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Abstract 

In recent decades, U.S. education leaders have advocated for more intellectually ambitious 

mathematics instruction in classrooms. Evidence about whether more ambitious mathematics 

instruction has filtered into contemporary classrooms, however, is largely anecdotal. To address 

this issue, we analyzed 93 lessons recorded by a national random sample of middle school 

mathematics teachers. We find that lesson quality varies, with the typical lesson containing some 

elements of mathematical reasoning and sense-making, but also teacher-directed instruction with 

limited student input. Lesson quality correlates with teachers’ use of a textbook and with 

teachers’ mathematical background. We consider these findings in light of efforts to transform 

U.S. mathematics instruction.  
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For most of the last 25 years, U.S. education leaders have advocated for more 

intellectually ambitious mathematics instruction in classrooms. This goal arose during the mid-

1980s, as scholars developed new understandings of student learning (Bransford, Brown & 

Cocking, 2000; NCTM, 1989) and sought to re-orient classrooms away from teacher-driven 

procedural instruction to ones in which students participate in disciplinary practices, including 

mathematical sense-making and reasoning. By the early 2000s, these leaders had marshalled an 

array of resources to make this vision a reality: professional and political organizations wrote 

new standards for teacher and instructional quality including, in 2010, the Common Core State 

Standards (NCTM, 1989, 1991; National Commission of Science & Mathematics Teaching, 

2000; National Mathematics Advisory Panel, 2008; National Governor’s Association/Council of 

Chief State School Officers, 2010; National Research Council, 2001); state and local 

governments adopted or aligned to these standards, and provided teachers opportunities to learn 

about them; the federal government and private foundations supported the development of 

reform-aligned instructional materials; and professional developers sought to improve teacher 

knowledge and help teachers lead more rigorous mathematical inquiry in classrooms. Many 

anticipated that this community-wide work would improve instruction and student achievement 

in the subject.  

Evidence about whether more intellectually ambitious mathematics instruction has 

filtered into contemporary classrooms, however, is largely anecdotal.  Program evaluations have 

documented positive effects of specific efforts, for instance combining standards-aligned 

curriculum materials with professional development (e.g., Roschelle, et al., 2010) and providing 

teachers information on how students learn (e.g., Jacobs et al., 2007). Case studies and small-

sample quantitative studies found variability in instructional quality, but also evidence of high-
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quality lessons (e.g., Lloyd & Wilson, 1998; Hill et al., 2008;  O’Connor et al., 2015).  Yet other 

evidence suggests that mathematics classrooms, on average, still fall short of reformers’ goals. 

An evaluation of standards-based mathematics professional development found that teachers 

typically elicited substantive student mathematical thinking just two to three times per hour of 

instruction (Garet, et al., 2011). The Measures of Effective Teaching (MET) study (Kane & 

Staiger, 2012) depicted mathematics instruction in six urban districts as largely absent 

mathematical sense-making, mathematical practices and student cognitive challenge, and Hill, 

Litke & Lynch (2019) paint a similar picture in two of five urban districts.  

Despite this large volume of research in recent decades, few comprehensive portraits of 

teacher and teaching quality in U.S. mathematics classrooms exist.  The studies referenced 

above, as well as other case studies appearing in journals and monographs, are typically 

conducted with either small or non-representative samples in a handful of districts, limiting the 

generalizability of this evidence. The TIMSS study, which did feature a nationally representative 

sample (Hiebert et al., 2005) collected its data in 1999, prior to the Common Core and before 

significant efforts in the 2000s to provide teachers with new curriculum and professional 

development.  

We argue that more recent information on national progress toward more ambitious 

instruction in mathematics classrooms would be useful. Because efforts to transform 

mathematics classrooms have persisted since the late 1980s, they constitute one of the longest-

running efforts to substantially alter U.S. instruction. The TIMSS study (Hiebert, et al., 2005) 

suggested that instruction as captured in 1999 did not yet meet reformers’ goals. Providing an 

updated look at mathematics classrooms may help provide evidence about whether the passage 
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of time – and the presence of ongoing efforts to transform instruction – has resulted in a more 

optimistic picture of the rigor of classroom mathematics instruction.   

To this end, this study collected videotaped lessons from a random sample of U.S. middle 

school mathematics teachers, and scored those lessons using a standardized observational 

instrument. We describe the background, procedures and results for our study below.  

Background 

Prior to the standards-based mathematics reforms of the 1990s, mathematics instruction 

was reported to be uniformly drab. For instance, writing about the instruction early reformers 

hoped to change, Cohen and Ball (1990) observed:  

 

Mathematics teaching in most elementary classrooms emphasizes rules, procedures, 

memorization, and right answers (Goodlad, 1984; Stodolsky, 1988). Students seldom 

confront serious mathematical problems and are rarely expected to reason about 

mathematical ideas. Teachers stand at the board, show students how to do a particular 

procedure or type of problem, and assign practice exercises. Students then work quietly on 

these, asking the teacher for help if they get stuck. When students are done, the teacher 

checks their answers, marks the ones that are wrong, sometimes goes over the steps once 

again, and then students fix their incorrect answers. (Cohen & Ball, 1990, p. 234) 

 

This view was supported by findings from teacher surveys from the time, which suggested that 

U.S. mathematics classrooms featured superficial, repetitive treatment of content (Porter, 1989). 

Beginning in the mid-1980s, reformers proposed newly ambitious goals for mathematics 

teaching and learning (California State Department of Education, 1985; NCTM, 1989; 1991; 

2000; NGA/CCSSO, 2010).). Many new standards contained two important dimensions. First, 
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they asked teachers to portray the subject in a more disciplinary light, focusing on mathematical 

practices (e.g., justification) and representing the subject as one that requires sense-making and 

understanding. Second, new standards asked teachers to actively involve students in these 

practices and sense-making. Instead of receiving knowledge, students were to construct it 

through reasoning and application; instead of presenting rules and formulas, teachers were to set 

the stage for student growth through problem-posing and encouraging mathematical discussion 

and debate. Following Cohen (2012), we refer to the ideas in these standards and in the policy-

making and mathematics education community more generally as “ambitious instruction.” 

Early studies of standards-based reform suggested that using policy to induce such 

changes would not be an uncomplicated process. Studies of California’s initial standards-based 

reforms (Ball, 1990; Cohen, 1990; Wilson, 1990) indicated that teachers interpreted novel 

policies as compatible with more traditional curricula and pedagogy, and enacted a mix of new 

and old in their classrooms. Later analyses (Spillane & Zeuli, 1999) suggested that teachers 

added standards-based reform to the margins of practice while leaving the core of their 

instruction unchanged. And by the end of the decade, data collected for the TIMSS video study 

(Hiebert et al., 2005) showed that these reforms had not entered most U.S. middle school 

classrooms in meaningful ways. TIMSS authors observed lessons characterized by low levels of 

applied problems, the use of simple procedures for solving problems, and little sense-making and 

disciplinary justification. Another study completed around the same time period (Weiss et al., 

2003) found that many middle school lessons lacked mathematical rigor, student intellectual 

engagement, and student sense-making. Some featured inaccuracies in content, and observers 

sometimes noted that teachers appeared to lack understanding of the content.  
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Scholars quickly focused on an explanation for relatively static pedagogy: that teachers 

lacked the resources necessary to carry off ambitious instruction. One key resource was teachers’ 

content knowledge—sometimes known as “mathematical knowledge for teaching” (MKT) (Ball, 

Thames & Phelps, 2008; Thompson & Thompson, 1996).  Scholars documented how low levels 

of such knowledge constrained teachers’ instructional decision-making, led to missed 

opportunities for sense-making and explanations, and failed to spark student reasoning and 

inquiry (e.g., Cohen, 1990; Heaton, 1992). The second instructional resource was curriculum 

materials (Ball & Cohen, 1996; Davis & Krajcik, 2005). Prior to 1990, most textbooks contained 

guidelines for teacher explication of content and exercises for student practice.   

