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Abstract: 
Community schools are an increasingly popular strategy used to improve the performance of 
students whose learning may be disrupted by non-academic challenges related to poverty. 
Community schools partner with community based organizations (CBOs) to provide integrated 
supports such as health and social services, family education, and extended learning opportunities. 
With over 300 community schools, the New York City Community Schools Initiative (NYC-CS) 
is the largest of these programs in the country. Using a novel method that combines multiple rating 
regression discontinuity design (MRRDD) with machine learning (ML) techniques, we estimate 
the causal effect of NYC-CS on elementary and middle school student attendance and academic 
achievement. We find an immediate reduction in chronic absenteeism of 5.6 percentage points, 
which persists over the following three years. We also find large improvements in math and ELA 
test scores – an increase of 0.26 and 0.16 standard deviations by the third year after implementation 
– although these effects took longer to manifest than the effects on attendance. Our findings 
suggest that improved attendance is a leading indicator of success of this model and may be 
followed by longer-run improvements in academic achievement, which has important implications 
for how community school programs should be evaluated.  
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INTRODUCTION 

  Students from impoverished backgrounds face a myriad of challenges that disrupt their 

ability to be successful in school and contribute to persistent socioeconomic inequities in 

educational outcomes. Community schools seek to alleviate these challenges by partnering with 

community based organizations to better meet the needs that are prerequisite to student academic 

success.  

 Although community schools have existed in some capacity since the turn of the 20th 

century, the model has seen a resurgence in recent decades. In 2016, the Coalition for 

Community Schools estimated that community schools serve over 5 million students across 

5,000 schools in the United States and this number is expected to grow. Notably, the U.S. 

Department of Education recently announced updated and expanded grant support for full-

service community schools (FSCS), suggesting that community schools will continue to expand 

(U.S. Department of Education, 2022). Our study makes a timely contribution to this context by 

providing the first rigorous causal evidence of community school programs brought to scale. We 

study the largest system of community schools in the country – the New York City Community 

Schools Initiative (NYC-CS) -- which has grown from 45 schools at its inception in 2014 to over 

300 schools today. To do so, we combine machine learning (ML) techniques with a regression 

discontinuity design (RDD) to estimate the effects of NYC-CS on elementary and middle school 

student outcomes. Across the four years that we observe (2015/2016 through 2018/2019), we 

find a reduction in chronic absenteeism as large as 11.4 percentage points, and improvements in 

math and ELA test scores as large as 0.26 standard deviations (SD) and 0.16 SD, respectively. 
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Prior research on the effects of community schools on student academic achievement 

finds mixed null and positive results. In a comprehensive review of 143 studies, Maier et al. 

(2017) conclude that there is sufficient evidence that community schools improve student 

outcomes to justify expansion of the model. In a separate report, Moore et al. (2017) review 19 

experimental or quasi-experimental studies of integrated student supports and find that all yield 

positive or null results.† One prior evaluation of the first three years of implementation of the 

NYC-CS program completed by researchers at the RAND Corporation found null effects on 

reading achievement and a positive effect on math achievement only in the third year of 

implementation (Johnston et al., 2020).  

 Given the wraparound nature of the community schools model, researchers are interested 

not only in student academic outcomes but also in other, more holistic indicators of success. 

Community schools have been found to improve access to services for families while improving 

family engagement and reducing family stressors (Arimura & Corter, 2010; Olson, 2014); 

improve school climate and adult-student relationships (Olson, 2014; LaFrance Associates, 2005; 

Johnston et al., 2020); and improve student attendance or reduce chronic absenteeism (Dobbie & 

Fryer, 2011; ICF International, 2010b; Kemple, Herilhy, & Smith, 2005; Arimura & Corter, 

2010; Olson, 2014; Johnston et al., 2020). The evidence on disciplinary and behavioral outcomes 

 
† For example, Evaluations of Boston’s City Connects program found higher report card grades and 
improved middle school math and ELA test scores across all students (Walsh et al., 2014) and narrowed 
achievement gaps for immigrant English Language Learners (Dearing et al., 2016). Randomized control 
trials of the Communities in Schools program in Austin, TX, Wichita, KS, and Jacksonville, FL found 
some positive impacts on math and reading test scores, but the results were inconsistent across study sites 
(ICF International, 2010a, 2010b, 2010c). A study of two FSCS in Iowa found some improvements in 
math and English grades, but no evidence of improved test scores (LaFrance Associates, 2005). Finally, 
evaluations of the Tulsa Area Community Schools Initiative found overall null effects of the program on 
test scores, but effects appeared to vary by level of implementation and the long-term implementation of 
the Tulsa model was disrupted by other aspects of the district context (Adams, 2010; Adams, 2019). 
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is less conclusive, with some studies finding a reduction in behavioral issues (Dearing et al., 

2016; Walsh et al., 2014; Dobbie & Fryer, 2011; Johnston et al., 2020) and others finding null 

effects (ICF International, 2010a, 2010b, 2010c).  

 Overall, this research suggests that community schools have the potential to positively 

impact students and their families. However, the current body of evidence comes from 

evaluations of a small number of schools, and there is much less evidence on the effects of 

bringing this model to scale. Though some previous studies do implement experimental or quasi-

experimental designs on small samples of schools, our context and methodology allow us to 

bring rigorous causal inference to the largest community schools program in the country. One 

prior study of NYC-CS was conducted by researchers at the RAND Corporation, using a 

difference-in-differences with a matched control group (Johnston et al., 2020). We improve upon 

this prior work in terms of both methods and data. We implement a novel methodology that 

combines ML techniques with a fuzzy multiple rating regression discontinuity design (MRRDD), 

which eliminates the need for parallel trends assumption of the difference in difference method 

and linearity assumptions in the matching method. The longitudinal nature of our data allows us 

to examine annual effects over the first four years of implementation of the program, which 

provides further insight into how community schools impact students as the program matures 

and as students experience increased exposure to the model over time. 

We find that NYC-CS led to an immediate reduction in chronic absenteeism among 

elementary and middle school students of 5.6 percentage points in the first year of 

implementation (2015/2016) which persisted at 7.6, 11.4, and 8.0 percentage points across the 

following three school years. Consistent with a reduction in chronic absenteeism, we find 

improvements in overall attendance rates of approximately 1 to 2 percentage points across all 
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years. Improvements in academic outcomes, as measured by school-level standardized test 

scores, are quite large but take longer to manifest. In the first year of implementation 

(2015/2016), we find point estimates on academic achievement that are positive but not 

statistically significant. In the second year of implementation (2016/2017), we find a positive 

effect on math scores of 0.11 standard deviations and null effects on ELA (though the point 

estimate remains positive and increases in magnitude). In the third year (2017/2018), we find 

large positive effects on both math and ELA of 0.26 and 0.16 SD, respectively. And finally, in 

the fourth year (2018/2019), we find that these large effects on achievement level off, and we 

estimate an effect of 0.18 SD in math, and a 0.08 SD effect on ELA although the effect on ELA 

is statistically insignificant. 

Overall, our results suggest that community schools programs brought to scale have the 

potential for large, positive impacts on elementary and middle school student attendance and 

academic achievement. Such large impact estimates warrant further investigation, and we 

therefore conduct supplementary analyses to explore heterogeneity by grade level and the grade 

span served by the school (K-5, K-8, and 6-8). These supplementary analyses show that effects 

on academic achievement are concentrated in the elementary grades and are consistently larger 

for math than ELA. We also find that effects on attendance are driven by early childhood and 

middle school-aged students. Additionally, grade-by-year analyses consistently show that effects 

grow over time, suggesting that long-term investment is critical to program success, and 

evaluations of these programs must be ongoing in order to capture the dynamic impact of the 

model over time.  

