrating a decrease in 

omitted variable bias (see Figure 4 plot B). All the 80 forecasts on this plot decreased when we 

introduced the covariates. If this were due to a reduction in noise, we would expect the forecast 

differences to go in different directions, however, we found that once we account for 

demographic and pretest covariates, the estimated forecasts were all reduced. As shown in Table 

2 column (3) the average forecast is 0.056 SD which better approximates the experimental 

benchmark of 0.052 SD. Furthermore, the average forecast bias for each medium-term outcome 

is smaller than the average forecast bias in Table 2 column (2), except for forecast bias for the 

three conceptually distal measures: Number Sets, WRAT-Arithmetic, and the Number Line. The 

changes in average forecast bias hold across both treatment groups. However, three forecasts 

over-estimate the experimental benchmark by more than 0.20 SD, demonstrating that large errors 

are still present. Overall, we confirm our hypothesis that forecasts of the impact of an early math 

skill on a later math skill approach the experimental benchmark with a comprehensive set of 

baseline pretests and demographic variables are controlled. 

Forecasting Approaches 

            The simplest methodological approach to forecasting is making predictions conditional 

on a single short-term outcome, as conceptually shown in Figure 3 panel A. Each marker on 
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Figure 4 plot B (black circles and triangles) reflect a single combination of one of the 8 short-

term outcomes predicting one of the 5 medium-term outcomes including all covariates, when the 

average of all the forecasts 0.056 SD (Table 2 column 3) best approximates the average of all 

experimental benchmark (Table 2 column 1) of 0.052 SD. The values of each forecast are shown 

in Supplementary Table 5 column 3. 

            The second approach, shown conceptually in Figure 3 Panel B, assumes that the short-

term outcomes are independent of each other and separately influence the medium-term 

outcome. In Figure 5 plot A, the 10 markers on the plot reflect the overall forecast for each 

medium-term outcome calculated as the sum of all the forecasts calculated from each short-term 

outcome. Even with a full set of covariates the forecasts under- and over-estimate the 

experimental benchmark by 0.20 SD to more than 0.60 SD. For simplicity, we consider the 

average forecast, shown on Table 2 column (4), is 0.444 SD which is 8.5 times larger than the 

experimental benchmark of 0.052 SD. This approach over-estimates all the medium-term 

outcomes, the raw forecast values and bias are shown in Supplementary Table 5 column (4). 

            The third approach, shown conceptually in Figure 3 panel C, assumes that the short-term 

outcomes are dependent on each other and together influence the medium-term outcomes. In 

Figure 5 plot B, the 10 markers on the plot reflect the forecast for each medium-term outcome 

calculated as the sum of all the estimated relations of the short-term outcomes. The average 

forecast, shown on Table 2 column (5), is 0.138 SD which is 2.7 times larger than the 

experimental benchmark of 0.052 SD. The raw forecast values and bias are shown in 

Supplementary Table 5 column (5). 

By comparing the average forecasts for each of the three approaches to the average 

experimental benchmark we find that using a single short-term outcome to predict the medium-
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term outcome yielded the most accurate forecasts. In comparison to the other approaches, using a 

single short-term outcome yielded 62 out of 80 forecasts within 0.20 SD of the observed 

experimental benchmark. The exact forecast values, mean bias, absolute bias, and accuracy 

calculated by using this method are shown in Supplementary Table 5 separately for each 

treatment, short-term outcome, and medium-term outcome. In contrast, forecasting assuming 

multiple non-independent effects yielded 9 out of 10 forecasts within 0.20 SD. As hypothesized, 

calculating forecasts assuming multiple non-independent pathways explaining the causal link 

between early math skills and later math skills yielded more accurate forecasts than forecasts 

assuming multiple independent causal pathways. This suggests it is important to model math 

development as contingent on numerous math skills that are mutually dependent. 