As scholars consensed on the centrality of these two resources in supporting ambitious 

instruction, practitioners and policy-makers set out to provide both to teachers at scale. Teachers’ 

mathematical knowledge was the intended target of NCLB’s teacher quality regulations, which 

required middle school mathematics teachers to obtain a subject matter major, equivalent credits 

to that major, or to pass an exam demonstrating competency in the subject. However, a 

companion study to this one (Hill et al., 2019) found that the fraction of middle school teachers 

with a mathematics degree decreased between 2005 and 2016. The development of curriculum 

materials meant to support ambitious instruction was funded in the 1990s by the National 

Science Foundation (NSF) and, following the introduction of the Common Core in 2010, by 

private foundations. These materials reflect students’ natural ways of thinking about 

mathematics, promote an inquiry approach to new topics, and are designed to enhance student 

facility in the application of mathematical concepts and ideas (Stein, Remillard & Smith, 2007). 

However, the companion study found only a fifth of U.S. middle school teachers used such 

materials, and that most teachers reported mixing the use of published materials with teacher-
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created materials, including those made themselves or with colleagues and those found on 

internet sites like teacherspayteachers.com. 

Recent evidence about whether classrooms have shifted to offer students more access to 

ambitioius instruction is also similarly mixed. An observational study found almost uniformly 

traditional instruction among participating mathematics teachers (Kane & Staiger, 2012). 

However, a smaller study of five urban districts shows that in two, standards-aligned instruction 

did exist in elementary classrooms (Hill, Litke & Lynch, 2019). Further, both studies also 

revealed the presence of teacher mathematical errors within the classroom – some consisting of 

minor misuse of mathematical terms, and others more serious, like incorrectly solving problems 

or mis-stating mathematical ideas and concepts. These errors are consistent with reformers’ 

concerns about teachers’ weak subject matter knowledge.  

Neither of these observational studies, however, included representative samples, 

meaning that these findings cannot be generalized beyond the specific districts participating in 

the studies. To gather information from such a sample, this study contacted middle school 

mathematics classrooms from across the country and recorded instruction in 98 of those 

classrooms in 2016. From this data as well as a brief post-observation survey, we can ask four 

questions. The first two gauge instruction vis-à-vis reformers’ goals and concerns:  

1. To what degree do observed lessons feature ambitious instruction? 

2. What is the frequency and severity of teacher mathematical errors in the classroom? 

A third question is meant to provide a rough comparison between lessons collected toward the 

beginning of the reforms and our dataset, collected several years after the Common Core:   

3. How does mathematics instruction in 2016 compare to typical instruction in 1999? 

Finally, data on the post-observation survey allowed us to ask:   
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4. What instructional resources characterize 2016 lessons with higher instructional 

quality?   

This study is descriptive, as are many other studies of its kind (Hiebert et al., 2005). Yet without 

strong description, we cannot successfully design new policies and supports for improvements in 

teaching and learning.   

 

Methods 

Sample 

 We aimed to achieve a nationally representative sample of middle school mathematics 

teachers and the lessons they teach. We defined middle schools as public schools containing at 

least 10 students in at least one of the grades 6, 7 and 8. Using the NCES Common Core of Data, 

we identified 24,270 schools that met these criteria, stratified those schools by region and size, 

then selected schools at random, where the probability of selection was proportional to school 

size within region. We then sampled 1,822 schools from this larger set, completed a district IRB 

where necessary, and gathered teacher names and contact information from school websites and 

via phone calls. We obtained teacher rosters from 1,583 schools, or 87% of the original sample.  

Within these schools, we selected a single teacher at random to participate.   

We conducted an initial “light touch” study with this sample in 2014-2015 using the 

Dillman Total Survey Response method of repeated contacts via U.S. mail and email, and a 

stipend of $300 to compensate teachers for recording four lessons with video equipment mailed 

to them by us. However, this study yielded a very low teacher response rate (11%). In 2016, we 

abandoned this initial sample, selected 200 new mathematics teachers from districts that had 

previously approved the “light touch” study, and began a “high touch” recruitment process, with 
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letters, personalized phone calls, and a $300 stipend for collecting a single classroom video. 

When response rates remained low, we expanded this sample to include a total of 442 teachers 

from the approved districts. Ultimately, 109 of those teachers agreed to participate in the study. 

We received usable video from 98 of these teachers, for a teacher-level response rate of 22%. 

Five of those videos could not be scored due to poor audio or video quality, leaving 93 in our 

analytic pool. For more details on the sampling and recruitment methods, please see (Zahs et al., 

2018). 

This response rate was well below what we were hoping to achieve, given the resources 

devoted to reaching and recruiting teachers. In speaking with declining teachers by phone, 

teachers consistently cited several reasons for their refusal: a lack of time, changing mathematics 

standards and curricula, worry about their ability to meet those standards, and concerns that the 

video would be used for evaluative purposes. Our study also required teachers to deploy a remote 

camera unit, which may have felt more burdensome than allowing a videographer – as previous 

video studies such as TIMSS asked – to record teaching. Overall, we succeeded in converting 

very few refusals into consents. The challenges we faced highlight the difficulty of recruiting 

teachers in today’s school environments and are consistent with the experiences of researchers in 

other fields who have also faced declines in response rates (Meyer, Mok & Sullivan, 2015). 

Information about our 2016 achieved sample (in Table 1), and the extent to which it 

departs from a companion nationally representative survey that achieved a 58% response rate 

around the same time (Hill, Kelly-Kemple & Lovison, 2019) informs the degree of risk in 

interpreting our results. On average, teachers in both the video and survey studies had between 

10 and 11 years of experience. In both samples, a majority of teachers held undergraduate and/or 

graduate degrees in education, and the samples were similar in the proportion of teachers who 
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held a graduate degree in mathematics. However, teachers in the video sample are slightly less 

likely to have an undergraduate mathematics major/minor, suggesting that comfort with 

mathematics was not a strong factor driving selection into the study. However, we cannot rule 

out other factors that might drive selection, for instance perceived instructional expertise or the 

use of specific curriculum materials.  

