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Abstract

When analyzing treatment effects on test scores, researchers face many choices and
competing guidance for scoring tests and modeling results. This study examines the
impact of scoring choices through simulation and an empirical application. Results
show that estimates from multiple methods applied to the same data will vary because
two-step models using sum or factor scores provide attenuated standardized treatment
effects compared to latent variable models. This bias dominates any other differences
between models or features of the data generating process, such as the use of scoring
weights. An errors-in-variables (EIV) correction removes the bias from two-step models.
An empirical application to data from a randomized controlled trial demonstrates the
sensitivity of the results to model selection. This study shows that the psychometric
principles most consequential in causal inference are related to attenuation bias rather
than optimal scoring weights.
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1 Introduction

When research results are sensitive to the choice of statistical model, they become dependent

on researcher discretion, and bias can be introduced (King & Nielsen, 2019; Simmons et al.,

2011; Wicherts et al., 2016). Researcher discretion is a particular challenge in educational

research on test score outcomes because of the many approaches to scoring tests and modeling

test score data, such as Classical Test Theory (CTT), Item Response Theory (IRT), Factor

Analysis (FA), or Latent Variable Models (LVMs). Researcher-designed assessments in

particular demand many decision points in the analysis process, raising the question of how

sensitive results are to model selection and scoring decisions, especially in causal studies

investigating intervention impacts on test score outcomes that aim to provide policy-relevant

findings.

For a given causal research question, alternative statistical methods may provide defensible

options for analysis, and varying results are expected. For instance, when modeling a binary

outcome, logistic regression and the linear probability model may produce different results

due to the contrasting assumptions of each model (Timoneda, 2021). Similarly, in the context

of multisite randomized trials or meta-analyses, fixed effects and random effects estimators

will produce different estimates of treatment effects due to the different estimands targeted

by each model (Chan & Hedges, 2022; Miratrix et al., 2021; Skrondal & Rabe-Hesketh, 2004).

While such differences in “estimates, estimators, and estimands” (Miratrix et al., 2021) are

well understood in causal inference generally, the use of test score data as outcome measures

demands additional consideration because scores are typically not of interest in themselves

but rather as proxies for unobserved latent variables like mathematics or reading proficiency.

Thus, researchers are faced with navigating a range of options for causal analysis of test

score data and the challenge of interpreting differing results from models that theoretically

target the same treatment effect on the latent trait. Furthermore, it is unclear whether some
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approaches are consistently superior to others or the tradeoffs of model selection depend on

the circumstances (Gilbert, 2024; Hontangas et al., 2015).

As an example, consider the options for scoring an educational test to estimate a treatment

effect on the latent trait represented by the test score. Both CTT sum scores and IRT- or

FA-based scores use item responses to estimate a latent trait score for each student, which

is then used in subsequent analysis. IRT- or FA-based methods, such as the two-parameter

logistic (2PL) model or the congeneric factor model, theoretically provide more fine-grained

distinctions among students by weighting item responses based on the information provided

by the item, in contrast to sum scores, which treat different sets of correct answers as identical

(Camilli, 2018). An analyst may alternatively apply LVM techniques, such as Structural

Equation Modeling (SEM; Kline, 2023; Muthén, 2002) or Explanatory Item Response

Modeling (EIRM; Briggs, 2008; Gilbert, 2024), to estimate measurement and regression

models in a single step. Because all test scoring methods and LVMs target the same treatment

effect on the latent trait, a key question is the extent to which theoretical differences between

these models matter in causal analysis of test score outcome data. Correlations between IRT-

and FA-based scores and CTT scores are typically above 0.90 (Soland et al., 2022, p. 8),

which raises the question of whether the theoretical benefits of IRT- or FA-based scoring

methods or LVMs are worth the added complexity, computational power, and interpretational

challenges they may pose. Furthermore, no clear guidelines exist on which model researchers

should prefer, particularly when the results conflict.

To illustrate the challenge facing the applied researcher, consider two recent publications

on the implications of using sum scores versus factor scores as outcomes. On one side, McNeish

and Wolf, 2020 argue that sum scores can have “adverse effects on validity, reliability, and

qualitative classification” compared to FA-based scores. In contrast, Widaman and Revelle,

2023 argued that so long as the scale is unidimensional, sum scores “often have a solid

psychometric basis and therefore are frequently quite adequate for psychological research”.