Addressing Over- and Under-Alignment Bias 

We hypothesized that the short-term outcomes that are more conceptually proximal with 

the intervention will yield over-estimated forecasts whereas the conceptually distal short-term 

outcomes would yield under-estimated forecasts. Figure 4 plot B demonstrates that the proximal 

measures (black markers) have the highest forecasts.  However, these both over-estimate and 

under-estimate the experimental benchmark. The highest forecast value shown in Supplementary 

Table 5 column 3 is 0.279 SD the lowest is -0.022 SD, when the experimental benchmark is 

0.052 SD. Similarly, the conceptually distal short-term measures over-estimate and under-

estimate the experimental benchmark, but to a lesser extent, with the highest forecast being -

0.012 SD and the lowest being 0.138 SD. Therefore, in line with our hypothesis, conceptually 

proximal short-term measures over-estimate treatment impacts more than conceptually distal 

short-term measures. Additionally, most conceptually distal measures under-estimated the 

treatment impacts. However, some conceptually proximal measures and some distal measures 
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both over-estimate and under-estimate the experimental benchmark. Of the three different 

heuristics we modeled in Supplementary Figure 1, we find that by calculating forecasts with a 

combination of one conceptually proximal measure and one conceptually distal measure, shown 

by the orange markers, we estimate the treatment impact within .10 SD from the observed 

experimental benchmark. 

Regarding treatment, we find that among the 37 forecasts that over-estimated the 

medium-term treatment impacts in the NKT study, 29 were from the speeded condition and 8 

were from the non-speeded condition. The opposite trend was true in the 42 forecasts that were 

under-estimated, where 10 were from the speeded condition and 32 were from the non-speeded 

condition. This finding suggests that the outcome measures were more closely aligned with the 

speeded treatment condition than with the non-speeded treatment condition, thus we tended to 

over-estimate forecasts for the speeded condition and under-estimate forecasts in the non-

speeded condition. 

We hypothesized that if we calculate forecasts using the exact same short-term and 

medium-term outcomes, we would over-estimate the impact, if the tests were proximal, and 

under-estimate the impact if the tests were distal. However, we found that in the speeded 

condition, forecasts using the same tests longitudinally over-estimated the forecast regardless of 

conceptual proximity. Overall, the average forecasts using the same tests are 0.076 SD and the 

average forecasts using different tests are 0.056 SD when the experimental benchmark is 0.052 

SD. Therefore, the different interventions showed different evidence of over-alignment bias, with 

forecasts of the speeded practice impact showing more evidence of over-alignment bias than 

forecasts from the non-speeded practice condition. The finding that different activities in the last 

five minutes of treatment sufficiently yielded different patterns of impact forecasts calculated 
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from the exact same measures implies that over-alignment is an important factor to consider 

when forecasting. 

Replication 

            We replicated the analysis using data from a study of the Pre-K Mathematics (PKM) 

intervention (Starkey et al., 2020) to determine if our hypotheses were supported. The PKM data 

were collected as part of a randomized controlled trial examining the effects of an early math 

curriculum on pre-K children’s mathematical knowledge. Children were assessed with pre- and 

post-tests in pre-K and again at the end of first grade allowing us to conduct a within study 

comparison to compare forecasts of first grade impacts (medium-term outcome) conditional on 

pre-K end-of-treatment outcomes (short-term outcome). Details about the study sample and 

measures are available in the online supplementary material. 

            Like the NKT dataset, the PKM data demonstrated that by accounting for confounding 

variables such as demographics, general ability pretests, and math pretests, forecast bias was 

reduced by 41% and approximated the experimental benchmark demonstrating a decrease in 

omitted variable bias (see Supplementary Figure 2, Plot B). Furthermore, we found similar 

patterns of accuracy using the three different approaches to forecast medium-term outcomes. As 

shown in Supplementary Figure 3, we found that calculating forecasts assuming multiple non-

independent causal pathways yielded a more accurate forecasts than assuming multiple 

independent causal pathways (see Supplementary Table 9 for estimate comparison). Though the 

PKM was limited to two short-term outcomes – one conceptually proximal to the intervention 

and one conceptually distal – we still found that using the heuristic of forecasting using the 

average of both measures yielded the most accurate forecast of 0.21 SD when the experimental 
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benchmark in this dataset was 0.04 SD, meaning there was still an upward bias by 0.17 SD (see 

Supplementary Figure 5). 

The PKM study forecasts were less sensitive to the conceptual proximity of the short-

term measures as both the proximal and distal measures over-predicted the experimental 

benchmark (Supplementary Table 12). We believe over-prediction could be due, in part, to 

estimation error caused by omitted variables in the PKM study. The PKM study had fewer 

baseline measures and plausibly noisier baseline pretests due to the younger sample in contrast to 

the NKT sample. 