Table 1   
Characteristics of teachers, 2016 video sample 
vs. 2016 national survey 
 

 

2016 
video 

sample 
mean 

National 
survey 
sample 
mean 

Years of experience 10.62 11.06 
 (6.79) (7.84) 
   
Math major 0.19 0.27 
 (0.40) (0.45) 
     
Math minor 0.13 0.17 
 (0.34) (0.38) 
   
Graduate degree in 
mathematics 0.09 0.07 
 (0.28) (0.25) 
   
Education major 0.58 0.64 
 (0.50) (0.48) 
   
Graduate degree 
(education) 0.60 0.59 
 (0.49) (0.49) 
Observations 93 904 

Note: Standard deviation reported in parentheses.  
 

In addition to collecting novel data for this study, we also obtained all the original 1999 

TIMSS videos (83 in total) from the National Center for Educational Statistics (NCES). We then 
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rescored each video using our own observational instrument so that we would have a common 

metric with which to describe differences in instructional practices between the two samples.  

Information on the TIMSS sampling procedures can be found in Jacobs and colleagues (2003). 

However, because the response rate for the current study is well below that of the TIMSS video 

study (93%), our ability to draw comparisons across the two samples is limited. We thus urge 

caution in the interpretation of results from this study and discuss our findings in light of 

differences in response rates.  

Lesson capture 

We asked teachers to collect video from the first class scheduled after 10 AM on the 

Tuesday after they received our video capture equipment. Teachers recorded their own video, 

placing a SWIVL video unit with iPad and embedded microphones toward the front of their 

classroom to capture boardwork. Teachers also wore a microphone on a lanyard. Most teacher 

and student speech was audible enough for coding purposes, and most videos lasted between 45 

and 60 minutes.  

Post-observation Survey  

In both 1999 and 2016, teachers responded to a brief survey following lesson capture. 

These surveys asked teachers to report on the origin of the materials used in the lesson, and to 

indicate whether they majored or minored in mathematics as an undergraduate, or obtained a 

degree in mathematics as a graduate student. In the 1999 sample, eight teachers failed to return 

surveys. In 2016, all teachers with usable videos also returned surveys.  

Video Scoring 

We scored both the 2016 and 1999 TIMSS videos using the Mathematical Quality of 

Instruction (MQI) instrument. This instrument measures many of the elements of ambitious 
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instruction, including the presence of disciplinary features (e.g., mathematical explanation, 

generalization, language precision), the role students play in the production of knowledge (e.g., 

student explanation, cognitive demand of student tasks) and classroom discourse (e.g., teacher 

uptake of student ideas). The MQI also has well-established technical properties and a 

demonstrated relationship to teacher knowledge and student outcomes (see Hill, Kapitula, & 

Umland 2011; Hill, Umland, Litke & Kapitula, 2012; and Kelcey, Hill & Chin, 2017 for a 

description of instrument validity and score validation efforts). We randomly assigned two 

trained raters to watch and score each lesson, with lessons broken into 7.5-minute segments on 

each of 16 MQI items (see Table 2 for items and brief definitions) using a Not Present (1) to 

High (4) scale. Although the meaning of this scale varied slightly by item, Not Present (1) 

generally indicated the activity described by the item did not occur; Low (2) generally indicated a 

brief or superficial instance of the activity; Mid (3) generally indicated a lengthier or more 

substantive implementation of the activity; and High (4) generally indicated lengthy and strong 

implementation of the activity. To illustrate how this rubric looked when mapped to specific 

items, Table 2 presents the Low (2) and High (4) score points for each item.  
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Table 2 
Dimensions and items in the Mathematical Quality of Instruction (MQI) instrument 
 

Name of 
dimension/item Definition Low (2) High (4) 
 
Richness: Presence of mathematical meaning (e.g., sense-making, explanations) or disciplinary practices, regardless of whether they are 
enacted by the teacher or student.  

Linking Between 
Representations 

Teachers and/or students link and connect  
different representations of a mathematical 
idea or procedure.  

Links are present in a pro forma 
way. 

Links and connections are explicit, 
with extended, careful work 
characterized by elaboration and 
detail. 

Explanations 

Teacher and/or students focus on why a 
procedure works, why a mathematical 
statement is true, etc. 

A mathematical explanation 
occurs as an isolated instance in 
the segment.  

One or more mathematical 
explanation(s) is a focus of instruction 
in the segment.  

Mathematical Sense-
Making 

Teacher and/or students pay attention to the 
meaning of quantities (e.g., 7/8ths) 
definitions and procedures, whether solution 
methods and answers make sense, etc.  

Teacher and/or students focus 
briefly on meaning.  

Teacher and/or students focus on 
meaning in sustained way during 
segment.  

Multiple Procedures or 
Solution Methods 

Teacher and/or students use multiple 
solution methods to solve a single problem 
(including shortcuts), or multiple procedures 
for a given problem type. 

Teacher or student briefly 
mentions a second procedure or 
method, but the method is not 
discussed at length or enacted.  

Explicit comparison of multiple 
methods for efficiency, 
appropriateness, ease of use. 

Patterns and 
Generalizations 

Teacher and/or students first examine 
examples, then use information from 
examples to develop a mathematical 
generalization, property, or definition. 

There is brief work on 
developing a generalization or 
building a definition, but this 
work is undeveloped and/or is 
not the primary focus of the 
segment.  

The pattern or generalization is 
codified, AND the work is complete, 
clear and detailed.  
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Mathematical Language 

Teacher fluency in using mathematical 
language; whether the teacher supports 
students’ use of mathematical language.  

Low density of mathematical 
language OR moderate density 
but sloppy use.  

High density of mathematical 
terminology, including explicitness 
around the meaning of terms, pressing 
students to use mathematical language.  

 
Working with students: Teachers’ use of student mathematical ideas and misunderstandings during the segment.  

Remediation of Student 
Errors 

Teacher addresses student 
misunderstandings. 

Procedural remediation; brief 
conceptual remediation.  

Teacher engages in conceptual 
remediation systematically and at 
length.  

Teacher uses Student 
Mathematical 
Contributions 

Teacher uses student contributions to 
develop the mathematics of the lesson.  

Teacher responds in a pro forma 
way to student contributions. 

Students’ mathematical ideas are 
woven at length into the development 
of mathematical ideas during the 
segment.  

 
Errors: Teacher errors in the presentation of content.  

Mathematical Content 
Errors 

Teacher solves a problem incorrectly; 
defines terms incorrectly. 

A brief content error. Does not 
obscure the mathematics of the 
segment.  

Content errors occur in most or all of 
the segment.  

Imprecision in 
Mathematical Language 
or Notation 

Teacher uses mathematical terms or notation 
imprecisely. 

Brief instance of imprecision. 
Does not obscure the 
mathematics of the segment.  

Imprecision occurs in most or all of 
the segment.  

Lack of Clarity in the 
Mathematics 

Teachers’ presentation of a mathematical 
point is muddled, confusing, or distorted; 
errors make it difficult to discern the point of 
the segment. 

Brief lack of clarity. Does not 
obscure the mathematics of the 
segment.  

Lack of clarity occurs in most or all of 
the segment.  

 
Common core aligned student practices: Extent to which students participate in the development of the mathematics by asking questions, 
providing explanations, engaging with cognitively demanding tasks.  

Students Provide 
Explanations 

Students explain why a procedure works; 
explain what an answer means; explain why 
a solution method is suitable or better than 
another method. 

One or two brief student 
explanations are present.  