What is the applied researcher to do?
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The purpose of this study is to provide both a concise and accessible review of the

conceptual issues at play and practical guidance for researchers by evaluating the consequences

of measurement modeling decisions on causal inference by determining which decision points

in measurement modeling are most salient for analytic results. Results show that the issue

of attenuation bias dominates the issue of scoring weights, and simpler models can perform

better even under extreme circumstances. Our results align with recent studies showing that

the marginal gains to more complex statistical models can be low and may not justify their

increased complexity (e.g., Domingue, Kanopka, Kapoor, et al., 2022 in IRT; Castellano and

Ho, 2015, in value-added modeling), and serve as a contrast with other work emphasizing the

sensitivity of analytic results to measurement modeling choices in the analysis of psychometric

data (McNeish & Wolf, 2020; Soland et al., 2022).

1.1 Classical Approaches to Measurement Error in Education

Research

Measurement error is a widely studied phenomenon in education, with work the reliability of

psychological tests going back many decades (Asher, 1974; Borsboom, 2005; Briggs, 2021;

Cronbach, 1951; Lord & Novick, 1968), and has well-known consequences in statistical analysis

(Fuller & Hidiroglou, 1978; Hutcheon et al., 2010; Liu, 1988). In the case of simple linear

regression with two variables, error in independent (X, predictor) variables serves to attenuate

regression coefficients toward 0, whereas error in dependent (Y , outcome) variables will not

bias estimated regression coefficients, but will decrease precision and reduce statistical power

by increasing residual variance, though these general rules of thumb do not always hold in

more complex circumstances (Kline, 2023). Measurement error can be addressed using both

classical and modern methods. For example, Errors-in-Variables (EIV) regression models

(Gillard, 2010) use estimates of reliability to deattenuate the coefficients of predictor variables,

and LVMs (Muthén, 2002) adjust for measurement error by simultaneously estimating the

latent variable(s) and the regression model. While both EIV and LVM methods can correct
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for measurement error, some studies have shown that the LVM approach can provide more

robust estimates of uncertainty than EIV methods (Gilbert, 2024; Lockwood & McCaffrey,

2020).

Measurement error in the dependent variable is sometimes ignored because it does not bias

coefficients, but LVMs can also be applied to outcome variables and have been demonstrated

to provide modest benefits to statistical power and more robust estimates of uncertainty than

alternative approaches (Christensen, 2006; Rabbitt, 2018; Zwinderman, 1991), though benefits

are context dependent (Gilbert, 2024). However, coefficients are downwardly biased when the

dependent variable is standardized. Attenuation due to standardization is a particular issue

in education research because test scores have no natural scale, and standardization allows for

estimates of treatment effect size that can in principle be compared across studies or pooled

in meta-analyses (Borenstein et al., 2021) and are often argued to be more interpretable than

unstandardized coefficients (Schielzeth, 2010).

Standardization of the dependent variable Y attenuates regression coefficients because

measurement error causes overdispersion in the standard deviation of Y , σY . That is, σY will

be greater than the SD of the true latent trait scores σT because σY contains the variation of σT

plus measurement error σE, as summarized in the CTT variance decomposition σ2
Y = σ2

T +σ2
E.

We can precisely estimate the overdispersion of σY with the CTT reliability formula, which

defines reliability ρ as the ratio of true score variance (σ2
T ) to observed score variance (σ2

Y ):

ρ =
σ2
T

σ2
Y
. Solving for σY shows that σY = σT√

ρ
. Therefore, when we standardize an outcome

variable such as a test score by dividing by its SD σY , this value is too large by a factor of 1√
ρ
.

Consequently, when measurement error in the outcome is present, standardized regression

coefficients will be driven downward, and this bias can be corrected by dividing by
√
ρ.