            Although we found support for hypotheses 1 and 2, both the more proximal and more 

distal measures led us to over-estimate the experimental benchmark in the PKM data. Several 

sources of evidence suggest that omitted variable bias remained a major concern in the PKM 

reanalysis. First, although the short-term impacts in both datasets were of similar average 

magnitudes (0.34 in NKT and 0.40 in PKM, from Table 1 and Supplementary Table 10, 

respectively), the forecasts for each of the short-term outcomes in the PKM dataset under full 

controls (0.35 and 0.48; Supplementary Table 11) would have been the second and sixth largest 

forecasts in the NKT dataset (Supplementary Table 2). Second, whereas the magnitudes of the 

forecasts leveled off after adding the first set of pretests within the NKT dataset (Supplementary 

Table 2, last 2 columns) suggesting that key confounds had been successfully accounted for by 

pretests, they continued to drop in the PKM dataset (Supplementary Table 11, last 2 columns) 

suggesting the potential for additional drops if more pretests had been available. We return to the 

implications of these discrepancies in the discussion section. Overall, these findings support the 

importance of including pretest measures that are conceptually proximal to the skills that the 

intervention is designed to improve to reduce bias in forecasting medium-term outcomes. 
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Discussion 

In the present study we demonstrated prevailing threats to forecasts accuracy due to 

omitted variables bias, measurement over-alignment, and measurement under-alignment. We 

modeled the direction and magnitude of bias finding that demographic variables that are 

correlated to the pretests and post-tests of the skills measured are necessary covariates but not 

sufficient to improve the predictive accuracy of our forecasts. Furthermore, we found that over-

alignment and under-alignment influenced both forecast over-estimation and under-estimation 

with patterns favoring over-estimation for proximal measures and under-estimation for distal 

measures, however these were not as consistent as we hypothesized and, in some cases, proximal 

measures under-predicted while distal measures over-predicted outcomes. In an exploratory 

analysis, the most accurate forecasts were calculated using both a single conceptually proximal 

and distal short-term outcome. However, this approach was not validated in the replication, 

where omitted variables bias was not fully reduced. 

Forecast models based on assumptions of early math skills influencing later math skills 

through independent direct causal pathways yielded severe over-estimations. Forecast models 

that assumed mutually dependent direct causal pathways were more accurate, yet not as accurate 

as models using one or two short-term outcomes. These results demonstrate that in this case, 

early math skills influenced later math skills via largely overlapping pathways. Interestingly, 

using two short-term outcomes based on their theoretical alignment with the intervention yielded 

more accurate forecasts than using all short-term outcomes assuming multiple dependent 

pathways. We hypothesize this may be due to the additional omitted variables that confound the 

relation between short and medium term outcomes. 
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By assessing multiple measures in the NKT as short-term outcomes, we found that the 

measures that were most conceptually proximal to the intervention over-estimated, while 

measures more distal to the intervention most often underestimated the experimental benchmark. 

However, this pattern differed in the PKM dataset (Starkey et al., 2020). Although the CMA was 

more conceptually proximal to the intervention than the TEMA-3 in that analysis, we found that 

both measures over-estimated the medium-term treatment impact. The variation in accuracy 

across the two studies partially reflects the real-world constraints of gathering sufficient 

measures from interventions to forecast medium-term impacts.  Still, results suggest that 

researchers should be wary of forecasting (or making claims about the importance of an 

intervention for future outcomes) based on a single proximal assessment, particularly in the 

absence of comprehensive baseline statistical controls. We attempt to reconcile these findings 

below. 

Explaining Different Findings in the Two Datasets 

One major difference in findings across the two datasets was that when we forecast using 

the combination of one conceptually proximal measure and one conceptually distal measure the 

NKT forecasts were reasonably accurate, on average, within 0.10 SD of the experimental impact. 