Student explanations characterize 
much of the segment.  

Student Mathematical 
Questioning and 
Reasoning 

Students make conjectures, counter-claims, 
ask mathematically motivated questions, 
engage in reasoning, etc.  

One or two instances of brief 
student mathematical questioning 
or reasoning are present.  

Student mathematical questioning or 
reasoning characterizes much of the 
segment.  
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Students Communicate 
about Mathematics 

Extent to which students communicate their 
mathematical ideas, either in whole-group or 
small group settings.  

Student contributions are very 
brief, e.g. one- or two- word 
answers, but occur regularly 
during the segment.  

Substantive student contributions 
characterize the segment (e.g., 
students present solution methods, 
discuss mathematical ideas).  

Task Cognitive Demand 
Whether tasks, as enacted, require students 
to think and reason about mathematics. 

There is a brief example of a 
cognitively demanding activity 
(e.g., think-pair-share to define a 
term). 

Students engage at a high level of 
cognitive demand (e.g., develop a 
generalization, provide explanations, 
link representations).  

Student Work with 
Contextualized Problems 

Students work with story problems, real-
world applications, experiments that 
generate data. 

The contextualized problems are 
executed as mostly rote/routine 
exercises.  

Students are allowed significant 
opportunities to think and reason about 
contextualized problems.  

Note: For all codes, “Not Present” is scored as a 1. A score of Mid (3) indicates a lengthier or more substantive implementation of the 
activity occurred during the segment, but did not meet the criteria for High (4).  
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Raters scored every 7.5-minute segment in each lesson, including final segments that 

were more than a minute long. We also asked raters to assign an Overall MQI score to each 

lesson, where scores of 1 and 2 indicated mathematically problematic lessons, a score of 3 

indicated either a purely procedural lesson or a lesson that had a mix of positive (Richness, 

Common Core Student Practices) and negative (Teacher Errors) elements, and scores of 4 or 5 

indicated more meaning-oriented mathematics featuring significant student participation. These 

scores correspond to variability in existing U.S. instruction, because the MQI instrument was 

developed to capture existing variability rather than judge instruction against an ideal.  

To help control for rater effects, we used the same six raters to score both datasets, and 

kept the percentage of lessons scored per rater in rough proportion across both samples. 

However, we could not blind raters to the origin of the lesson because of differences in video 

capture procedures and scoring platform. Because the MQI instrument has strict scoring guides, 

however, we expect that halo effects associated with data source would be minimized. Raters 

agreed on Overall MQI scores for 54% of lessons (kappa =.24) and 73% of segment-level item 

scores (kappa = .47). Raters’ scores differed by no more than one point for 98% of Overall MQI 

scores and 96% of segment-level item scores. 

Analyses 

Because we collected only one lesson per teacher, we cannot characterize teachers’ 

instruction; instead, we focus on characterizing the lessons included in the sample. To 

characterize the 2016 lessons, we first present Overall MQI ratings. Next, we make use of 

segment-level data in two ways. First we present the raw percentages at the item-by-segment 

level. This answers the question: within a given segment, what is the likelihood of the activity 

captured by a specific MQI item appearing at a specific level of quality? Next we calculate the 
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highest score achieved within a lesson on each item. This answers the question: did the activity 

captured by the MQI item appear at some point during the lesson, and if so, at what level?   

The fact that two raters viewed each segment and lesson complicates our reporting here, 

introducing half-scores (e.g., a score of 4.5 on Overall MQI) and yielding lumpy and unsightly 

distributions. We took two pathways to ameliorate this issue. For the Overall MQI and when 

aggregating segment data to the lesson level, we present the lesson’s highest score from either 

rater. This “best rating” approach recognizes that lesson quality is measured with error 

introduced by rater perceptions and biases, and credits classrooms where higher-quality 

instruction may have occurred. For the raw segment-level data, we randomly sample one rater 

per segment for the purposes of presentation. Comparisons of means and standard deviations in 

the full datasets vs. the data presented above suggests very few substantive differences.   

All bivariate comparisons were conducted using data from both raters. To answer our 

third research question and estimate differences between the 1999 and 2016 samples, we use the 

following mixed effects model: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑌𝑌𝑌𝑌𝑌𝑌𝑟𝑟𝑘𝑘 + 𝑢𝑢𝑘𝑘 +  𝜂𝜂𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖   

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the score assigned for an item by rater i for segment j in lesson k, YEAR is a 

binary variable equal to one if the lesson was drawn from the 2016 sample and zero otherwise,  

𝑢𝑢𝑘𝑘 is a lesson random effect and 𝜂𝜂𝑖𝑖 is a rater random effect. We assume both the lesson and rater 

random effects are normally distributed. The coefficient of interest is 𝛽𝛽1, which captures the 

average difference in item scores between the 2016 and 1999 samples. We conduct two different 

kinds of analysis using this model. We begin by averaging MQI items into two factor composites 

at the rater-segment level: Ambitious Instruction (Richness, Working with Students, and Common 

Core-Aligned Student Practices [CCASP]) and Errors. These composites are indicated by other 
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analyses of the MQI data (Blazar, et al., 2017) and are more sensitive to specific dimensions of 

instruction than Overall MQI. For these aggregate analyses, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the average over all the 

relevant item scores in segment j of lesson k. Then, to help illuminate patterns underlying these 

results, we run separate regressions for each item on the MQI rubric. In this analysis, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is 

a particular item.  

We answer our fourth research question by reporting whether Overall MQI scores 

differed by whether the teacher reported using a textbook, and whether the teacher reported a 

mathematics degree.  

Finally, to give readers a better descriptive sense of lessons at each level of Overall MQI, 

we reviewed about 15% of scored lessons and then selected three to briefly present below: one 

that represents the lower end of MQI quality (a score of 1 from one rater, 2 from another), one 

that represents the middle portion of MQI quality (a score of 3 from both raters), and one that 

represents the higher end of MQI quality (a score of 4 from both raters).  

Note we could not apply weights to the MTTS sample due to the transition between the 

light touch (where teacher probabilities of entry to the sample could be calculated) and high 

touch (where probabilities of entry to the sample could not be calculated) samples. For 

consistency, we did not apply TIMSS weights.  

Results 

RQ1 & RQ2: To what degree do observed lessons feature ambitious instruction? Teacher 

mathematical errors?  

MQI Ratings 

 Figure 1 represents the distribution of the 2016 lessons’ highest score from either rater 

on Overall MQI.  We found that 15 lessons, or 16%, were mathematically problematic enough to  
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warrant an MQI score of 1 or 2. Twenty-eight lessons (30%) featured enough disciplinary 

practices and student participation in those practices to warrant an Overall MQI score of 4, and 

one lesson scored a 5 (1%).  And, 49 lessons (53%) were more traditional in nature or a mix of 

positive (Richness, CCASP) and negative elements (Errors).   

 

Figure 1 
Overall MQI Score 
 

Tables 3A and 3B describe the data in more detail. We use Linking Between 

Representations as an example in how to interpret these tables. Table 3A shows that linking 

between representations is relatively rare at the segment level – only 15% of segments feature 

this practice. However, a majority of lessons (58%) have at least one example of this practice. 