Applying this EIV correction deattenuates the standardized regression coefficient to what

it would be if the test were perfectly reliable or of infinite length. This fact is not a new

insight (Hedges, 1981), but it is nonetheless commonly ignored, or reserved for technical

discussions (Borenstein et al., 2021). For example, in its section on reliability, the What
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Works Clearinghouse Standards Handbook lists minimum thresholds for various reliability

metrics (e.g., α ≥ .50 in Version 4.1 and α ≥ .60 in Version 5.0), but makes no mention of

attenuation bias, in contrast to detailed explanation of the bias that arises from other sources,

such as non-random attrition or baseline non-equivalence.1 Crucially, attenuation bias is

not solved by IRT or FA scoring procedures, because the shrinkage of the empirical Bayes

estimation draws the distribution of estimated latent trait scores to the overall mean rather

than the respective conditional (i.e., group-specific) means (Briggs, 2008; Soland, 2022). This

problem is less severe but still present when using maximum likelihood scoring (Soland et al.,

2022, p. 11). The solution is to apply an EIV correction by dividing the coefficients by
√
ρ,

where ρ can be estimated as the internal consistency of the test (e.g., Cronbach’s α) or to

employ an LVM that directly adjusts for measurement error in the estimation procedure, as

we will demonstrate.

1.2 Methods for Estimating Causal Effects on Test Score Outcome

Data

1.2.1 Two-Step Procedures

In a two-step procedure, the latent trait of interest is estimated for each person and then

analyzed as the outcome variable using a standard statistical model such as OLS regression

(Christensen, 2006; Ye, 2016). For example, consider the following regression model, in which

scorej represents an estimated latent trait score for person j (for persons j = 1, ..., J) and β1

represents the average treatment effect (ATE):

scorej = β0 + β1treatj + εj (1)

εj ∼ N(0, σε). (2)

1Current and past WWC Standards Handbooks are available at the following URL: https://ies.ed.gov/
ncee/wwc/handbooks.
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scorej may be generated in a CTT or IRT/FA framework. In CTT, a sum or mean score

is used, such that the observed score across all items for items i = 1, ..., I equals the sum

of the responses
∑I

i=1 itemi or the mean of the responses 1
I

∑I
i=1 itemi. In IRT or FA, the

latent trait estimate, denoted θ̂, is calculated by maximizing the likelihood of θ̂ given the

estimated item parameters (i.e., item difficulty/factor intercept, item discrimination/factor

loading, and pseudo-guessing) (Bock et al., 1997). Generally, the IRT scoring approach has

been argued to be superior because IRT θ̂ estimates are on an interval rather than ordinal

scale (Briggs, 2008; Ferrando & Chico, 2007; Harwell & Gatti, 2001; Jabrayilov et al., 2016;

McNeish & Wolf, 2020) and IRT/FA models weight item responses by their discrimination

parameters or factor loadings, thus maximizing the information in θ̂ (Camilli, 2018; Jessen

et al., 2018). Empirically however, differences between CTT and IRT/FA scoring are often

found to be minor (Sébille et al., 2010; Xu & Stone, 2012). One limitation of the two-step

approach is that, regardless of what type of scoring procedure is used to estimate the latent

trait, the outcome variable is treated as known when it contains error and therefore resulting

regression coefficients will be biased when the outcome is standardized.

1.2.2 Simultaneous Estimation with Latent Variable Models (LVMs)

As an alternative to two-step procedures, LVMs enable the analyst to estimate measurement

(psychometric) and regression (structural) models simultaneously and incorporate the effects

of measurement error directly into the estimation procedure, for both predictors and outcomes

(Kline, 2023; Muthén, 2002). For example, consider the following LVM for the analysis of a

treatment effect on test score data,
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Yij = λi(θj + bi) + εij (3)

θj = β0 + β1treatj + ζj (4)

εij ∼ N(0, σεi) (5)

ζj ∼ N(0, σζ) (6)

in which the response Y to item i for person j is a function of latent person ability θj and

item easiness parameters (factor intercepts) bi, weighted by item discrimination parameters

(factor loadings) λi and error term εij. θj is in turn a function of the control group mean

β0, the ATE β1, and unexplained or residual variance in person ability ζj. Thus, the ATE

β1 is estimated directly on the latent trait without the need to compute a summary score.

When all λi = 1, and a logistic link function is employed, the LVM is equivalent to the One

Parameter Logistic (1PL) Explanatory Item Response Model (EIRM; De Boeck and Wilson,

2016). When λi are freely estimated and an identity link function is used, the LVM is a linear

Structural Equation Model (SEM). While LVMs such as the EIRM and SEM can be more

complex to interpret than two-step approaches, LVMs automatically deattenuate estimates

of standardized regression coefficients because, unlike σY , σζ is an unbiased estimator of the

residual SD of θj , thus counteracting the effects of measurement error compared to regression

on observed scores (Briggs, 2008; Christensen, 2006; Zwinderman, 1991), suggesting that

LVMs may provide more accurate tests of between-group differences such as causal treatment

effects.