However, in the PKM dataset (Starkey et al., 2020), this approach yielded a less accurate 

forecast of 0.21 SD, being 0.17 SD bigger than the experimental impact of 0.04 SD. This 

discrepancy appears to be at least partially explained by greater omitted variable bias in the PKM 

dataset, although we cannot rule out estimation error as a contributor as well. There are 

significant differences in the two datasets that may help explain the differences in forecast 

accuracy. First, the PKM intervention evaluated the impact of a curriculum intervention for all 

pre-K children, in contrast, the NKT intervention evaluated the impact of a tutoring program 



REDUCING BIAS IN INTERVENTION IMPACT FORECASTS 

 

34 

targeting a narrower population of at-risk children. These differences in intervention designs 

reflect real-world constraints that precluded the PKM study from being able to collect as many 

pretests and short-term outcome measures as the NKT study. In the PKM evaluation, entire 

preschool classrooms had to be tested before the intervention began in such a way that limited 

class-time interruptions. Further, PKM children were two years younger than NKT children. 

Thus, the PKM evaluation was limited to five measures of children’s cognitive skills at baseline. 

This contrasted with the NKT, which tested only a subset of students from each classroom 

individually and collected fourteen measures at baseline. The lower number of baseline pretests, 

coupled with the likely assumption that baseline pretests in the younger PKM sample are noisier 

than in the older NKT sample, raises the possibility that we could not account for residual bias 

from omitted variables in the PKM data as well as we could in the NKT data. 

Taken together, findings point to the importance of considering multiple competing 

biases in forecasting. The differences between the two datasets correspond to real-world 

constraints. Results suggest that nonexperimental longitudinal studies designed for theory 

development and testing should (1) be concerned with strong baseline measures of children’s 

domain general cognitive skills (Geary, 2011), and 2) consider a mix of specific cognitively 

informed assessments (which might stand in as “proximal” measures for an interventionist 

hoping to forecast medium-term effects based on a hypothesized developmental model and 

plausible short-term impact effect size) and broad achievement measures (which will likely serve 

as “distal” measures of achievement for any educational intervention). If a comprehensive set of 

baseline measures is available, averaging across forecasts from proximal and distal short-term 

outcome measures may balance biases from over- and under-alignment, as suggested by our 

reanalysis of the NKT data. If a comprehensive set of baseline measures is not available, the 
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results of our reanalysis of PKM data (Starkey et al., 2020) suggest that distal measures with 

smaller forecasted short-term impacts will yield more accurate forecasts of medium-term 

impacts. 

Tentatively, we hypothesize that omitted variable bias is a harder problem to solve in 

preschool aged children because of the difficulty of giving a comprehensive battery of pretest 

assessments and more measurement error. Whereas under-alignment might be more concerning 

in later grades, when skills may be more differentiated from each other. However, we do not 

offer a strong confirmatory test of this hypothesis in this paper. 

Potential Uses 

There are at least three research applications of our presented approach: power-analysis, 

model checking, and theory revision. In our current research we estimated the treatment impact 

of the Number Knowledge Tutoring speeded practice on children’s counting strategies measured 

by Facts Correctly Retrieved (0.39 SD, Table 1); then, we estimated the effect of a hypothetical 1 

SD change to Facts Correctly Retrieved in first grade on Facts Correctly Retrieved in third grade 

using the control group data and full covariates (0.22 SD, Supplementary Table 3). Using the 

approach of forecasting using a single independent short-term outcome, we forecasted the 

treatment impacts 2-years after the end-of-treatment to be (0.39*0.22= 0.09 SD). For a 

researcher planning a similar intervention that projected an end of treatment impact of 

approximately 1 SD, this would justify a sample size adequate to detect a 0.09 SD effect size in 

third grade. The researcher might compare this forecast to another forecast based on a 

hypothetical intervention strategy that targets a different broader set of skills or children of 

different age groups. A researcher who estimates a model predicting later skills from earlier 

skills who finds an estimate substantially larger than .22 (perhaps closer to the zero-order 
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correlation between first and third grade Facts Correctly Retrieved scores) should consider 

whether omitted variables might be biasing this and other estimates in the model upward and 

might consider alternative estimation strategies for addressing them. Finally, when this method 

fails, it suggests the importance of theory revision. When, after observing longer-term impacts, 

forecasts were overly optimistic, this suggests the existence of omitted variables, some of which 

may be targeted by successful interventions. When forecasts are overly pessimistic, this may 

suggest that under-alignment is a concern and that a better understanding of the underlying 

mechanisms might improve theories of development within the skill domain(s) under study. For 

example, understanding the sources of over- and under-prediction may be useful for improving 

practitioners’ understanding of the mechanisms through which the long-run impacts of 

educational interventions emerge. 