 In what follows, we first provide background on the development and implementation of 

community schools over the last century. We then provide details on the NYC-CS program and 
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context. After describing our data and measures, we describe our methodology and how it is 

aligned to the NYC-CS setting. The next sections describe our main results and the results of our 

supplementary analyses of heterogeneous treatment effects. We discuss our results within the 

NYC-CS policy context and the national policy context of an expanding community schools 

sector. Finally, we conclude with a summary of our contributions and recommendations for 

future evaluations of community school initiatives.  

BACKGROUND 

 In this section, we describe the origins of the community schools model and how it has 

developed across the country over the past century. We then describe the New York City 

Community Schools Initiative and the New York City Department of Education’s Theory of 

Change guiding the initiative.  

Community Schools Model 

A full-service community school (FSCS) is a school that offers a variety of non-

traditional services in partnership with community based organizations (CBOs) in order to better 

meet the comprehensive needs of its students and the community in which the school is located. 

Though the specific design and implementation of each FSCS initiative is context dependent, 

most community schools share four core features that are foundational to the model: (1) 

integrated student supports, (2) expanded learning time and opportunities, (3) family and 

community engagement, and (4) collaborative leadership and practice (Maier et al., 2017). 

Integrated student supports ensure that mental and physical health services and other social 

services are available in schools to those who need them. Expanded learning time and 

opportunities may include an extended school day or year and additional opportunities for 
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academic intervention and enrichment. Family and community engagement ensures that parent 

and community voice is included in decision-making. Finally, collaborative leadership and 

practices build a culture of shared responsibility and collective trust among leadership, teachers, 

and CBOs.   

Schools first began utilizing this model at the turn of the 20th century when 

socioeconomic developments such as industrialization, urbanization, and immigration rapidly 

changed the needs of the urban poor. Schools became the institution that reformers turned to as 

the venue for offering health and social services and building shared values across diversifying 

communities. Over the past century, community school initiatives have come in waves, largely 

driven by social crises that increase the demand for such services. After the initial introduction of 

the model at the turn of the century, there was a resurgence in the 1930s in response to the Great 

Depression and again in the 1960s and 70s in response to desegregation (Maier et al., 2017). 

Beginning in 2008, the federal government started a FSCS grant competition to fund expansion 

of this model across the country. Since then, five more rounds of grants have been awarded, and 

the Department recently announced plans for a sixth round of funding including a national 

randomized control trial of grantees to evaluate program effectiveness (U.S. Department of 

Education, 2022).   

New York City Community Schools Initiative 

 To date, the largest implementation of a community schools initiative is in New York 

City. The initial program was funded by an attendance-improvement and drop-out prevention 

grant but is now supported by a variety of sources including city, state, and federal funding 

(NYC Department of Education, n.d.). In 2014/2015, the first year of implementation, a cohort of 

45 schools was gradually onboarded and built partnerships with lead CBOs (for this reason, we 
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consider 2015/2016 to be the first year of full implementation for our analysis). For the 

2015/2016 academic year, the Office of Community Schools (OCS) was established to centralize 

organization and support of the growing initiative. Since then, it has steadily expanded to now 

include over 300 schools across the city. Though the initiative includes schools serving students 

across grades K-12, due to the small number of high schools, we limit our analytic sample to 

schools serving elementary and middle school students.  

 The NYC-CS combines the four core features of FSCS as described in the previous 

section with four core capacity domains: (1) continuous improvement, (2) coordination, (3) 

connectedness, and (4) collaboration (Johnston et al., 2017; Johnston et al., 2020; NYC 

Department of Education, n.d.). This approach moves beyond simply adding the four FSCS core 

features into schools and acknowledges the capacity building required to effectively implement 

the features and sustain the model in the long run. Figure 1 shows our adaptation of the NYC-CS 

Theory of Change. The theory posits that OCS provides the resources, support, organization, and 

infrastructure for community schools, which lays the groundwork for the schools to simultaneous 

develop core capacities and implement the core features of the model. The theory suggests a 

feedback loop between capacities and features such that improved capacity will improve 

program implementation, which in turn might further develop capacity. In the short-run, these 

capacities and features are theorized to improve student and family engagement and shared 

responsibility, which in the longer-run can lead to improved student and school outcomes on 

both academic and non-academic indicators. 

 There are several other features of NYC-CS in addition to the core features of the model 

(Johnston et al, 2020; Johnston et al, 2017; NYC Department of Education, n.d.). Each school is 

partnered with a lead CBO that works collaboratively with school leadership to coordinate 
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services at the school. Each school also has a Community School Director – a full-time staff 

member dedicated to assessing needs, securing resources, and ensuring targeted services are 

provided. All NYC-CS implement a three-tiered model of mental health programming in which 

Tier 1 offers preventative and universal services, Tier 2 offers early interventions for students 

identified at-risk, and Tier 3 offers targeted treatment for students with diagnosed mental health 

disorders. Each school is assigned a School Mental Health Manager who supports school staff 

with implementing the three-tiered model and monitors progress within their assigned schools. 

Taken together, the variety of NYC-CS programs and services offer students and families a 

comprehensive system of health, social, and academic supports.  

 Renewal Schools 

 During the implementation of NYC-CS, another school improvement initiative called the 

Renewal Schools (RS) program was also introduced. The RS program was first implemented in 

2014 by Mayor Bill de Blasio to identify and turnaround the city’s lowest performing schools 

within a three-year period. Key aspects of the RS program included professional development for 

staff, coaching for principals, increased oversight by superintendents, additional academic 

interventions, and extended learning time. Another key part of the RS program was an 

individualized plan to incorporate each RS school into the NYC-CS program (NYC Office of the 

Mayor, 2014), and in the 2015/2016 school year, all RS were added to NYC-CS, providing them 

with all services offered to NYC-CS in addition to the academic and operational supports 

provided to RS (NYC Department of Education, n.d.). Because many community schools were 

also Renewal Schools and because the two programs’ goals and approaches were similar, we do 

not attempt to disentangle the impact of the RS program from the NYC-CS program and instead 

consider them as working in conjunction. A prior study of the implementation of NYC-CS has 



 

10 
 

described NYC-CS and RS as “a concurrent school-improvement initiative” (Johnston et al., 

2017, p. xiii). In other words, we essentially view the RS program as being one of ways in which 

NYC implemented their community school program in the early years of the program. The RS 

program was gradually phased out beginning in 2019, but all RS were allowed to keep their 

community school designations (Zimmerman, 2018). 

DATA AND MEASURES 

 Data for this project is provided by the New York City Department of Education and is 

supplemented with publicly available information from NYC Open Data. Within the 

Department, OCS provided information for us to identify NYC-CS across all study years, as well 

as additional information about the resources provided to NYC-CS and the programming being 

implemented in these schools. They also provided information on the criteria that collectively 

determined whether a school was classified as a Renewal School or not, namely the proportion of 

students proficient in ELA and math in 2011/2012, 2012/2013, and 2013/2014 as well as a 

continuous “Beat the Odds” measure, which reflects the adjusted growth percentile values of 

students at the school in 2013/2014. Annual School Quality Reports are publicly available 

through NYC Open Data, which we use across years 2015/2016 through 2018/2019 for school-

level measures of attendance and student demographics. Other publicly available reports from 

NYC Open Data provide attendance and average state assessment test scores by grade and year, 

which we use in combination with distributional information from NYSED annual technical 

reports to create standardized measures of academic performance. 

Outcome Measures 
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 Academic achievement is measured by third through eighth grade math and ELA end-of-

year state assessment test scores. Our analyses are conducted at the school-level, and therefore, 

we use publicly available information on the distributions of math and ELA scores from annual 

NYSED technical reports to convert grade-by-school average scale scores from NYC Open Data 

into standard deviation units, both for all students within each school (weighted by grade-level 

enrollment), and by grade-level. As such, test-score outcomes are defined as the average 

(standardized) score by grade, year, and subject.  

 Our measures of attendance include chronic absenteeism and average daily attendance. 

