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1 Introduction

Panel or grouped data are often used to allow for unobserved heterogeneity in econometric models

via fixed effects. For instance, panel data addresses the possible endogeneity of treatment when

selection is based on fixed (e.g. time-invariant) unobservables. In other applications, estimates of

fixed effects themselves are of interest. These include estimates of firms’ and workers’ unobserved

productivities using employer-employee matched datasets (e.g. Abowd et al. 1999) and estimates

of teachers’ unobserved quality using student-teacher matched datasets (e.g. Chetty et al. 2014a).

Classic fixed effects models separate the unobservables into the additive sum of scalar indi-

vidual heterogeneity αi – termed fixed effects – and an error term Uit. The fixed effects are time

(t) invariant and allowed to be correlated with treatment variables Xit, while Uit is uncorrelated

with treatment. As the fixed effects enter these models only in an additively separable way,

they are easy to difference out (Chamberlain, 1984; Hsiao, 2014); the “within” transformation

establishes identification and provides one estimator.

In this paper, we present conditions for identification of models in which fixed effects enter

additively as well as interact with covariates, such as treatment status. As a result, the standard

technique of differencing out αi is no longer valid. The existence of such interactions can have

important economic implications: treatment effects will depend on unobserved heterogeneity and

the marginal effect of a change in unobserved heterogeneity will vary with treatment. Estimates

of treatment effects and of fixed effects will be biased if it is incorrectly presumed that interactions

between unobserved heterogeneity and observed variables are null.

To preview our results and their intuition, suppose, as is often assumed in the literature,

that the structural equation relating Xit and αi to outcome Yit excludes Xis for some s ̸= t

and that E [Uit|Xit, Xis] = E [Uit|Xit] = 0.1 Then, Xis can be viewed as an instrument for the

unobserved αi if E [αi|Xit, Xis] varies with Xis. In particular, variation in Xis leads to variation

in E [αi|Xit, Xis] holding Xit constant. Our key insight is that this variation can be exploited

to develop identification and estimation strategies for parameters of interest for a class of non-

additive fixed effects models.

1This condition holds under both strict and weak exogeneity (pre-determinedness) assumptions.
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We present identification results informed by this insight. Our results obtain in “short” pan-

els and they preserve features of additive fixed effects model identification: they do not rely on

distributional assumptions about the shape of αi or place restrictions on the unobserved hetero-

geneity’s relationship with treatment variables. We establish identification results for extensions

of our baseline model, such as allowing for more than one treatment variable and for higher order

terms of the treatment variable interacted with the fixed effects. We also extend the results to

allow for the inclusion of covariates in the model. We then present a non-linear transformation

of the model that eliminates αi. This transformation serves two purposes: First, we derive a

conditional moment restriction using the transformation that provides the basis for estimation

of non-additive fixed effects models by linear IV regression. Second, as in Holtz-Eakin et al.

(1988), this transformation can be used to extend our identification results to the case where the

regressors are only pre-determined or weakly exogenous.

As an empirical application, we apply our proposed estimator to matched student-teacher

administrative data used to estimate value-added models of teacher quality (e.g. Kane and

Staiger 2008; Chetty et al. 2014a). Our data are from the North Carolina Education Research

Data Center and we focus on math and reading scores of 4th and 5th grade students. We first

show that the common assumption that the return to unobserved teacher quality is the same

for all students is rejected by the data. In fact, a counterfactual one standard deviation increase

in teacher quality in reading is estimated to be 15% more effective for a student one standard

deviation below average in their prior score. The estimates also indicate that the return to teacher

quality is lower for economically disadvantaged and underrepresented minority students. We show

these findings have meaningful implications for estimates of individual teachers’ qualities and for

how equitably teacher quality is distributed. Ignoring heterogeneity leads to overestimating the

quality of teachers assigned to highly disadvantaged classrooms.

We then consider the question of whether interactions between unobserved teacher quality

and student characteristics reflect workplace features of education production. To do this, we ask

whether and how variation in accountability pressure—incentives linked to student performance

on standardized exams—shifts the return to unobserved teacher quality. We do this using No

Child Left Behind-era accountability policy in a difference-in-differences framework that leverages
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the timing of pressure. We show that accountability pressure induced by failure to meet Adequate

Yearly Progress targets caused meaningful increases in both subjects in the effectiveness of teacher

quality for lower performing students. Combined with the direct effect on teacher quality, the

net result of this heterogeneity is that the policy effect of accountability on test scores is over

twice as large—about 0.07σ in reading—for a student one standard deviation below average in

their prior score.2

1.1 Literature and Outline

Our paper contributes to the recent literature on panel data models where parameter hetero-

geneity is present in both the intercept term and slope coefficients. See e.g. Chamberlain (1992);