Both tables show that when this practice appears, it generally does so at a low level.  

The remaining practices included in Richness of the Mathematics follow this pattern. 

Most lessons saw each of several major practices – linking, explanations, sense-making, multiple 

3 

12 

49 

28 

1 

0 1 2 3 4 5 
Overall MQI Score (n=93) 
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solution methods – at least once (Table 3B). However, the overall prevalence of these activities 

was not high across segments, and when present, they tended to score a low, indicating they were 

brief or superficial (Table 3A). Scores of high, which indicate extended and strong 

implementation of the practice, were particularly rare. The same was true for many CCASP 

items. Though student explanations, student reasoning, and working on cognitively demanding 

activities and contextualized problems occurred at some point during most lessons (Table 3B), 

these occurrences tended to be brief (Table 3A) or, in the case of contextualized problems, not 

cognitively demanding. For Students Communicate About Mathematics, scores of low represents 

traditional practice, such as teacher-led instructional discourse.  

In Working With Students, both the segment and lesson level analyses demonstrate a fair 

amount of Remediation of Student Errors, though that remediation tended toward the procedural 

(low) rather than conceptual (mid or high). Similarly, Teachers Use Student Contributions 

typically occurs in a pro forma way – evaluating student responses and moving on (low), and less 

often weaving students’ mathematical ideas into the fabric of the lesson (mid or high) (Table 

3A). While most segments were free of Content Errors, about 10% of lesson segments contained 

at least some Imprecisions in Language, and about 10% of segments saw a Lack of Clarity 

(Table 3A).  Analysis at the lesson level, however, shows that about 42% of lessons contained a 

mathematical content error, and about half contained a moment that lacked clarity or a problem 

with mathematical language.  

Table 3A    
Percentage of Segments at Each Score Level on MQI Items  

 
    

Item Not 
Present Low Mid High 

Richness     
Linking Between Representations 85 10 5 1 
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Explanations 92 6 1 1 
 

    
Math Sense-Making 54 24 20 3 

 
    

Multiple Solution Methods 89 7 4 1 
 

    
Patterns and Generalizations 97 1 1 1 

 
    

Math Language 6 31 50 13 
 

    
Working with students     
Remediation of Student Errors 55 34 10 1 

 
    

Teachers Uses Student Contributions 25 56 17 1 
 

    
Errors     
Math Content Errors 93 3 3 <1 

 
    

Imprecision in Language 89 8 3 <1 
 

    
Lack of Clarity 89 6 4 <1 

 
    

Common-core aligned student practices (CCASP)   
Student Explanations 87 10 3 0 

 
    

Student Reasoning 90 10 1 <1 
 

    
Student Communication 19 46 33 2 

 
    

Task Cognitive Demand 61 28 10 1 
 

    
Contextualized Problems 66 24 7 2 

     
Number of segments 557    

 

Note: Cases where numbers do not sum to 100 are due to rounding. 

 
Table 3B     
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Percentage of lessons with best rating, lesson-wide, of a NP, Low, Mid, or High 
 

    

Item Not 
Present Low Mid High 

Richness   
Linking Between Representations 42 27 23 9 

   
  

Explanations 52 37 6 5 
   

  
Math Sense-Making 4 18 51 27 

   
  

Multiple Solution Methods 47 22 24 8 
     

Patterns and Generalizations 84 6 4 5 
     

Math Language 0 5 39 56 
   

  
Working with students   
Remediation of Student Errors 6 43 44 6 

   
  

Teachers Uses Student Contributions 3 29 60 8 
   

  
Errors   
Math Content Errors 58 24 15 3 

   
  

Imprecision in Language 45 37 17 1 
   

  
Lack of Clarity 53 25 19 3 

   
  

Common-core aligned student practices (CCASP)   
Student Explanations 33 51 16 0 

   
  

Student Reasoning 42 47 10 1 
   

  
Student Communication 3 8 82 8 

   
  

Task Cognitive Demand 12 51 34 3 
   

  
Contextualized Problems 39 32 20 9 
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Number of observations 93       
 
Lesson Snapshots 

To provide additional context for the scores presented above, we describe lessons at 

Overall MQI scores of 1.5, 3 and 4.  

Sample Lesson 1 (MQI Score 1.5). This lesson featured teacher and students working 

on solving single-variable equations, with some meaning-oriented mathematical practices along 

the way. However, not all of the information conveyed in the class was mathematically accurate. 

The teacher began by asking students a terminology question:  

T: First, how do you recognize that this example (x -2 = 3) is an equation?  
 
S: There’s an equals sign. 
 
T: There’s an equals sign.  

 
Using mathematical language precisely is a key curricular standard and mathematical practice, 

and the teacher reinforced this at the start of this lesson, first here, and then by asking students to 

similarly define other terms (e.g., inverse operations).  

The teacher next asked students to solve x - 2 = 3. She walked students through the 

calculation, strongly scaffolding student responses: 

T: x - 2 = 3. If you had to do this…what would be the first question you would ask 
yourself? 
 
S: Try to find what x is. 
 
T: What x is. In order to find what x is, we need to find the inverse operation. What is the 
inverse operation of subtracting 2? 
 
S: Adding two? 
 
T: Adding two. So every student go ahead and add two to both sides.   
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In the above excerpt, the teacher prompted students to use the inverse operation, and then 

pointed to exactly how: by doing the opposite of subtracting two. Then the teacher interjected a 

moment of meaning into the conversation: 

T: Adding two. Let’s add two to both sides. The reason is that we want to make sure both 
sides are balanced. So when I add, I’ve isolated my variable, which is x.   

 
By pointing out the need to balance equations, the teacher briefly referenced a key tenet of 

algebra problem solving – keeping the value of both sides of an equation the same. The teacher 

and students then completed solving the problem and checked their answer by substituting five 

for x. Thus in these opening moments of the lesson, there was a brief drive for language 

precision and brief sense-making around how completing the same action on both sides of an 

equation leaves that equation balanced.  

A few moments later, however, a mathematical misconception entered the lesson. As 

students worked on 9 = a - 5, the teacher asked them to rewrite the equation as a – 5 = 9, and 

then justified that action by referring to the commutative property: 

 
T: Here’s my question. We get this type of equation (9 = a - 5) all the time. How can I 
rewrite this equation? And tell me how you know. How can we rewrite it in a way that 
will make it easier to solve?   
 
S: a – 5 = 9 
 
T: a – 5 = 9. Thumbs up if you can agree that we can write it like this…[students give 
thumbs up]. Why? Why can we rewrite any equation that looks like this? Looking for an 
academic word here. What am I looking for?  
 
S: The commutative property. 
 
T: The commutative property. What does the commutative property tell me I can do to an 
equation? …What does the commutative property state that I can do to equations that 
look like this to help make life easier when you solve it?... I can use the commutative 
property to rewrite it because. Because what does the commutative property say I can do? 
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S: [reading from notes] The order in which two numbers are added or multiplied does not 
change the sum or product. 
 
T: So I can rewrite it, right, to put the variable a in front, so that when I solve this, I can 
actually solve it and get my answer.  