Limitations  

Our analyses suggest that, for the combination of interventions, outcomes, and estimation 

strategies under consideration, some forecasting approaches may be predictably more or less 

biased than others. However, it is also important to note that in this study, forecasts were not 

strongly calibrated with observed impacts within this range of observed impacts, as reflected by 

the weak association (r =.04) between forecasts and impacts in Figure 4 Plot B. We hypothesize 

this at least in part reflects the narrow range of longer-term impacts observed in the current study 

but note that our methods is likely less useful for making forecasts of impacts relative to each 

other than relative to other benchmarks (e.g., 0 or a forecast developed on the basis of proximal 

measures alone). 

Future Directions 
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            Additional methods may improve the accuracy of forecasting above and beyond the 

methods we have tested in the current study. One future direction of this work will be to further 

investigate the psychometric properties of the different measures used to calculate the forecasts 

to ensure that measures are comparable across groups and time and to assess whether models that 

allow for the possibility of group differences in measurement models yield more accurate 

forecasts. This approach would allow for identifying and modeling changes in multiple latent 

variables with different effects on proximal or distal measures to determine if this improves 

forecast accuracy.3 In addition, although we think the current study adds value by demonstrating 

the importance of considering omitted variables and alignment for generating accurate forecasts, 

in using a within-study design approach, we did not establish the validity of this approach for use 

across datasets. For the approach to be most useful, it must be able to provide accurate forecasts 

when the units and settings in the nonexperimental dataset differ from those from the 

experimental dataset. Such findings would increase our confidence in our ability to transport 

forecasts generated from estimates in large longitudinal datasets to the population of interest. 

Although prior work suggests some regularity across datasets in the ratio of end-of-treatment 

impacts to later impacts of early math interventions (Bailey et al., 2018), the ability of these 

methods to capture systematic variation in patterns of impacts across units, treatments, and 

settings has not been investigated. This is an important direction for future work. 

Implications 

            The practical significance of educational interventions is partially known only with 

additional work to determine how present findings compare to other interventions and their 

utility in promoting future outcomes. Improving the accuracy of our forecasts of the medium-

 
3 We thank an anonymous reviewer for the idea to pursue this as a future direction. 
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term impacts using observed end-of-treatment impacts could lead to more efficient design and 

investment in educational interventions. Forecasting not only better informs policy decisions 

about what educational interventions to fund, it can also be adapted to inform statistical power 

calculations in intervention evaluation, to provide a risky test to corroborate theories of causal 

processes (Meehl & Waller, 2002), and to foster transparency in research communication to aide 

belief confirmation or revision (DellaVigna et al., 2019). We thus provide a simple approach to 

forecasting the treatment impact of early math skills on later math skills as a method in need of 

replication across different applications and contexts to improve the accuracy of forecasts 

utilizing experimental and nonexperimental work.
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Tables 

Table 1 

Number Knowledge Tutoring Treatment Impacts on Short and Medium Term Outcomes 

  Speeded v. Control Non-Speeded v. Control 

Outcome Estimate (SE) Estimate (SE) 

Short-Term Outcome (Spring 1st Grade) a Experimental 

Proximal Content   

   Arithmetic Combinations 0.95*** (0.10) 0.50*** (0.08) 

   Double-Digit Calculations 0.81*** (0.11) 0.59*** (0.09) 

   Facts Correctly Retrieved 0.39*** (0.10) 0.20 (0.10) 

Distal Content     

   Number Sets 0.33*** (0.10) 0.28** (0.09) 

   Story Problems 0.22* (0.10) 0.29** (0.10) 

   WRAT-Arithmetic 0.34*** (0.06) 0.34*** (0.07) 

   Number Line 0.11 (0.09) 0.03 (0.09) 

   KeyMath-Numeration 0.10 (0.07) 0.07 (0.08) 

Medium-Term Outcome (Spring 3rd Grade) c Experimental 

 Proximal Content   

   Facts Correctly Retrieved -0.00 (0.10) 0.03 (0.10) 

Distal Content     

   Number Sets 0.09 (0.10) 0.12 (0.08) 