Robertson and Symons (1992); Pesaran and Smith (1995); Durlauf et al. (2001); Browning and

Carro (2007). These models are often called random coefficients models and Arellano and Bon-

homme (2012) and Graham and Powell (2012) are recent papers studying identification of models

of this type in short panels. The models we consider in this paper can be viewed as random co-

efficient models with a unique parsimonious structure. Specifically, the intercept and the slope

coefficient of the treatment variable are both functions of the same scalar unobserved individual

heterogeneity. Our paper is thus closer in spirit to Evdokimov (2010), which considers identi-

fication of panel data models that do not assume a particular functional relationship between

regressors and fixed unobserved heterogeneity.

The parsimonious structure of our model allows us to entertain a different set of conditions for

identification than those considered by Arellano and Bonhomme (2012) and Graham and Powell

(2012). Arellano and Bonhomme (2012) focus on identification of the probability distribution of

random coefficients, while Graham and Powell (2012) examine estimation of their expectation.

Our identification results are based on model primitives, reflecting the more recent trends in the

econometric literature. Though the model we analyze is in principle less general than the one

Evdokimov (2010) studies in its linearity, our identification results and proposed estimator are

intuitive and clarify precisely the types of variation in observables needed to achieve identifica-

2This calculation assumes the student is assigned to a teacher one standard deviation better than the average
teacher.
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tion.3 Moreover, estimation of the class of models we consider is straightforward and requires

only appropriately transforming the data and then running a linear IV (e.g. 2SLS) regression to

carry out.

Most of the literature, Arellano and Bonhomme (2012) and Evdokimov (2010) included,

focuses on the case of strictly exogeneity and it is sometimes not obvious how an extension can be

made to the case where the regressors are only weakly exogenous. By considering transformations

based on a few adjacent periods, we are able to use an intuition similar to the one in Arellano

and Bond (1991) and accommodate the case in which regressors are only pre-determined. Our

paper thus makes a contribution by establishing identification results for non-additive fixed effects

models with weakly exogenous as well as strictly exogenous regressors.

Our empirical findings contribute to the large literature on measuring and assessing the

importance of teacher quality (e.g. Rivkin et al. 2005; Kane and Staiger 2008; Chetty et al.

2014a,b; Koedel and Rockoff 2015). This body of work relies on administrative datasets grouping

students and teachers in classrooms to recover estimates of individual teachers’ qualities as their

value-added to student test scores. This setup embodies an assumption—the return to teacher

quality is the same for all students—that we show is rejected by the data. Our paper is thus

related to Ahn et al. (2020), who allow for match effects via random coefficients.4 Finally, our

findings identify a new channel supporting the effect of No Child Left Behind’s accountability

provisions on student learning: teacher quality becomes more effective for the students targeted

by the policy.5

The remainder of the paper is structured as follows. In Section 2, we introduce the model

and the identification results under the assumption that the regressors are strictly exogeneous.

Section 3 discusses how controls can be added to the baseline model. In Section 4, we use a

transformation to derive conditional moment restrictions suitable for estimation. Section 5 then

3We also establish identification for models that include higher order terms of, multiple, and interactions between
treatment variables.

4Ahn et al. (2020) specify and estimate a joint distribution of the random coefficients (which represent distinct
teacher skills or qualities), whereas we identify match effects assuming a scalar teacher quality that maps into
learning in a context- and student-specific way and whose distribution we do not require any assumptions about.

5Related work on the effectiveness of accountability, NCLB and otherwise, includes Hanushek and Raymond
(2005); Ahn and Vigdor (2014); Deming et al. (2016); Hollinger (2021); Mansfield and Slichter (2021). Figlio and
Loeb (2011) summarize the literature on school accountability.
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presents our empirical application to matched student-teacher data. Finally, Section 6 presents

identification results when the regressors are only weakly exogenous or pre-determined, while

Section 7 concludes. Proofs not presented in the main text are collected in the appendix.