Chronic absenteeism is defined as the proportion of students within a school who are absent for 

10% or more of the school year. Average daily attendance is defined as the percentage of school 

days present for all students. In the same manner as our measures of academic achievement, data 

on student attendance and chronic absenteeism is averaged at the school level to accommodate 

our school-level analysis. Average daily attendance and chronic absenteeism by grade-level are 

only available in NYC Open Data for years 2016/2017 through 2018/2019, and therefore, our 

grade-level analysis of attendance omits the first treatment year (2015/2016).  

Student and School Characteristics  

Annual School Quality Reports from NYC Open Data also include the demographic 

composition of each school including race and ethnicity, economic disadvantage, temporary 

housing, ELL, and SWD. We use these variables, along with lagged values of the outcomes and 

the selection criteria (described above), to improve precision of the estimates. 

METHODS 
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 Our empirical approach combines a fuzzy multiple rating regression discontinuity design 

with a machine learning technique known as ridge regression to precisely estimate the causal 

effect of the NYC-CS initiative at a multidimensional boundary, which partially determined 

treatment assignment. Our approach differs from the more commonly used techniques in causal 

machine learning (e.g., Wager & Athey, 2018; Chernozhukov et al., 2017; Athey, Tihshirani, & 

Wager, 2019; Hahn et al., 2018), in that these techniques rely on estimating how likely each unit 

is to be treated, i.e., the propensity score, which is not applicable in a regression discontinuity 

setting. In this section, we describe the theoretical motivation for MRRDD and how ridge 

regression can be used to improve the precision of the estimator. We then describe how this 

framework can be extended to a fuzzy MRRDD to accommodate imperfect compliance and how 

this methodology applies to our study context of NYC-CS. Finally, we address the additional 

considerations made in determining our preferred estimation strategy. 

Multiple Rating Regression Discontinuity Design with Machine Learning 

 The MRRDD framework builds on Rubin's potential outcome notation and pre-supposes 

that individual 𝑖 would have an outcome of 𝑌!(1) if she is treated (𝑇! = 1) and an outcome of 

𝑌!(0) if she is not treated (𝑇! = 0). The casual effect of the treatment on individual 𝑖 can then be 

defined as 𝜏! ≡	𝑌!(1) −	𝑌!(0). The difficulty in estimating this effect is that we do not observe 

both 𝑌!(1) and 𝑌!(0), and instead only observe 𝑌! =	𝑇! ∙ 𝑌!(1) + (1 −	𝑇!) ∙ 𝑌!(0).  

In a sharp univariate RDD, there is a cutoff – denoted 𝑃" – of some running variable 

which determines treatment, i.e., 𝑇! = 1 if  𝑃! <	𝑃" 	and 𝑇! = 0 otherwise. Extending this 

traditional sharp univariate RDD to the multivariate case, that treatment is instead determined by 

j running variables such that 𝑇! = 1 if  𝑃!,$ <	𝑃",$ for all j and 𝑇! = 0 otherwise (i.e., if 𝑃!,$ >
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	𝑃",$ for at least one j). While one could, in theory, estimate a MRRDD by extending the 

univariate RDD methods, e.g., local linear or non-parametric regressions, to multiple 

dimensions; due to the curse of dimensionality doing so is usually infeasible given the limited 

sample size around the boundary. This has led researchers to propose a variety of approaches one 

can use to estimate MRRDDs, each of which have advantages and disadvantages (e.g., Reardon 

& Robinson, 2012; Wong, Steiner, & Cook, 2013; Papay, Murnane, & Willett, 2011). Our 

approach is to combine the multidimensional vector of j running variables into a single 

dimensional running variable by measuring the distance of each observation to the 

multidimensional threshold. 

One advantage of this approach is that we can then treat the new variable – denoted as 𝑀! 

– as a running variable using techniques used in traditional univariate RDDs. This is true even 

when the boundary does not completely determine treatment and instead there is merely a 

discontinuous increase in the probability of treatment at the multidimensional boundary. As is 

commonly done in the unidimensional setting, we can use the boundary as an instrument for 

treatment status after collapsing the multidimensional vector into a single running variable. Just 

as a fuzzy unidimensional RDD estimates the average effect of individuals at the cutoff whose 

treatment status depends on which side of the cutoff they are on, i.e., the “compliers,” the fuzzy 

MRRDD approach converges to the average effect of the compliers at the multidimensional 

boundary. We show this formally in the Technical Appendix. 

 A drawback to this approach is that collapsing multiple running variables into a single 

dimension involves discarding potentially valuable information about the value of each of the j 

different measures that combine to determine treatment. With large sample sizes this is 

unimportant, but with smaller samples sizes it reduces the precision of the resulting treatment 
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effect estimates. We therefore augment our MRRDD approach by using a ridge regression to 

initially residualize the outcome. This approach is theoretically motivated by two important facts. 

First, under the common assumptions required in an RD setting, we can replace the outcome (𝑌!) 

with a residualized outcome 𝑌! − 𝑔(𝑋!) for any function 𝑔 and exogenous covariates 𝑋! and still 

obtain a consistent estimate of the average treatment effect on the compliers at the boundary. 

Second, the asymptotic variance of the resulting treatment effect estimates is proportional to the 

variance of 𝑌! − 𝑔(𝑋!). We prove those two facts in the Technical Appendix and Noack, Olma, 

and Rothe (2021) show that the results also hold when 𝑔 is estimated. We will refer to 𝑌! −

𝑔(𝑋!) +	𝑔(𝑋%)5555555 as the regression-adjusted outcome. Note that by adding the average of the 

predictions – denoted 𝑔(𝑋%)5555555 – to the residuals shifts all individuals’ outcome in the same way 

and so has no effect on the estimates; we do so because it means that the regression-adjusted 

outcomes have the same overall outcome as the raw outcomes 𝑌! and the conditional means are 

easier to interpret. 

These twin facts are important, as they imply that the optimal choice of function 𝑔 is 

simply the one that best predicts 𝑌! at the multidimensional boundary. This is precisely what ML 

techniques are designed to do, to optimize outcome prediction, and so we can use existing “off-

the-shelf” ML techniques. In this paper, we use a ridge regression, although more advanced ML 

could certainly be used.  

MRRDD in the NYC-CS Context 

 As noted above, in the first full year of implementation of NYC-CS (2015/2016), all 

schools designated as RS were added to the NYC-CS. RS are identified for additional academic 

and instructional interventions along nine criteria. The nine criteria include seven continuous 



 

15 
 

test-score based criteria (the school falls in the bottom quartile of percent proficient in math and 

ELA across years 2012, 2013, and 2014; the school is not in the top quartile of student growth in 

2014) and two categorical criteria (the school has a recent NYCDOE Quality Review rating 

below “Well Developed”; the school is designated as Focus or Priority by the NY State 

Department of Education). A school must meet all nine criteria to be designated RS, and the 

Chancellor has the discretion to add or remove schools from the list (to which he added four 

schools in the first year of implementation). Therefore, all schools identified by these criteria as 

RS are also included in NYC-CS, but there are many other NYC-CS schools that do not meet 

these criteria and are therefore not part of the RS program.  

Given that the two categorical criteria for RS are very coarse, it is not possible to 

determine the similarity of schools along those criteria any more precisely than whether they fall 

into the same category. Therefore, we limit our analysis to schools that meet these categorical 

conditions, and generate the multidimensional boundary based on the seven continuous test-score 

based criteria. Because all seven of the continuous selection criteria are expressed in NYC-wide 

percentiles, we combine them into a single dimension “binding score” by taking their maximum 

(Reardon & Robinson, 2012). For the ridge regression we include all schools within 25 

percentiles of the nearest cut-off. For the univariate RD, we limit the analytic sample to a 

bandwidth of 10 percentile points. The precision gained by the ridge regression allows us to 

detect effects in these small samples that would not be detectable otherwise.  