 
Although justifying procedural steps using mathematical properties is both fundamental to 

mathematics and can help students make sense of those steps, this teacher’s attempt to do so 

muddied the waters. To start, the procedure the teacher executed is properly justified by the 

symmetric property of equality (if a = b, then b = a), not the commutative property. Second, this 

procedure adds an unecessary step to the problem’s solution and may reinforce rigid notions 

about the equals sign held by some students. Yet the teacher repeated the same assertion about 

commutativity to justify rewriting equations throughout the remainder of the lesson.   

 As with other lessons scoring a 1 or 2 on Overall MQI, the teacher did most of the 

talking, with students offering one-word or short phrases as answers to direct questions. Student 

tasks were generally of low cognitive demand, for instance recalling information, reading from 

notes, or hazarding guesses to the teacher’s questions.  

Sample Lesson 2 – MQI Score 3. This lesson featured brief moments of mathematical 

meaning and very occasional questions that challenged students to think, but also generous 

amounts of relatively procedural, teacher-centered instruction. Teachers and students began the 

lesson by working on graphing the inequality x ≥ –2 on a number line. The teacher asked what 

this statement meant to students, specifically, what numbers would satisfy the inequality. 

Students replied with several values: 1, –2, –1, and the class briefly reviewed how to draw and 

graph each on a number line. The teacher and students then considered how to graph this 

particular equation, locating 0 and -2 then asking: 
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T: Now we’re going to graph this (equation). Remember you have that circle (on  –2). Is 
that circle going to be open or is it going to be closed? What determines whether a circle 
is open or closed? 
 
S: Negative or positive. 
 
T: Not if it’s negative or positive.  
 
S: Equal to or? 
 
T: Well, this little guy right here [teacher circles the long dash that is part of the 
inequality symbol]. If it is equal to, it’s going to be colored in, it’s going to be a solid dot. 
Then you have to decide which way to go. …. In this case, am I going right or left? 
 
S: Right.  
 
T: [draws the line as directed by the student] 

 
 
  Though the lesson began with brief sense-making about the meaning of x ≥ -2, the 

teacher provided no explanation that a solid endpoint is used to include the number 2, or a 

connection of the finished product back to the sense-making students had done earlier. She did, 

however, continue to make sense of inequalities several times as the lesson went on, for instance 

saying for x > 24, “…this is telling me, a number greater than 24” and while graphing y > -3/5x 

+ 6, helping students be strategic about the plotting of points: 

T: Now, this equation says that y is gonna be greater than anything that’s on this side.  
But the problem with that is we don’t know what side of the line that means. It means 
that we can have solutions that are all on this side of the line, or I could have solutions 
that are all on this side of the line….So you have to kind of crank the numbers at this 
point….In order to do that, we’re going to have to substitute a single point on my whole 
coordinate grid. You can choose any point that you want to, but there are always going to 
be some points that are easier and some points that are harder. Because if I choose points 
that are down here in my third quadrant, then I end up having to deal with a lot of 
negatives, right?   

 

The lesson also contained brief moments of student cognitive demand – mainly in the form of 

teacher questions to students that included wait time for students to think and respond.  
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However, a majority of the lesson followed an “inquiry-response-evaluation” format, 

with the teacher calling for steps in the graphing procedure and students supplying them: 

T: Now once we hit 8th grade, we’re starting with inequalities that have two variables. We 
have usually an x and a y.  
 
Student: Whoa. 
 
[Teacher writes 3x + 5y  > 30] 
 
T: ….It’s the same thing. Same thing that we’ve been working on. If we pretend [the 
inequality symbol] is just an equals sign, how would we solve this? What would our 
equations have to look like to graph it? 
 
S: y = mx + b. 
 
T: So what form? 
 
S: Slope-intercept. 
 
T: You gotta know this. So subtract the 3x on both sides…. 
 

The teacher and students continued to isolate y, then students graphed the equation on 

whiteboards while the teacher circulated checking their work. Throughout, student contributions 

tended to be brief, fill-in-the-blank answers, and the teacher’s use of those contributions focused 

on evaluating those answers and moving students onto the next step.  

Other lessons scored as a 3 featured the same pattern described here – occasional 

moments of richness or student mathematical contributions, but little sustained focus on 

mathematical ideas, or the weaving of students’ own mathematical ideas into the class 

discussion. Still other lessons with an MQI score of 3 simply didn’t cover much content. In one, 

students competed to solve math problems and thus earn the right to make a free throw in the 

classroom basketball hoop. In another, a teacher used an lesson found in a National Council of 
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Teachers of Mathematics journal, Barbie Bungee Jumping, but focused mainly on data collection 

and graphing results rather than making predictions or interpreting data (see Litke & Hill, 2020).  

Sample Lesson 3– MQI Score 4. This lesson featured substantial sense-making around 

geometry, including informal arguments about the angles created when parallel lines are cut by a 

transversal. Often, students provided these arguments, and the teacher elaborated on students’ 

responses. The class was working with the following figure: 

Figure 2 

Angle Measure Activity 

 

 

After a brief review of the mathematical terminology in the task, the teacher invited students to 

reason about the pictured angles:   

 
T: What if I told you that this angle right here, Angle 2 measures 110 degrees. If I told 
you that, what else could you tell me? 
 
S: That Angle 1 measures 70 degrees. 
 
T: Good. Angle 1 measures 70 degrees. But it’s not enough to just say that. Right?  
 
S: Because it adds up to 180 and that’s supplementary.   
 
T: Because Angle 1 and Angle 2 are supplementary angles, it must add up to 180. Good. 
What else do we know? Just because I gave you that one teeny tiny measurement, what 
else do we know?  
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Here, an intercom announcement leads to members of the track team exiting the room. In this 

short excerpt, however, we can already see the teacher pressing students for explanations – why 

Angle 1 measures 70 degrees – and also revoicing student talk with more precision (“Because 

Angle 1 and Angle 2 are supplementary….”). Instruction picks up again with a response to the 

teacher’s query: 

 
S: That 3 and 4 have to be 180.  
 
T: That 3 and 4 have to equal 180 too. They’re gonna be supplementary also. Do I know 
anything about the measurements of 3 and 4? 
 
S: Angle 3 has to be 110. 
 
T: Angle 3 has to be 110 degrees.You’re absolutely right. Why? 

 
S: Because it’s across from Angle 2.  
 
T: Stop. It’s across from angle 2. And they are both what? 
 
S: And they’re both situated on the same line. 
 
T: OK, when they are across from each other, they are what kind of angle pair?  
 
S: Vertical.  
 
T: They are vertical. When lines are parallel, we know that angles that are vertical are 
congruent. Actually, you don’t even need to have parallel lines to have vertical angles be 
congruent. Vertical angles will always be congruent.   

 
In this excerpt, we see many features of high-quality instruction: several student explanations, 

dense student use of mathematical vocabulary (vertical and supplementary angles, congruent) 

and some depth – even in this warm-up activity – in the treatment of the topic. These features 

continued throughout the lesson. 