In sum, the researcher faces many choices in model selection when test score data are used

as outcomes in a causal inference context: to use a one-step or two-step approach, to weight

or not to weight, to use CTT or IRT/FA, and so forth. While exploratory data analysis

can shed light on, for example, whether a 1PL or 2PL IRT model is a better fit to the data,

to what extent does allowing for varying item discriminations/loadings in the estimation of
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the latent trait score affect the bias, precision, and power of causal estimates? Are certain

models consistently more robust than alternatives? This study seeks to shed light on these

questions and leverage measurement principles for better application of causal inference in

education research by using Monte Carlo simulation and an empirical application to examine

the performance of several models under varying conditions of test score construction.

2 Methods

2.1 Data Generating process

The simulation and data analysis procedures were implemented in R. In total, we simulated

18,000 data sets (1,000 data sets per 18 data-generating conditions) and applied four analytic

models—sum score, factor score, equal loading SEM, and variable loading SEM—to each,

for a total of 90,000 results. We employed a full factorial design to assess the performance

of each model under a range of treatment effect sizes and items of varying discriminating

power. To maintain focus on the contrasts between the models and the effects of test

characteristics, we fixed the number of subjects at 500 and the number of items at 10 to

represent a moderate sample size and moderate test length. The latent trait scores θj were

drawn from N(0 + β1treatj, 1) and the factor intercepts bi were drawn from N(0, 1). The

latent variables were converted to continuous observed scores for each item using Equation 3.

The residual SD for each item σεi was defined as
√

1− λ2
i . The simulation factors include null,

moderate, and large treatment effect sizes (0, 0.2, or 0.4 SDs on the latent trait), moderate

and high average factor loadings (µλ = 0.4, 0.6), and constant, moderately variable, or highly

variable factor loadings (λi ∼ Unif(µλ − x, µλ + x) where x = 0, 0.3, 0.6).

For each simulated data set, we estimated the treatment effect and associated z -statistic,

p-value, and whether the null hypothesis was rejected under each model. The models for

the sum score and factor scores are equivalent OLS regression models and the SEMs are

estimated using maximum likelihood with fixed factor intercepts. In all models, the parameter
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of interest is the ATE β1, and the errors are assumed to be normally distributed with mean

0 and constant variance and uncorrelated with the predictors. We also calculated α for

each simulated test as an estimate of ρ to assess the effect of applying EIV corrections

to the two-step models. To render each ATE comparable, we divide β1 by the RMSE of

the regression model to standardize the coefficients, as the RMSE represents the estimated

pooled (i.e., within-group) standard deviation of the latent trait θj. Thus, the standardized

coefficients are equivalent to Cohen’s d effect size.

3 Results

Figure 1 shows the mean estimated bias and Monte Carlo 95% confidence intervals for

each method across all simulation conditions. We see that when the ATE is 0, bias is

negligible across all conditions. However, when the ATE is positive, the two-step procedures

are downwardly biased, the bias is proportional to the treatment effect size, and the bias

is more severe when the loadings are lower because lower average loadings translates to

lower test reliability. In contrast, the LVMs do not show the same pattern of attenuation

and are approximately unbiased across all conditions. Crucially, the performance of the

SEM assuming equal factor loadings is indistinguishable from the SEM allowing for variable

loadings, even when the range of loadings is high. The factor score allowing for variable

weights only slightly outperforms the sum score when the range of loadings is highest, but its

performance is nonetheless bested by the equal-weight SEM.

These results clearly illustrate that attenuation due to measurement error with standard-

ized outcome variables is a more serious concern than the decision of whether to weight or not

to weight the item responses. When we correct the two-step procedures for measurement error

by dividing the coefficients by
√
α as shown in Figure 2, we find that the performance of the

sum score is indistinguishable from the LVMs. Interestingly, the the EIV correction appears

to overcorrect the factor score when the loadings are extremely variable. This occurs because
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Figure 1: Estimated Bias by Method, Standardized Scores

the calculation of α assumes equal loadings and provides a lower bound on test reliability.

When this assumption is not met, ρ > α so dividing by
√
α provides an overcorrection for

the factor score model, though the bias is still small in absolute magnitude.