As noted above, all schools identified for the RS program are automatically included in 

the NYC-CS, but there are other NYC-CS that are not part of the RS program. Therefore, there is 

perfect compliance with treatment below the multidimensional boundary, but imperfect 

compliance above it, because some schools above the boundary do receive treatment. Figure 2 
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shows the probability of treatment within 20 percentile points of distance from the boundary and 

demonstrates that there is a 100% chance of treatment below the boundary and a small chance of 

treatment above the boundary that ranges from approximately 0 to 20%. For this reason, we 

implement a fuzzy MRRDD as described in the section above. We use distance from the 

boundary to predict the probability of being included in NYC-CS, and then regress outcomes on 

the predicted probabilities of treatment in the final stage of estimation. Table 1 shows the mean 

characteristics of schools above and below 20, 10, and 5 percentile points of the boundary in 

2013/2014 (prior to treatment). As expected, schools above the boundary tend to have higher 

academic achievement and attendance, on average, but these gaps narrow as the bandwidth 

narrows towards the boundary.   

Additional Considerations 

Given that our methodology requires us to make multiple modeling decisions that may 

impact our estimates, this section describes the additional considerations made in determining 

our preferred estimation strategy.  

Optimal Bandwidth 

While it is possible to estimate the ridge regression and treatment effect in a single step, a 

benefit to running the ridge regression as an additional step is that different bandwidths can be 

chosen for the ridge regression and the RD. Our intuition is that the best estimates will arise from 

choosing a wider bandwidth for the ridge regression than for the RD, since bias is less 

problematic in the ridge regression than for the RD. Choosing a bandwidth of 25 percentile 

points for the ridge regression allows us to use more information to optimize predictions at the 

boundary, which lowers the residual variance within the RD bandwidth, thereby improving 
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precision. To ensure that our RD results are indeed driven by schools that either barely qualified 

for or barely missed out on NYC-CS, we limit our RD bandwidth to schools within a 10 

percentile point distance from the boundary. Given that we have multiple observations per school 

(one for each year), the traditional equations for the optimal bandwidth do not apply. Because of 

this, we checked that our choice of bandwidth and kernel weights do not affect our results.  

Sloping Regression Lines 

A common approach in RDD is to allow the regression line on either side of the boundary 

to slope (and to allow the slope to vary on either side). Unlike most RDDs, we control for a 

range of covariates in the ridge regression (including those that comprise the multidimensional 

running variable), which minimizes the sensitivity of our predictions to the values on the x-axis. 

For this reason, we do not allow our regression lines to slope. We verify this decision through 

simulations which suggest that allowing the regression lines to slope causes an overfitting of the 

data and therefore worse estimates. These simulations also confirm that our estimates are similar 

regardless of whether we allow the lines to slope, and we therefore retain our preferred model in 

which the lines do not slope. 

RESULTS 

In this section we present the results from the analyses described in the previous section. 

We first present the average treatment effects on attendance and academic achievement overall 

and treatment effects by year. We then discuss heterogeneity by grade and grade span served by 

the school. Finally, we explore the extent to which heterogeneous effects by year are attributable 

to increased student exposure to the model over time versus program maturity. 

Main Results 
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Attendance 

We find that NYC-CS improved student attendance and lowered the rates of chronic 

absenteeism. The first row of column 1 of Table 2 shows an overall increase in student 

attendance of 1.61 percentage points in NYC-CS as compared to schools that barely missed 

eligibility for the program. Panel A of Figure 3 plots this residualized discontinuity in attendance 

within our chosen bandwidth of 10 percentage points around the cut-off. It shows that NYC-CS 

schools have a regression-adjusted average attendance rate of just over 92%, while untreated 

schools have a regression-adjusted attendance rate of between 90 and 91%.  

The second row of Table 2 shows the effects of NYC-CS on the rate of chronic 

absenteeism. Consistent with the effects on attendance rates, row 2 of column 1 shows an overall 

decrease in chronic absenteeism of 8.1 percentage points. Panel B of Figure 3 shows the 

residualized discontinuity in chronic absenteeism within 10 percentage points of the boundary, 

where the fitted lines represent the regression-adjusted average proportion of chronically absent 

students in NYC-CS versus untreated schools. After controlling for a range of covariates, 

between 27 and 28 percent of students in NYC-CS schools were chronically absent over the 

years we observe, as compared to about 35 percent of students in control schools.  

Academic Achievement 

 We find large effects of NYC-CS on end-of-year math standardized test scores, as shown 

in row 3 of Table 2. We find an overall effect of 0.15 SD when pooling all grades and years. 

Panel C of Figure 3 shows the discontinuity in math scores for NYC-CS versus untreated schools 

within 10 percentile points of the cutoff. The regression-adjusted average performance of NYC-
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CS schools is about 0.44 SD below the mean for all NYC schools, while it is closer to 0.59 SD 

below the mean in the untreated schools.  

 While we do find positive impacts of NYC-CS on end-of-year ELA standardized test 

scores as well, they are not as large in magnitude as the effects we find for math. ELA results are 

shown in row 4 of Table 2. We find an overall improvement of 0.08 SD, as shown in column 1. 

Panel D of Figure 3 plots the discontinuity in ELA scores at the treatment cutoff. After adjusting 

for a range of covariates, NYC-CS schools perform, on average, at about 0.36 SD below average 

for all schools in NYC, and control schools perform at about 0.44 SD below average.  

Changes in Effects over Time 

 The pooled results reported in the previous section mask substantial heterogeneity by 

year. In this section, we present results demonstrating treatment effects across each of the four 

years included in our study (2015/2016 to 2018/2019) for both attendance and academic 

achievement. Across all outcomes, effect sizes increase incrementally in the first three years of 

implementation, are largest in magnitude in the third year of implementation (2017/2018), and 

level off in the fourth year of implementation.  

Attendance 

Row 1 of Table 2 shows the annual effects of NYC-CS on student attendance over the 

four years we observe across columns 2 through 5. NYC-CS had a positive impact on student 

attendance over all observed years and was largest in magnitude in the third year of 

implementation at 2.09 percentage points. These results translate to increased attendance in the 

range of 2 to 4 days per school year. Row 2 of Table 2 shows the effects of NYC-CS on chronic 

absenteeism over all observed years across columns 2 through 5. Effects are consistent with 
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those for attendance rates and show a consistently significant reduction in chronic absenteeism 

over all four years, which is largest in magnitude in the third year of implementation at 11.4 

percentage points. 

Academic Achievement 

Rows 3 and 4 of Table 2 show the effects of NYC-CS on math and ELA achievement, 

respectively, over the four years we observe across columns 2 through 5. Row 3 shows that the 

effect of NYC-CS on math achievement is consistently positive but becomes statistically 

significant in the second year of implementation at 0.11 SD and is largest in magnitude in the 

third year of implementation at 0.26 SD. Effects remain large in 2018/2019, the fourth year of 

implementation, at 0.18 SD, but have somewhat leveled off from the prior year. Row 4 shows 

that the pattern for ELA achievement is consistent with math in that the point estimates are 

consistently positive and increasing in magnitude until the third year of implementation in which 

they are largest at 0.16 SD, leveling off in the following year. However, effects for ELA are only 

statistically significant in the third year of implementation. 

Heterogeneity by Grade 

 To check for underlying heterogeneity in treatment effects by grade, we run our analyses 

separately for grades 3 through 8. Given the varying annual treatment effects reported in the 

previous section, we also conduct our grade-level analysis by year. To further probe 

heterogeneity by grade, we disaggregate our analyses by the grade span served by the school 

(elementary, elementary/middle, and middle). The results of these supplementary analyses are 

reported in the sections that follow.  

Attendance 
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The first row of Table 3 shows treatment effects on attendance rates by grade across 

grades 3 through 8. We find positive effects across all grades that are largest in magnitude and 

only statistically distinguishable from zero in grade 8 at 2.4 percentage points. The second row 

of Table 3 shows results for chronic absenteeism, which mirror those of attendance in that we 

find consistent reductions in chronic absenteeism across all grades, effects are largest in grade 8 

at a reduction in 10.2 percentage points, and the point estimates are only statistically significant 

in grade 8.  