   WRAT-Arithmetic 0.02 (0.09) 0.09 (0.09) 

   Number Line -0.02 (0.09) 0.07 (0.10) 

   KeyMath-Numeration 0.04 (0.09) 0.07 (0.08) 
Note. N= 501. * p < .05 ** p < .01 *** p < .001. Treatment groups were entered as dummy variables in which (Speeded = 1, 

Control = 0) and (non-Speeded = 1, Control = 0). Demographic controls are race/ethnicity, sex, free or reduced lunch status, 

and whether the student learned English as a Second Language. Missing demographic variables were coded as missing 

dummy variables and included as covariates. Participants were nested in grade 1 classrooms, so we used classroom level 

clustered standard errors. Standardized effects are in control group standard deviation units. Number line was reverse coded, 

so higher scores reflect stronger performance. 
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Table 2 

Average Forecasts Using Three Approaches and Resulting Bias 

  
Experimental 

Benchmark Forecast Independent Single STO Outcome 
Multiple Independent 

STO Outcome 
Multiple Dependent STO 

Outcomes 

  (1) (2) (3) (4) (5) 
Medium-term 

Outcome Estimate 
Average 

Forecast 
Average 

Bias 
Average 

Forecast 
Average 

Bias 
Average 

Forecast 
Average 

Bias 
Average 

Forecast 
Average 

Bias 
Speeded 

Treatment                   

Facts Correctly 

Retrieved -0.003 0.123 0.100 0.056 0.04 0.444 0.301 0.138 0.164 

Number Sets 0.087 0.123 0.083 0.056 -0.007 0.444 0.555 0.138 0.066 

WRAT-

Arithmetic 0.023 0.123 0.131 0.056 0.037 0.444 0.455 0.138 0.11 

Number Line -0.018 0.123 0.145 0.056 0.082 0.444 0.529 0.138 0.169 
KeyMath-

Numeration 0.043 0.123 0.130 0.056 0.044 0.444 0.655 0.138 0.192 

Non-speeded 

Treatment                   

Facts Correctly 

Retrieved 0.03 0.123 0.037 0.056 -0.007 0.444 0.154 0.138 0.055 

Number Sets 0.121 0.123 -0.002 0.056 -0.063 0.444 0.34 0.138 -0.001 

WRAT-

Arithmetic 0.093 0.123 0.018 0.056 -0.048 0.444 0.266 0.138 0.028 

Number Line 0.072 0.123 0.016 0.056 -0.03 0.444 0.263 0.138 0.007 

KeyMath-

Numeration 0.07 0.123 0.054 0.056 -0.01 0.444 0.41 0.138 0.074 

Full Covariates X   X X X 

Note. STO = Short-term outcome. Table compares observed treatment impacts on medium-term outcomes split by treatment, to forecasts calculated 

using four approaches (columns 2 to 5) and to heuristics applied to forecasting with a single short-term outcome (columns 6 to 8). In columns 2 to 5 

the average forecast is shown as the total average of all the forecasts calculated using this approach for simplicity; Full table available in 

Supplementary Table 4. The average bias is also shown to demonstrate the average deviation of each forecast from the experimental benchmark, the 

bigger the bias the more inaccurate the forecast. In columns 6 to 8 the raw forecast is included instead because only one forecast was calculated 

using each heuristic for each medium-term outcome. Additionally, the raw bias is shown for each heuristic as forecast minus the experimental 

benchmark. The last row indicates the forecasts and heuristics estimated using all the covariates including demographic variables and pretests for all 

short and medium term outcomes. 
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Figures 

Figure 1 

Conceptual Framework of Within Study Comparison of Number Knowledge Tutoring 

  
Note. Directed Acyclical Graph notation is used to demonstrate the estimates we draw from separate groups within 

the same randomized control trial. First, we calculate the average treatment effect on the short-term outcome and on 

the medium-term outcome from the treatment and control groups. This is the expected impact of treatment on math 

skill growth at grade 1. Second, we calculate the relation (regression coefficient) of a short-term outcome on a 

medium-term outcome using the control group data. Third, we calculate forecasts by multiplying the treatment effect 

on the short-term outcome by the relation of the short-term outcome on the medium-term outcome. To complete this 

within study comparison, we compare the accuracy of our forecast to the observed experimental benchmark from the 

experimental evaluation.