 Reviewing the lesson as a whole suggests, however, that these standards-aligned features 

occurred within a more conventional instructional format. The first half of the lesson involved 
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going over warm-up and homework problems; the second half featured the teacher handing out a 

worksheet to give students “some time to work.”  Discourse generally pingponged between the 

teacher and a single student at a time and focused on correct answers and reasoning, and the 

cognitive demand of the problems students solved did not appear high. These features were 

common to other lessons scoring above average on Overall MQI, and were one reason that only 

one lesson scored a five.  

RQ3: How does mathematics instruction in 2016 compare to typical instruction in 1999? 
 

Tables 4 and 5 compare MQI item ratings for the 2016 and 1999 samples. Table 4 shows 

that we observed more ambitious instruction in the 2016 sample than in the 1999 sample (Table 

4). On average, 2016 lessons scored 0.057 scale points higher on items capturing Ambitious 

Instruction than 1999 lessons, a difference of approximately 0.3 standard deviations. The 

samples were indistinguishable in terms of the number of teachers’ mathematical errors and 

imprecisions.   

Table 5 shows in more detail the patterns that led to these findings.  Lessons in our 2016 

sample featured significantly more linking between representations, more mathematical sense-

making, and more dense use of mathematical terminology, but no detectable difference in three 

other richness codes, including mathematical explanations, the use of multiple solution methods, 

and noticing patterns/building generalizations. Notably, these practices were the least frequent in 

both samples. Similarly, 2016 lessons featured more of some Common Core-Aligned Student 

Practices, including more student explanations, more student communication about mathematics, 

and more demanding contextualized problems. However, the two samples saw similar levels of 

task cognitive demand and student mathematical reasoning, and the samples did not differ in the 



MIDDLE SCHOOL MATHEMATICS INSTRUCTION, 2016 
 

32 

extent to which teachers took up their students’ mathematical ideas or offered strong remediation 

of student errors.  

Finally, Table 5 shows one statistically significant difference in favor of the TIMSS 

sample lessons, with teachers in that sample solving fewer problems incorrectly. However, 

perhaps because the two samples did not differ in the level of precision in teachers’ mathematical 

terms or the clarity of their mathematical talk, we observed no differences in averaged 

mathematical errors across samples (Table 4). The samples did not differ on Overall MQI, either; 

however, at the lesson level, our study was only powered to detect fairly large differences of  at 

least 0.42 standard deviations.  

Table 4  
Average differences in MQI scores between 2016 and 1999, MQI factor composites  
 

 

Δ between 
1999 and 

2016  
Ambitious instruction 

0.057 ** 
 (0.027)  
Errors  -0.024   (0.023)  
Number of segments 2,393  
Note. Standard errors provided in partentheses.  
**p<.05    

  
 

Table 5   
Average differences in MQI item scores between 2016 and 1999  
 

  

 

Δ between 
1999 and 

2016  
Richness   
Linking Between Representations 0.097 *** 
 (0.037)  
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Explanations -0.016   (0.026)  
Math Sense-Making 0.143 *** 
 (0.066)  
Multiple Solution Methods 0.013   (0.039)  
Patterns and Generalizations 0.008   (0.020)  
Math Language 0.175 ** 
 (0.072)  
Working with students   
Remediation of Student Errors -0.044   (0.055)  
Teachers Uses Student Contributions 0.039   (0.059)  
Errors   
Math Content Errors -0.069 *** 
 (0.023)  
Imprecision in Language 0.038   (0.039)  
Lack of Clarity -0.040   (0.029)  
Common-core aligned student practices   
Student Explanations 0.054 ** 
 (0.026)  
Student Reasoning -0.023   (0.027)  
Student Communication 0.149 ** 
 (0.067)  
Task Cognitive Demand 0.010   (0.063)  
Contextualized Problems 0.150 ** 

 (0.070)  
Number of segments 2393  
Note. Standard errors provided in parentheses.  
**p<.05 ***p<.01   
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RQ4: What instructional resources characterize 2016 lessons with higher instructional 

quality?   

Curriculum is one key instructional resource. Table 6 shows where 2016 teachers 

reported finding or creating the lessons we observed on video. Notably, just over half of lessons 

(51%) did not rely upon a published textbook. Rather, in line with evidence from our nationally 

representative companion survey (Hill, Lovison & Kelly-Kemple, 2019), we see that teachers 

relied upon a range of resources, including internet repositories (24%) and supplemental 

materials (18%). Fifty-four percent of teachers said they created the observed lesson themselves 

and 29% said they created the lesson with colleagues. These numbers sum to more than 100% 

because teachers could report that they used several sources in developing their lesson, consistent 

with expectations that teachers might use different resources for different portions of their lesson.  

Table 6 
Teacher-reported origin of observed lesson  
  

 Mean 
Published textbook 0.49 
State, district, or charter produced 0.06 
Lesson created with colleagues 0.29 
Lesson created by myself 0.54 
Lesson obtained from internet  0.24 
Released test item 0.05 
Online content video 0.11 
Published supplemental materials 0.18 
Lessons 93 

 

The top panel in Table 7 presents suggestive evidence that classroom instruction is 

stronger among teachers who used a textbook to plan their lesson. On average, Overall MQI 

scores were 0.24 points higher for teachers who used a textbook relative to those who did not (p 

= .09). Given our small sample size, and the substantive size of this difference – about one-third 
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of a standard deviation – we consider this worthy of mention.The two right-hand columns in the 

top of Table 7 show that this relationship appears driven by a relationship between textbook use 

and Richness rather than Errors. Aside from textbooks, use of the other types of curriculum 

materials in Table 6 did not predict instructional quality. 

Another instructional resource is teachers’ mathematical knowledge. We could not 

measure teacher MKT in the context of this study, but our survey did ask teachers about their 

mathematical background. The bottom panel in Table 7 shows that teachers who reported a 

mathematics major, minor or graduate degree did not have substantially different Overall MQI 

scores than those who entered the profession with a more general background. However, 

teachers in our sample with math degrees did produce stronger lessons on the Richness 

dimension.  

Table 7 
 

 
Number 

of 
Lessons 

Overall 
MQI 
Score 

Average 
Richness 

Score 

Average 
Error 
Score 

Lesson did not draw on textbook 47 2.77 1.51 1.12 
  (0.76) (0.30) (0.28) 

Lesson did draw on textbook 46 3.01 1.56 1.13 
  (0.62) (0.28) 0.27 

Difference 93 -0.24* -0.05** -0.00 
    (0.14) (0.02)  (0.02) 
Teacher did not have math degree 59 2.86 1.51 1.14 

  (0.62) (0.28) (0.29) 
Teacher did have math degree 34 2.94 1.56 1.11 

  (0.82) (0.32) (0.27) 
Difference  93 -0.09  -0.05**  0.03* 
    (0.15) (0.02) (0.02) 

Notes: In each panel, rows one and two of columns 2-4 report means with standard deviations in 
parentheses. Row 3 of each panel reports the results of a two-sample t-test. Standard errors 
reported in parentheses.*p<.10, **p<.05. 
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Discussion and conclusion 

This study asked about the prevalence of ambitious instruction in U.S. middle school 

mathematics classrooms using the MQI instrument to gauge this construct. Doing so allowed us 

to take stock of mathematics instruction several decades into a concerted effort to transform that 

instruction, and six years after the Common Core State Standards. Our sample also allowed us to 

observe correlates of stronger instruction for a limited set of variables.  