Given that our exploration of annual treatment effects showed that effects were largest in 

the third year of implementation (2017/2018) across all outcomes, we also report grade-by-year 

effects on attendance rates and chronic absenteeism in panels A and B of Table 4. Results across 

these panels are largely null, but consistent with our findings that effects are largest in 2017/2018 

and largest for grade 8. We find an increase in attendance rates for grade 8 of 3.4 percentage 

points in 2018 and a reduction in the rate of chronic absenteeism for grade 8 of 13.8 percentage 

points in 2018.  

To further explore heterogeneous treatment effects on attendance by grade, we also 

disaggregate our analyses by the grade span served by each school. We observe three types of 

schools in our data: those serving grades K-5 (elementary schools), those serving grades K-8 

(combined elementary and middle schools), and those serving grades 6-8 (middle schools). The 

results of this analysis are shown in rows 1 and 2 of Table 6. While we do find a large decrease 

in chronic absenteeism in middle schools of 10.8 percentage points, we find the largest and most 

significant improvements in attendance in schools serving grades K-5. This is inconsistent with 

our previous finding that effects on attendance are largest in grade 8, which we examine further 
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below. We find an improvement in attendance of 2.9 percentage points and a reduction in 

chronic absenteeism of 14.1 percentage points for elementary schools. 

Interpretation of our grade span analysis must take into consideration that schools serving 

elementary grades also serve grades K-2, which contribute to the school-level attendance 

outcome measures. To explore the extent to which the lower grades are driving our finding that 

effects on attendance are largest in elementary schools, we plot the average attendance rates and 

chronic absenteeism by grade in treated versus control schools in Figure 4. The u-shaped nature 

of attendance patterns across grades confirms our suspicion that attendance effects are driven by 

the lowest and highest grades, as opposed to the middle grades, and much of the large effects of 

NYC-CS on improving attendance in elementary grades is driven by the youngest students. 

Academic Achievement  

 Results by grade for math and ELA achievement are shown in rows 3 and 4 of Table 3. 

We find that effects are largest in grade 4 for both math and ELA scores, at 0.26 and 0.17 SD, 

respectively. We find smaller, but significant effects on math scores in grades 5 and 6 of 0.19 

and 0.16 SD, but null effects in grades 3, 7, and 8. Similarly, we also find a smaller positive 

effect on ELA scores in grade 5 of 0.13 SD, with null effects across all other grades. Effects on 

academic achievement appear to be concentrated in the elementary grades, especially in grades 4 

and 5.  

 Because we find that treatment effects are largest in the third year of implementation 

across all outcomes, we also disaggregate our grade-level analysis by year which we report in 

Table 5. Panel A shows the results for math scores by grade and year where we find very large 

effects in grades 4 and 5 in 2017/2018 of 0.39 and 0.34 SD, respectively. Effects are smaller, but 
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still quite large in grade 6 at 0.22 SD. Grade 4 is the only grade where we see significant effects 

on math scores in years other than 2017/2018, as results are also positive and significant in 

2015/2016 and 2016/2017, but null in 2018/2019. These results suggest that math effects are 

largest in grade 4 across all years and are largest in 2017/2018 across all grades.  

 Panel B of Table 5 shows the results for ELA scores by grade and year, which tell a 

similar story to math but are less consistent. Like math, effects on ELA scores are largest for 

grade 4 in 2017/2018 at 0.31 SD. We find smaller positive effects for grade 4 in 2015/2016, 

grade 5 in 2016/2017, and grade 7 in 2018/2019. Though the point estimates are consistently 

largest and positive in 2017/2018 across all grades, we find them to be null aside from those just 

noted.  

Results by grade span are reported in Table 6 and are consistent with our grade-level 

analysis in that we find largest effects in schools serving only the elementary grades. We find an 

improvement in math scores of 0.29 SD for elementary schools, 0.16 SD for elementary/middle 

schools and null effects for middle schools. We find a positive effect on ELA of 0.23 SD for 

elementary schools, but null effects on elementary/middle and middle schools. This analysis 

confirms that the NYC-CS program has the largest effects on attendance and academic 

achievement in the elementary grades, and that effects on math are larger and more consistent 

than those found on ELA. 

DISCUSSION 

 Overall, we find large positive impacts of NYC-CS on student attendance and end-of-

year standardized test scores. We consistently find that effects are larger for math than ELA, are 

largest in the third year of implementation of the program and are largest for students in the 
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elementary grades. Our findings contribute to the literature on full-service community schools 

initiatives by providing rigorous causal evidence of positive impacts of the largest community 

schools program in the country over a four-year period. We also make a methodological 

contribution to applied education research by introducing a novel methodology that can be 

implemented in future studies. 

Overall and Annual Results 

 While there are likely many positive impacts of NYC-CS on students, families, and 

communities, in this paper, we focus on attendance as a leading indicator of success and 

academic achievement as a longer-run indicator of success. We consider attendance to be an 

important leading indicator because it signals increased student and family engagement in the 

school community, which in turn increases the exposure that students and families have to the 

programmatic offerings of NYC-CS. We believe increased engagement and exposure to be 

precursors to longer-run improvements in student academic achievement. Several other shorter-

run evaluations of small community schools initiatives have also found improvements in student 

attendance. Because we observe four years of implementation, our study is one of the first to 

look at treatment effects on attendance and achievement over a longer period. In doing so, we 

provide evidence in support of the theory that attendance is a leading indicator, because we find 

improvements in attendance in the first year of implementation, improvements in math in the 

second year, and improvements in ELA in the third year. We do, however, also find that these 

positive impacts level off – and in some cases even slightly wane – in the fourth year.  

While we show that the effectiveness of NYC-CS increases over time, we are unable to 

determine precisely why this occurs. In particular, the increase over time could either be driven 

by increased exposure of students to the program in the latter years or simply due to the program 
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becoming more effective as it matures and can incorporate early feedback into its design. In 

theory, we can shed light on this question by looking at how the effect evolves differentially over 

time for different grade levels. For example, we could examine how the program’s effectiveness 

evolves over time for sixth-grade students (many of whom will be exposed for only one year, 

regardless of how long the program has been in place) to eighth-grade students (whose exposure 

will depend on how long the program has been in place). When implementing this approach 

using all grade-levels, we find suggestive evidence that the main driver of increased 

effectiveness is due to the program maturity, rather than increased student exposure; however, 

the results are quite imprecise and so the result should be viewed as speculative, rather than 

definitive. This suggestive evidence is consistent with prior research on the early implementation 

of NYC-CS, which found increasing levels of implementation of the core features of the model 

over time (Johnston et al., 2017). We also believe this to be consistent with the NYC-CS Theory 

of Change, which emphasizes building core capacities in tandem with implementing the core 

features of the model.  

Regardless of the mechanisms, our results provide strong evidence that it takes time to 

realize the academic benefits of full-service community schools, and that sustaining program 

success long-term will require ongoing commitment, resources, and evaluation.   

Heterogeneity by Grade 

 Our exploration of heterogeneity by grade and grade span consistently shows that effects 

are largest in the elementary grades, particularly grades 4 and 5, and appear to be driven by 

schools serving only elementary-aged children. It is worth mentioning that we chose to exclude 

high schools from our analysis and focus on the lower grades for a few reasons. First, trends in 

attendance are quite different at the high school level than the lower grades, particularly in NYC 
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where most high school students are responsible for their own transportation to school. Second, 

we do not observe end-of-year standardized assessments in the high school grades which limits 

our ability to observe changes in academic achievement over time aside from graduation rates, 

which may be a poor proxy for improvements in math and ELA performance. Finally, we expect 

that some of the benefits of NYC-CS for high school students may look different than lower 

grades because some programmatic offerings are targeted based on age, such as reproductive 

health services. Our finding that effects on attendance and test scores are greatest in elementary 

schools confirms our decision to exclude high schools from the analysis and focus on a smaller 

range of ages considering the complexity and variety of programmatic offerings that comprise 

full-service community schools.   