Figures 3, 4, 5, and 6 show the performance of the models in terms of absolute precision

(the SD of the point estimates), standard error calibration (the mean model-based SE as a

proportion of the true SE), false positive rates, and statistical power, with the EIV correction

applied to the two-step models. We see that differences between all models are minimal

according to these metrics, even when item loadings are highly variable, suggesting that once

the attenuation bias of the two-step models has been corrected, the choice of model does

not appear to have strong impacts on the other statistical properties of the ATE. Note that
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Figure 2: Estimated Bias by Method, EIV Correction Applied to Two-Step Scores

Figure 6 shows the results for the treatment effect size of 0.2 only because near ceiling levels

of power were achieved at a treatment effect size of 0.4.

4 Empirical Application

To illustrate how the issues of model selection can play out in practice, we employ a public use

file from Kim et al., 2023 that explores the causal effect of the Model of Reading Engagement

(MORE) literacy intervention on 2nd grade students’ test scores on a researcher-designed

reading comprehension assessment. The assessment included three reading passages and 20

multiple choice items, and the study employed a cluster-randomized design with 30 schools

and 2174 students. The authors assess the intention-to-treat (ITT) effect of the MORE
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Figure 3: Estimated Standard Errors by Method

intervention by fitting a multilevel model in which the outcome was the standardized sum

score, which they justify by noting that the correlation between 2PL IRT-based scores and

sum scores was 0.98 (p. 14).

The MORE assessment data differs in three key respects from the setup of our simulations.

First, as a cluster-randomized trial, the data have a hierarchical structure with treatment

assigned at the school level. Second, the authors included a rich set of demographic covariates

such as pretest scores, race, gender, SES, and other student characteristics to increase the

precision of their ITT estimates. Third, the test items in this data set are dichotomous (0 =

incorrect, 1 = correct) rather than continuous. In our reanalysis of the MORE study data,

we simplify by ignoring the school-level clustering and the demographic control variables

to maintain focus on the treatment effect point estimates derived from different models, as

12



Figure 4: Estimated Standard Error Calibration by Method

this approach provides a closer analog to the simulation models. We maintain the pretest

covariate to increase the precision of the estimates, and because the authors reported a slight

baseline imbalance in pretest scores, despite the randomization. We also add a few scoring

models relevant for dichotomous data by using 1PL and 2PL IRT models to generate the

factor scores and allowing for a logistic link function in the equal loading LVM. We fit models

of the following general form,

yj = β0 + β1treatj + β2pretestj + εj (7)
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Figure 5: Estimated False Positive Rates by Method

in which yj is the sum or factor score for student j, β1 is the treatment effect, β2 is the

coefficient for pretest reading score, and εj is the student-level residual. The LVMs are

analogous but model the treatment effect on the latent trait directly using the 20 items as

indicators for the latent trait.

While we cannot know the true value of the treatment effect on the latent trait in the

empirical data, we can still examine the results of the different analytic models explored

in the simulation and see how sensitive the results are to the modeling choice. As noted

earlier, the authors use a standardized sum score as their outcome variable and do not

make any adjustments for measurement error. The internal consistency of the 20-item

reading comprehension assessment is estimated at 0.78 suggesting an attenuation bias of 13%

( 1√
.78

= 1.13) for two-step models of standardized scores.
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Figure 6: Estimated Statistical Power by Method

Figure 7 shows the point estimates and 95% CIs for the standardized treatment effect

using the various models. Though CIs overlap considerably, and all reject the null hypothesis,

clearly, measurement matters, as there is meaningful variation in the of point estimates,

with a low end of 0.15SDs for the unadjusted 2PL IRT score model, vs. 0.21SDs for the

EIRM, a non-trivial difference of 0.06SDs (+40%). Given the results above, the EIRM or the

EIV-adjusted sum score are likely to be more accurate estimates of the true treatment effect

on the latent trait.
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Figure 7: Estimated Treatment Effects Derived from the MORE Data

5 Discussion

Because test scores are a noisy proxy of a latent trait of interest, they suffer from measurement

error, which results in negatively biased treatment effect estimates when outcome variables

are standardized. Simulation results show that when applied to test score data with different

properties, the bias is substantial when treatment effect sizes are high. However, when the