Treatment
Medium-term outcome

Scores

Medium-term outcome

Grade 3

cExperimental

Treatment

Short-term outcome  

Grade 1

a Experimental

(Full Sample)

Panel A. Experimental Benchmark

b non-experimental 

(Control Group)Forecast = aExperimental X bnon-experimental

Short-term outcome 

Grade 1

Panel B. Forecasted Impact
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Figure 2 

Sources of Bias in Forecasting Medium-Term Intervention Impacts 

 

 
Note. Directed Acyclical Graph (DAG) notation is used in this figure to represent the causal paths that we expected to be 

influencing the key variables in our forecast. * For simplicity the potential influence of omitted variables bias is only shown 

to impact Skill 1 T1 and Skill 1 T2, however this bias may also be expected to impact Skill 2 T1 and Skill 2 T2.  Similarly, 

under-alignment bias is represented by a single alternative unmeasured skill (skill 2 T1) however this bias may also be 

expected to impact Skill 2 T1 and Skill 2 T2.  Similarly, under-alignment bias is represented by a single alternative 

unmeasured skill (Skill 2 T1) however, Skill 2 might also be conceptualized as measurement error in Skill 1 at time 1.
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Figure 3 

Conceptual Models of Forecasting Methods 

  
Note. Three different approaches to calculating forecasts are shown. Panel A shows how we forecast a single 

medium-term outcome using a single short-term outcome; the treatment impact on the short-term outcome is 

multiplied by the regression coefficient of regressing the medium-term outcome on the short-term outcome from the 

control group data to reflect an estimated relation from nonexperimental data. Panel B shows how we forecast a 

single medium-term outcome using all the short-term outcomes assuming each short-term outcome independently 

impacts the medium-term outcome; the treatment impacts each short-term outcome is multiplied by the regression 

coefficient of regressing the medium-term outcome on each short-term outcome in a separate regression, with 

demographic and pretest covariates. Panel C shows how we forecast a single medium-term outcome using all the 

short-term outcomes assuming all the short-term outcomes share causal pathways to the medium-term outcome; the 

treatment impact each short-term outcome is multiplied by the regression coefficient of regressing the medium-term 

outcome on each short-term outcome when all the short-term outcomes are entered in the same regression model 

along with demographic and pretest covariates. 

Treatment Medium-term outcome (MTO)Short-Term Outcome (STO)

Average Treatment Effect (ATE) on the Short-Term Outcome Estimated Effect of Short-Term Outcome on Medium-Term Outcome 

from Control Group

b

Model A. Forecasting Using A Single Short-term Outcome

Forecast = a*b

STO 3Treatment MTO 3+

STO 2Treatment MTO 2+

Treatment MTO 1STO 1

a1...n b1…n

Model B. Forecasting Assuming Multiple Independent Effects

Forecast  = ∑(an*bn)

STO 3

STO 2Treatment MTO

STO 1
a1

a2

a3

b1

b2

b3

Model C. Forecasting Assuming Multiple Non- Independent Effects

Forecast  = ∑(an*bn)

a

Forecast  = ∑(an*bn)

Forecast  = ∑(an*bn)
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Figure 4 

Replicating and Addressing Omitted Variables Bias 

 

 
Note. STO= Short-term outcome. Each marker on the plots represents a forecast calculated using 

a single short-term treatment outcome to predict each single medium-term outcome within each 

treatment. Forecasts calculated from the speeded-treatment group are shown in circles, those 

from the non-speeded treatment group are shown in triangles. The average forecast is shown in a 

black square, this is calculated as the average of all the forecasts in the same plot. Gray markers 

indicate forecasts calculated with distal short-term outcomes and Black markers indicate 

forecasts calculated with proximal short-term treatment outcomes. 
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Figure 5 

Forecasting with Multiple Short-term Outcomes 

 

 
Note. Each marker on the plots represents a forecast calculated using all the short-term outcomes to predict each 

single medium-term outcome. Forecasts calculated from the speeded-treatment group are shown in circles, those 

from the non-speeded treatment group are shown in triangles. The average forecast is shown in a square circle, this 

is calculated as the average of all the forecasts in the same plot. 
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