 While there may be a variety of reasons why NYC-CS program effects are largest in 

elementary schools, we suspect that this is in part because younger children necessitate greater 

family engagement in school than older children. Parents of elementary-aged children (especially 

in NYC where there is no yellow bus transportation) are more likely to interface with the school 

at pick-up and drop-off than parents of older children who often transport themselves to school, 

which provides more opportunities for parents to build relationships with school staff and be 

exposed to information regarding NYC-CS programmatic offerings, many of which are 

specifically designed for parents. This can create a positive feedback loop in which more 

engaged parents receive more information regarding NYC-CS offerings, which leads to further 

opportunities for engagement.  

Additionally, a key feature of NYC-CS is extended school days and extended school 

years. This provides childcare support for working families, which may improve attendance. If 

parents lack sufficient childcare options, they may be forced to keep their child home from 
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school if the school schedule is not aligned with their working schedule. Longer school days and 

years can relieve a childcare burden on working parents while also providing students with 

greater exposure to NYC-CS programming. Older students that do not require adult supervision 

when not in school will not pose the same childcare challenges for their families and may 

therefore have less incentive to participate in before- or after-school activities, thereby receiving 

less exposure to NYC-CS programming.  

Our goal in this discussion is to consider plausible explanations for our findings that 

NYC-CS has greater impacts on elementary-aged students, but we are not suggesting that there 

are no positive impacts of NYC-CS on older students. In fact, there may be many benefits such 

as improved mental and physical health, for example, but for the purposes of this study we are 

only able to draw conclusions related to attendance and end-of-year test scores.  

CONCLUSION 

 It is widely recognized that, although the primary objective of public schools is to 

provide students with the academic skills that are necessary to be productive members of society, 

many students require non-academic supports in order to be able to effectively learn. Full service 

community schools are a comprehensive strategy that aims to provide supports that are tailored 

to the needs of students in a particular community, including behavioral, mental health, social or 

academic scaffolding (Maier et al., 2017) 

 Evaluating the impact of the community school strategy is difficult for many reasons. 

Many districts only implement the community school strategy in a small number of schools, 

which makes it difficult to determine whether any observed gains are due to idiosyncratic 

factors. More importantly, the way in which districts choose schools to become community 
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schools complicates evaluation – turning all low performing schools into community schools 

eliminates the existence of a low performing comparison group of non-community schools 

whereas selecting only some low performing schools, but for unknown or non-random reasons, 

can cast doubt on whether apparently similar non-community schools and community schools 

are in fact comparable. Fortunately, the NYC-CS strategy for designating community schools, 

which we leverage in this paper, avoid these pitfalls.  

 In NYC, we have a sufficiently large program that we can use statistical methods to 

reliably rule out idiosyncratic differences as the cause of an estimated community school impact. 

Best of all, NYC used an algorithm to designate the vast majority community schools, which 

makes possible the use of one of the most trusted methods – regression discontinuity -- for 

reliably detecting a programmatic impact. We extend current regression discontinuity methods 

for use in a situation such as this, in which the designation algorithm is complex (i.e., 

multidimensional), and discuss how to make full use of additional covariates to gain the 

necessary precision to rule out the possibility that the impacts are only chance differences 

between community and non-community schools. In doing so, we create an analytic method that 

can be used to evaluate other programs that use algorithms to determine eligibility and have 

moderate sample sizes.  

 Using this method, we are able to establish that a comprehensive community school 

strategy is responsible for the reductions in absenteeism experienced by its students. 

Furthermore, we find that over time these reductions in absenteeism also lead to community 

schools having a positive impact on math and ELA standardized test scores. We show that these 

effects appear to continue into the fourth year following implementation, although there is some 

evidence that the effects do not continue to grow larger after the third year. Our results confirm 



 

29 
 

the importance of ongoing, rigorous evaluations of FSCS that are able to account for changes in 

treatment effects over time, especially as the model continues to expand across the country.  
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TABLES AND FIGURES 

Figure 1. New York City Community Schools Initiative Theory of Change. 

 

Source: Author’s adaptation from the New York City Community Schools Strategic Plan (New York City Community Schools, n.d.)
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Figure 2. Probability of Treatment and School Density Above/Below Cutoff 

 

Note. Plot shows the density of schools within 20 percentile points of the treatment boundary and 
the probability of treatment on either side of the boundary. 
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Figure 3. RD Plots of NYC-CS Program Effects on Outcomes 

Note. Plots show the discontinuity in outcomes within our preferred bandwidth of 10 percentile 
points around the cutoff.  
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Figure 4. Attendance Patterns by Grade

Note. Plots show the average attendance rates and rates of chronic absenteeism by grade and 
community school status. Data is pooled across the 2016/2017, 2017/2018, and 2018/2019 
school years.  
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Table 1. Mean School Characteristics by Bandwidth 
 Bandwidth 20 Bandwidth 15 Bandwidth 10 
 Below Above Below Above Below Above 
Enrollment 391.4 501.5 392.5 523.9 425.8 505.3 
 (176.7) (263.7) (188.6) (276.2) (194.5) (276.7) 
       
ELL 0.189 0.170 0.185 0.178 0.175 0.173 
 (0.102) (0.113) (0.103) (0.115) (0.109) (0.0917) 
       
SWD 0.263 0.235 0.260 0.238 0.266 0.243 
 (0.0503) (0.0510) (0.0484) (0.0522) (0.0558) (0.0513) 
       
STH 0.218 0.193 0.222 0.199 0.213 0.211 
 (0.0788) (0.0765) (0.0797) (0.0805) (0.0818) (0.0840) 
       
Economic 0.868 0.857 0.866 0.860 0.867 0.854 
Disadvantage (0.0627) (0.0763) (0.0626) (0.0777) (0.0530) (0.0686) 
       
Asian 0.0221 0.0219 0.0236 0.0231 0.0269 0.0200 
 (0.0313) (0.0322) (0.0339) (0.0347) (0.0383) (0.0235) 
       
Hispanic 0.537 0.561 0.522 0.563 0.524 0.573 
 (0.239) (0.246) (0.244) (0.243) (0.246) (0.215) 
       
Black 0.413 0.386 0.426 0.383 0.417 0.380 
 (0.225) (0.243) (0.227) (0.241) (0.229) (0.215) 
       
White 0.0165 0.0199 0.0167 0.0201 0.0195 0.0181 
 (0.0136) (0.0304) (0.0139) (0.0308) (0.0150) (0.0266) 
       
Math Score -0.777 -0.554 -0.757 -0.580 -0.744 -0.591 
 (0.143) (0.153) (0.143) (0.153) (0.155) (0.151) 
       
ELA Score -0.649 -0.490 -0.645 -0.520 -0.615 -0.521 
 (0.129) (0.149) (0.135) (0.139) (0.129) (0.121) 
       
Attendance 0.892 0.906 0.893 0.905 0.895 0.903 
Rate (0.0226) (0.0182) (0.0233) (0.0189) (0.0215) (0.0183) 
N 329 602 273 462 189 294 

Note. Mean coefficients; standard deviations in parentheses. 
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Table 2. Overall and Yearly Effects  
 (1) (2) (3) (4) (5) 
 All Years 2016 2017 2018 2019 
Attendance 0.0161** 0.0111 0.0149** 0.0209*** 0.0173** 
Rate (0.00682) (0.0069) (0.00757) (0.00744) (0.00685) 
      
Chronic -0.0814*** -0.0555* -0.0760** -0.114*** -0.0799*** 
Absenteeism (0.0298) (0.0288) (0.0333) (0.0341) (0.0305) 
      