EIV correction is applied and the standardized coefficients are divided by
√
α, differences in

model performance are negligible under most conditions. Thus, the very process that makes

varying statistical models comparable to one another—standardization—biases two-step

models, and the effect of this bias dominates other features of the data generating process,

including the variability of factor loadings used to create scoring weights.
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Our interpretation of these results is that researchers may be overly focused on second-

order measurement issues, such as the use of variable factor loadings that function as optimal

scoring weights, rather than the first-order issue of attenuation of standardized coefficients

for measurement error in the outcome variable. That is, when the EIV correction is applied,

differences between the simplest standardized sum score model and the more complex LVMs

are negligible in terms of bias, precision, and statistical power in the estimation of treatment

effects, and this result holds even when the variability of factor loadings is high. Thus, when

causal inference at a single time point is the primary goal, the use of sum scores with the

EIV correction is likely to be sufficient for many applications.

These results should not be interpreted as evidence that IRT or LVMs have no purpose.

Clearly, IRT/FA methods are essential for piloting measures, identifying poorly functioning

items (Jessen et al., 2018), differential item functioning analysis (Osterlind & Everson, 2009),

vertical scaling (Briggs & Domingue, 2013), linking (Lee & Lee, 2018), and addressing missing

data (Gilbert, 2024), and LVMs can easily be expanded to incorporate complex relationships

among many latent variables or multidimensional constructs at several time points (Kline,

2023). A particularly valuable use case for LVMs in causal inference would be settings in

which treatment may impact individual items and the LVM can provide insights on treatment

heterogeneity, such as “item-level heterogeneous treatment effects” that would be masked in a

two-step analysis (Ahmed et al., 2023; Gilbert, 2023; Gilbert, Kim, & Miratrix, 2023b; Sales

et al., 2021), differential growth by item type (Briggs, 2021; Gilbert, Kim, & Miratrix, 2023a;

Naumann et al., 2014), or the appropriate interpretation of interaction effects (Domingue,

Kanopka, Trejo, et al., 2022; Gilbert, Miratrix, et al., 2023). However, when all students

receive the same items at a single time point, and only average treatment effects are of

interest, the results appear relatively insensitive to the methods employed when the EIV

correction is applied. Therefore, the benefits of interpretability and computational complexity

may favor the EIV-corrected standardized sum score in many straightforward causal inference

applications, a finding contrary to arguments that the sum score is a suboptimal choice
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because the constraint of equal factor loadings imposed by the sum score is rarely met in real

data (McNeish & Wolf, 2020).

While the results of this study provide strong evidence for the importance of EIV correc-

tions in two-step analyses of standardized test score outcome variables, several limitations

merit consideration. First, the data generating process employed in this study examines the

simple case of individual randomization with no covariates beyond the treatment indicator,

and thus may be extended to explore how measurement model selection may impact the

estimation of heterogeneous treatment effects, the effects of predictive covariates, multilevel

structures such as multi-site or cluster-randomized trials, or alternative experimental and

quasi-experimental contexts such as regression discontinuity, difference-in-differences, instru-

mental variables, and longitudinal analyses, though an emerging literature on the synthesis of

latent variable and causal inference methods has begun to shed light on these areas (Gilbert,

Kim, & Miratrix, 2023a; Gilbert, Miratrix, et al., 2023; Kuhfeld & Soland, 2022, 2023;

Miratrix et al., 2021; Rabbitt, 2018; Soland, 2022, 2023; Soland et al., 2023).

In conclusion, results of causal analyses of test score data are sensitive to model selection,

and the effects of attenuation bias are much more consequential than the use of scoring

weights. When researchers do not adjust for measurement error with EIV corrections LVMs,

standardized treatment effect estimates will be downwardly biased and thus understate

estimates of treatment impact. When the EIV correction is applied, the impact of model

selection will be reduced, demonstrating how the application of psychometric principles can

improve causal inference in education research.

18



6 Data Availability

1. A replication toolkit is available via Research Box for researchers interested in replicating

or extending the analyses in this study at the following URL: https://researchbox.org/

2289&PEER REVIEW passcode=HAEVNQ.

2. The public use data from Kim et al., 2023 are available at the following URL: https:

//dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LAWFFU.

3. The supplemental materials for Kim et al., 2023 are available at the following URL: https:

//supp.apa.org/psycarticles/supplemental/edu0000751/edu0000751 supp.html and in-

clude the assessment itself as well as psychometric analysis of the items, including CTT,

IRT, and factor analysis.
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