Our primary results suggest strong variability in the quality of U.S. middle school 

mathematics instruction. Using scores from Overall MQI, we estimate that roughly three in ten 

lessons exhibited a fair amount of ambitious instruction, another five in ten lessons exhibited 

either more traditional instruction or a mix of some stronger and weaker elements, and two in ten 

lessons contained instruction our raters marked as concerning. This distribution differs from 

accounts of mathematics instruction pre-reform, which suggested little attention to sense-making 

and mathematical reasoning, and that students’ roles were limited to learning and practicing 

procedures.    

Qualitative analyses of a subsample of lessons also illustrate the variability in students’ 

experiences in these classrooms. Among higher-scored lessons, teachers invited mathematical 

sense-making and student participation in the mathematics. They did so, however, within a 

traditional, teacher-centered instructional format. Our lowest-scored lessons featured either 

minor to moderate mathematical errors and/or confusing instruction, enough that students may 

have had difficulty learning. Lessons scored closer to the center of the distribution featured brief 

and infrequent standards-aligned practices, and were again enacted within the confines of 

teacher-centered instruction. These average-quality lessons featured many activities likely not 
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found in classrooms decades ago (e.g., Barbie Bungee Jumping), but their enactment did not 

reach the level of mathematical depth and rigor lesson authors intended.  

Our analyses of these lessons were also notable for what we did not see. We saw no 

discussion-based mathematics lessons. We saw little student work on mathematically novel or 

challenging problems. We saw little in the way of argumentation, proof, justification, or other 

mathematical practices. Though our sample was small, we saw no classrooms of the kind 

featured in case studies of successful standards-aligned classrooms. This suggests that at best, 

changes in U.S. instruction have been incremental rather than transformational.  

 All our results must be interpreted cautiously in light of our response rate, which is low 

by industry standards and in comparison to recent district-specific studies (e.g., Hill, Litke & 

Lynch, 2019; Kane & Staiger, 2012). However, there is some indication that our teacher sample 

did not differ significantly from a higher-response nationally representative sample in terms of 

mathematics and educational coursework; if anything, the video sample teachers were slightly 

less prepared, in terms of undergraduate mathematics degrees, which runs counter to the 

expectation that more expert teachers would respond to the video study.  

 Comparing results from our 2016 sample to other studies that have used the MQI to score 

classroom observation data can further help illuminate the degree of self-selection in our sample. 

Hill, Litke & Lynch (2019) analyzed instruction in five districts and found modestly more 

disciplinary richness and student thinking and reasoning than in our sample, but their sample 

included two districts using Investigations, a set of curriculum materials that supported reform-

aligned instruction. By contrast, the Measures of Effective Teaching study (Kane & Staiger, 

2012), which also included five districts, found very little richness or student participation in 
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mathematical meaning-making and reasoning. Thus our results seem to fall in between these two 

studies that featured only a small number of districts.   

Differences in sample response rates also complicate comparisons between the 1999 

(TIMSS) and 2016 samples, and our results must be considered in light of these challenges. Most 

generally, we found modest differences in the mathematical quality of instruction across these 

two time points. Lessons captured in 2016 contained more Richness elements, and more student 

explanation and communication. However, the cognitive demand of the average task did not 

differ, nor did teachers’ propensity to take up and use students’ contributions, or to remediate 

student misunderstandings at a conceptual level. Assuming no positive selection (i.e., stronger 

teachers more likely to participate) in the 2016 sample, this suggests incremental change towards 

ambitious instruction. Assuming modest positive selection into the 2016 sample, this suggests 

that instruction has remained largely unchanged since the late 1990s.    

We next examined whether we could identify correlates of lesson quality. Because of 

questions about the quality of materials used to enact instruction, we asked teachers to describe 

the origin of the lesson we captured. Similar to a sister project (Hill, Kelly-Kemple & Lovison, 

2019), we found that a slight majority of lessons in our sample did not use a published textbook. 

We also found that lessons based on textbooks outperformed lessons based on other resources, as 

measured by Overall MQI. This pattern was particularly true for Richness codes, suggesting that 

lessons gleaned from other sources and/or created by teachers themselves may lack support for 

high-quality teaching. We also found a relationship between Richness scores and teachers’ 

possession of a mathematics degree. This suggests that policies such as No Child Left Behind, 

which attempted to require more mathematical coursework for middle school teachers, could be 

beneficial to classrooms.  
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Our small study made several other observations of interest. First, although we used a 

different instrument than TIMSS to score the 1999 video data, our results appear quite 

consonant, substantively, with those reported in Hiebert et al. (2005). Notably, even in cases 

where teachers posed students a mathematically rich and challenging mathematical task, they 

ultimately devolved that task to lower levels of cognitive demand by the end of the lesson. And 

our results are consonant with another study (Hill, Litke & Lynch, 2019) that showed even in 

classrooms that came closer to reformers’ vision, teachers generally accomplished this goal by 

interspersing moments of cognitive demand and mathematical meaning into more traditional, 

teacher-centered instruction.  

In sum, results from our 2016 sample and similar evidence suggests that mathematics 

instruction in the U.S. does feature some of the characteristics reformers desire, but is far from 

being characterized by those features. One reason for this modest progress may be the uneven 

national approach to standards-aligned instruction. Although most official state standards either 

currently or in the recent past resemble the Common Core and its predecessors, standards exist 

amidst an array of other policy initaitives and guidance. The same decades that saw a push for 

standards-aligned mathematics instruction also saw strong efforts to implement test-based 

accountability at both the school and teacher level. Schools and teachers responding to the latter 

effort would prioritize improvement efforts that led to enhanced student performance on state 

standardized tests. Scholars have argued that such assessments may not be sensitive to standards-

aligned instructional practice (e.g., Sussman & Wilson, 2018), meaning that test-based 

accountability policies might dilute attention to achieving ambitious instruction. Further, schools 

and teachers who intended to implement standards may have found uneven resources for doing 
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so (Kennedy, 2005) – curriculum materials that claim to be standards-aligned but were only 

partially so, professional development of low quality, and so forth. 

A second reason for the modest presence of ambitious instruction 2016 may be the 

enduring appeal of direct instruction in U.S. classrooms. As David Cohen (2012) notes, teacher-

centered instruction eases the cognitive challenge of providing instruction by allowing only 

limited student input, thus reducing the scope of ideas in play and the number of decisions that 

teachers must make (see also Kennedy, 2005). What we observed in classrooms – teachers 

mixing some ambitious practices into otherwise conventional instruction – would fit this 

storyline, as teachers retain control of classroom discourse while adding moments of heightened 

student thinking and mathematical meaning.  

Whatever the case, progress toward ambitious instruction has been slow. If the U.S. is to 

commit to more intellectually rigorous instruction, it needs to reconsider its strategy, possibly by 

supporting teachers to use high-quality, standards-aligned materials, and probably by bringing 

policy instruments into alignment with those standards and materialss. Reformers may also want 

to re-engineer their change efforts to take into account the fact that even the strongest lessons in 

our sample used traditional structures for instruction. Rather than subverting these structures, 

leveraging change within these structures may pose another avenue forward.  
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