Math Score 0.150*** 0.0421 0.111* 0.263*** 0.184*** 
 (0.0488) (0.0382) (0.0571) (0.0677) (0.0712) 
      
ELA Score 0.0843** 0.0412 0.0583 0.155*** 0.0827 
 (0.0399) (0.0336) (0.0435) (0.0569) (0.0598) 
N 560 144 144 144 144 
Note. Standard errors in parentheses. The standard errors reported above were estimated while 
clustering the observations by school. All effects are estimated using a bandwidth of 10 
percentile points on either side of the cutoff. 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 3. Heterogeneity by Grade 
 (1) (2) (3) (4) (5) (6) 
 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 
Attendance 0.395 0.861 0.773 0.707 1.625 2.442* 
Rate (0.738) (0.730) (0.697) (0.979) (1.075) (1.139) 
              
Chronic -3.262 -3.936 -4.592 -4.507 -7.529 -10.21* 
Absenteeism 
  

(3.547) (3.965) (3.447) (4.038) (4.725) (4.601) 

Math Score 0.0877 0.256** 0.185* 0.157* 0.0413 0.0765 
 (0.0918) (0.0881) (0.0809) (0.0727) (0.0637) (0.0828) 
       
ELA Score 0.0667 0.174* 0.132* 0.0747 0.0363 0.000424 
 (0.0937) (0.0687) (0.0599) (0.0574) (0.0464) (0.0498) 
              

Note. Standard errors in parentheses. The standard errors reported above were estimated while clustering the observations by school. 
All effects are estimated using a bandwidth of 10 percentile points on either side of the cutoff. Number of observations varies based on 
the outcome because attendance-by-grade data is not available for 2015/2016 and there are cases in which the data is suppressed in the 
publicly available files due to the minimum n-size required for reporting. 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 4. Heterogeneity of Effects on Attendance by Grade and Year 
 (1) (2) (3) (4) (5) (6) 
 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Panel A: Attendance Rate     
2017 -0.233 1.003 0.386 -0.320 0.634 1.952 
 (1.011) (0.850) (0.976) (0.991) (1.198) (1.400) 
       
2018 1.476 0.659 1.415 1.226 1.618 3.410** 
 (0.841) (0.772) (0.865) (1.160) (1.148) (1.245) 
       
2019 -0.0586 0.921 0.539 1.446 2.885 1.882 
 (0.719) (0.741) (0.591) (1.294) (1.512) (1.228) 
       

Panel B: Chronic Absenteeism     
2017 -0.612 -3.549 -4.363 1.432 -3.828 -7.366 
 (4.429) (5.246) (5.056) (4.576) (5.640) (5.432) 
       
2018 -9.004* -3.250 -6.290 -9.390 -6.575 -13.82** 
 (4.426) (4.309) (4.799) (5.678) (4.893) (5.090) 
       
2019 -0.171 -5.008 -3.183 -6.205 -13.41* -9.394 
 (3.893) (3.962) (3.081) (6.186) (6.382) (5.488) 
       

Note. Standard errors in parentheses. The standard errors reported above were estimated while 
clustering the observations by school. The number of observations varies by grade and year due 
to cases where data is suppressed in the publicly available files. All effects are estimated using a 
bandwidth of 10 percentile points on either side of the cutoff.  
* p<0.10, ** p<0.05, *** p<0.01 
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Table 5. Heterogeneity of Effects on Academic Achievement by Grade and Year  
(1) (2) (3) (4) (5) (6)  

Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 
Panel A: Math Score      
2016 -0.0103 0.197* 0.0535 0.107 -0.120 0.098  

(0.0739) (0.0994) (0.0723) (0.0902) (0.0672) (0.103)        

2017 0.119 0.245* 0.151 0.114 -0.0123 -0.0956  
(0.104) (0.0966) (0.123) (0.114) (0.0942) (0.126)        

2018 0.228 0.392** 0.343*** 0.217* 0.190 0.225  
(0.163) (0.137) (0.0926) (0.0923) (0.0996) (0.132)        

2019 0.0137 0.190 0.192 0.207 0.145 0.116  
(0.135) (0.118) (0.102) (0.109) (0.118) (0.185) 

 
Panel B: ELA Score 

     

2016 -0.0327 0.163* 0.149 0.0720 -0.0813 0.0324  
(0.0707) (0.0652) (0.0892) (0.0631) (0.0679) (0.067)        

2017 0.125 0.173 0.178* 0.0735 -0.0381 -0.0829  
(0.0962) (0.0961) (0.0766) (0.103) (0.0593) (0.0805)        

2018 0.139 0.312** 0.170 0.105 0.142 0.0421  
(0.146) (0.115) (0.0944) (0.0678) (0.0753) (0.0769)        

2019 0.0355 0.0499 0.0314 0.0465 0.164* 0.0218  
(0.145) (0.138) (0.110) (0.0815) (0.0778) (0.0552) 

       
Note. Standard errors in parentheses. The standard errors reported above were estimated while 
clustering the observations by school. The number of observations varies by grade and year due 
to cases where data is suppressed in the publicly available files. All effects are estimated using a 
bandwidth of 10 percentile points on either side of the cutoff. 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 6. Heterogeneity by School Grade Span  
(1) (2) (3)  
K-5 K-8 6-8 

Attendance 0.0287*** -0.00102 0.0241 
Rate (0.0064) (0.0088) (0.0124) 
    
Chronic -0.141*** -0.00354 -0.108* 
Absenteeism (0.0361) (0.0341) (0.0500) 
    
Math Score 0.289* 0.159** 0.100  

(0.1230) (0.0600) (0.0713)     

ELA Score 0.234* 0.106 0.0056  
(0.1190) (0.0643) (0.0504) 

N 200 88 268 
Note. Standard errors in parentheses. The standard errors reported above were estimated while 
clustering the observations by school. All effects are estimated using a bandwidth of 10 
percentile points on either side of the cutoff. 
* p<0.10, ** p<0.05, *** p<0.01 
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TECHNICAL APPENDIX 

In our discussion of the method in main body of the paper, we make two claims: first, 

that our approach to the fuzzy MRRDD approach converges to the average effect of the 

compliers at the multidimensional boundary and second that we can residualize the outcome 

without changing the interpretation. We now prove these claims, along with some other related 

points. 

From a Multidimensional RDD to a One-dimensional RDD 

For a theoretical analysis of the multidimensional RDD, we need to start with a more 

formal description of the problem. We will assume that the researchers observe 𝑝 variables, 

denoted 𝑋! and assumed to be unaffected by the individuals’ treatment status 𝑇!. We will denote 

the entire space of potential 𝑋! 's as 𝑿 and assume that it is endowed with a distance metric 

𝑑9𝑋! , 𝑋$;.	We will also assume that the relationship between 𝑌! and 𝑋! is nicely behaved. More 

specifically, we'll assume that 𝑌!(0) = 	𝑔(𝑋!) +	𝜀!, for some continuously differentiable 

function 𝑔(𝑋!), with 𝜀! being a mean-zero error term that is independent of both 𝑋! and  𝑇!, 

independent and identically distributed across individuals, and is well enough behaved that 

central limit theorem and law of large numbers can be applied to it. Finally, although we allow 

for there to be treatment effect heterogeneity, we will assume that 𝜏!(𝑋!) 	≡ 	𝔼[𝜏!|𝑋!] is a 

continuous function. 

We will abstract from the specifics of how the 𝑋!’s combine into a fuzzy RDD and 

simply assume that there exists a partition of 𝑿 into two spaces, denoted ℱ& and ℱ', such that the 

probability of treatment jumps as one moves from ℱ& to ℱ'. Formally, denote the boundary 

between between ℱ& and ℱ' as ℱ. We will then use ℱ'(ℎ) to denote the set of control 
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observations within a distance h of the boundary, i.e. the set ℱ'(ℎ)  = {𝑋! ∈ ℱ'	|	𝑑(𝑋! ,𝑊) <

ℎ	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑊 ∈ ℱ}, and define ℱ&(ℎ) similarly. We will then capture the jump in treatment 

probability at the boundary by assuming that: lim
(→*

𝔼[𝑇!|	𝑋𝑖 ∈ ℱ'(ℎ)] > lim
(→*

𝔼[𝑇!|	𝑋𝑖 ∈ ℱ&(ℎ)]. 

Finally, use 𝐶 to denote the set of compliers at the boundary, i.e. the set of individuals who 

would be treated if in ℱ' and untreated if in ℱ&.3 We then get the following theorem: 

Theorem: 
Let 𝐷(𝑋!) be a function from ℝ+ to ℝ defined as: 

𝐷(𝑋!) = 	 Q
−1 ∗ 𝑚𝑖𝑛

,	∈	ℱ
𝑑(𝑋! ,𝑊) 𝑖𝑓	𝑋! ∈ ℱ&	

𝑚𝑖𝑛
,	∈	ℱ

𝑑(𝑋! ,𝑊) 𝑖𝑓	𝑋! ∈ ℱ'	
 

Then using 𝐷(𝑋!) as a running variable in a univariate fuzzy RD is a consistent estimator 
for	𝔼[𝜏! 	|	𝑋! ∈ 	ℱ, 𝑖 ∈ 𝐶]. 

Proof: 
It follows from the assumptions that 𝑔(𝑋!) is continuously differentiable and that 𝑋! is 
distributed according to some strictly positive and continuously differentiable pdf – denoted 
𝑓(𝑋!) – that 𝔼[𝑔(𝑋!)	|	𝐷(𝑋!) = 𝑑] is continuous in d. Similarly, since 𝑓(𝑋!) is strictly positive 
and continuously differentiable in a neighborhood around the boundary, the implied distribution 
of 𝐷(𝑋!) is also strictly positive and continuously differentiable in a neighborhood around 0. 
Thus, all the conditions in Porter (2003) are met and we can appeal to the results there that all 
of his proposed univariate RD estimators converge to the true effect of the treatment, given 
conditions on how quickly the bandwidth converges to zero. 

Finally, some have expressed a concern that such dimension reduction approaches for 

MRRDDs mean that the estimand, i.e., 𝔼[𝜏! 	|	𝑋! ∈ 	ℱ, 𝑖 ∈ 𝐶], itself depends on the scaling of the 

covariates	𝑋! (Reardon & Robinson, 2012; Wong, Steiner, & Cook, 2013). As we show in the 

following theorem, this is not the case in our method: 

Theorem: 
Let 	𝑋T! be a re-scaled version of 	𝑋!, i.e., for all dimensions of	𝑋! we have that	𝑋T!,0 = ℎ0(𝑋!,0) for 
some continuous and monotonic function ℎ0. Importantly, this re-scaling also changes the 

 
3 We could define the compliers in this context more formally using the marginal treatment effect framework, i.e. 
the set of individuals whose propensity to select into treatment falls within a fixed range. 
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regions ℱ& and ℱ' and hence the boundary ℱ. We’ll denote the new regions as ℱT&, ℱT', and ℱT  
and define: 

𝐷U9𝑋T!; = 	V
−1 ∗ 𝑚𝑖𝑛

,	∈	ℱ1
𝑑(𝑋! ,𝑊) 𝑖𝑓	𝑋T! ∈ ℱT&	

𝑚𝑖𝑛
,	∈	ℱ1

𝑑(𝑋! ,𝑊) 𝑖𝑓	𝑋T! ∈ ℱT'	
 

Then a univariate fuzzy RD with 𝐷U9𝑋%U ; as the running variable is a consistent estimator of the 
same estimand as a univariate fuzzy RD with 𝐷(𝑋!) as the running variable. 

Proof: 
By definition, we get that {𝑖	|	𝑋! ∈ ℱ} = W𝑖	|	𝑋%U ∈ ℱTX. For example, suppose, as in our example, 
that the MRRDD involves multiple measures and individuals are more likely to be treated if the 
value of every measure is below 0.25. Now suppose that we multiplied one of the measures by 
100. Clearly the set of individuals who individual had a value of 0.25 on every measure before 
the re-scaling is precisely the same set of individuals who, after the re-scaling, have value of 25 
on the re-scaled measure and 0.25 on the other measures. Re-scaling also does not impact which 
individuals are compliers, so {𝑖	|	𝑋! ∈ ℱ, 𝑖 ∈ 𝐶} = W𝑖	|	𝑋%U ∈ ℱT, 𝑖 ∈ 𝐶X. Thus, it follows that: 
𝔼[𝜏𝑖	|	𝑋𝑖 ∈ 	ℱ, 𝑖 ∈ 𝐶] = 𝔼[𝜏𝑖	|	𝑋U𝑖 ∈ 	ℱU, 𝑖 ∈ 𝐶], which – from the theorem above – are the estimands that 
the two estimators converge to. 
 

Residualizing the Outcome 

While the above results illustrate that we can reduce the multidimensional RDD into a 

single-dimensional RDD, as discussed in the methods section doing so throws away potentially 

useful information. Our method therefore replaces the outcome (𝑌!) with a residualized outcome 

𝑌! − 𝑔(𝑋!), for some function 𝑔 of exogenous variables 𝑋!, which include the values of the 

running variables. This is motivated by the following theorem: 

Theorem:  
Let 𝑔Y(𝑋!) be any continuously differentiable function of 𝑋! and 𝜏̂(𝑔Y) be the estimated effect when 
using 𝑌! −	𝑔Y(𝑋!) as the outcome variable in univariate RD. Then 𝜏̂(𝑔Y) 	

+
→	𝜏* regardless 

of	𝑔Y(𝑋!). Furthermore, asymptotic variance of the RD estimate is proportional to 
𝑉𝑎𝑟(𝑌! −	𝑔Y(𝑋!)	|	𝑋! ∈ ℱ). 
 
Proof: 
If 𝑔Y(𝑋!) is a continuously differentiable function of 𝑋!, then along with our other assumptions 
the outcome 𝑌! −	𝑔Y(𝑋!) satisfies all the conditions of Porter (2003) and so we can conclude that 
the effect converges to the average effect of the outcome 𝑌! −	𝑔Y(𝑋!) among the compliers on the 
boundary. Since the 𝑋!’s are assumed to be exogenous, the effect on outcome 𝑌! −	𝑔Y(𝑋!) is 
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identical to the effect on outcome 𝑌!. Similarly, the fact that the asymptotic variance of the RD 
estimate is proportional to 𝑉𝑎𝑟(𝑌! −	𝑔Y(𝑋!)	|	𝑋! ∈ ℱ) also follows directly from Porter (2003). 
 

The above proof is trivial in large part because it makes the assumption that the function 

𝑔Y(𝑋!) is fixed, rather than estimated from the data. If one employs sample splitting – in that the 

function used for half the sample is estimated from the other half of the sample – the same 

intuition holds. This is proven formally in Noack, Olma, and Rothe (2021) and that paper also 

proves that uncertainty in how 𝑔Y(𝑋!) is estimated does not matter (asymptotically) for the overall 

uncertainty in the treatment effect estimates. Roughly speaking, this means that one can use the 

regression-adjusted outcomes as the true outcomes in the RDD without additional complications.  

However, we note that their result requires the use of sample-splitting. In particular, we 

conduct the residualization by first splitting the data in half. Using half the data, we then run a 

ridge regression of the outcome on a flexible function of the selection criteria, any other 

exogenous covariates that could plausibly affect the outcome, and a dummy variable for 

treatment status. We next use the estimated coefficients and all the covariates except for the 

treatment indicator to calculate the residual from this first stage regression, denoted as 𝑅!, for the 

other half of the data. Finally, we repeat the process, switching which data is used for estimation 

and which is used for prediction. 

 

 