2 Model

2.1 Baseline Model

In this section we introduce the baseline model and discuss the parameters of interest. We

will discuss extensions later. In this baseline model there is a single covariate Xt (which is the

main explanatory variable of interest) in each time period t. It has two effects on the outcome:

one effect is the same across individuals; the second effect varies across individuals because Xt

interacts with unonserved individual fixed effect. In particular, outcome Yt is determined by

Yit = β̃0∗ + α̃i +Xitβ̃1∗ +Xitβ̃2∗α̃i + Uit, (1)

where α̃ is a random variable denoting individual specific unobserved heterogeneity, (β̃0∗, β̃1∗, β̃2∗)

are non-random parameters and Uit represents additional unobservables. We are going to assume

the number of periods T is small and fixed. In fact, often we are going to assume T = 2. The

identification results we provide will be based on the observationally equivalent model given by

Yit = αi +Xitβ1∗ +Xitβ2∗αi + Uit. (2)

Before we discuss our identification approach we first illustrate that these two models (1) and

(2) are observationally equivalent. We do this in two steps. Let c̃∗ := E[α̃], and let α′ := α̃− c̃∗,

be the demeaned version of the fixed effect. Then the model given in equation (1) is equivalent

to

Yit = β′
0∗ + α′

i +Xitβ
′
1∗ +Xitβ

′
2∗α

′
i + Uit,

with β′
0∗ := β̃0∗ + c̃∗, β

′
1∗ := β̃1∗ + β̃2∗c̃∗, and β′

2∗ := β̃2∗. Furthermore, this model is equivalent

to the model given in equation (2) with αi := α′
i + β′

0∗, β1∗ := β′
1∗ − β′

2∗β
′
0∗, and β2∗ = β′

2∗.
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Below, we provide sufficient conditions for the identification of β1∗, β2∗, E[αi] and E[αi|Xit =

x]. These are the parameters that show up in evaluation of important marginal/treatment effects.

In particular, consider the model given by equation (1). In that model the potential outcomes

that we would observe if Xit is exogenously set to x and x′, respectively, are

Yit(x) = β̃0∗ + α̃i + xβ̃1∗ + xβ̃2∗α̃i + Uit,

Yit(x
′) = β̃0∗ + α̃i + x′β̃1∗ + x′β̃2∗α̃i + Uit,

so that the effect on individual i from exogenously changing their Xit value from x to x′ equals

Yit(x
′)− Yit(x) = (x′ − x)β̃1∗ + (x′ − x)β̃2∗α̃i.

For this model the average treatment effect is

E
[
Yit(x

′)− Yit(x)
]
= (x′ − x)β̃1∗ + (x′ − x)β̃2∗E [α̃i] .

If we consider the model given in equation (2) instead, the potential outcomes and average

treatment effect become, respectively

Yit(x) = αi + xβ1∗ + xβ2∗αi + Uit,

Yit(x
′) = αi + x′β1∗ + x′β2∗αi + Uit,

E
[
Yit(x

′)− Yit(x)
]
= (x′ − x)β1∗ + (x′ − x)β2∗E [αi] .

Since αi = α̃i + β̃0∗, β1∗ = β̃1∗ − β̃2∗β̃0∗, and β2∗ = β̃2∗,

(x′ − x) (β1∗ + β2∗E [αi]) = (x′ − x)
(
β̃1∗ + β̃2∗E [α̃i]

)
,

therefore, when β1∗, β2∗ and c∗ := E[α] are identified, the average treatment effect is identified.

In addition, for individuals whose initial treatment value at time t, Xt, equals x, the average
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ceteris paribus effect of changing their treatment value from x to x′ is given by

E
[
Yit(x

′)− Yit(x)|Xt = x
]
= (x′ − x)β1∗ + (x′ − x)β2∗E [αi|Xt = x] . (3)

Note that since E[α|Xt] may depend on t, our framework allows for the average effect of changing

the treatment value from x to x′ for the subpopulation of individuals whose initial treatment

value in period t equals x to depend on the t.

2.1.1 Empirical Application: Estimating Teacher Quality

In this subsection, we preview the empirical application of our baseline model. A large literature

estimates unobserved teacher quality as a teacher’s value-added to student test scores (e.g. Kane

and Staiger 2008; Chetty et al. 2014a). This is based on a panel data model where education

production is additively separable into the contribution of student-level inputs, captured by

student covariates (including their lagged test score); the value-added or quality of the teacher;

and an error term.

A representative setup is given by:

yijg = f(yig−1) + γxig + αj + ϵijg (4)

The dependent variable in this equation is the test score of student i, who is taught by teacher j,

in grade g. yig−1 is the student’s score in the prior grade, while xig is a vector of other observed

student covariates that may include sex, race, ethnicity, and (proxies for) economic advantage.

Test scores may be linear in the prior score or f() may be specified as a polynomial, e.g. a cubic.

αj summarizes the quality of teacher j while ϵijg represents remaining determinants of learning

that are unobserved. Importantly, teacher quality, αj , is also unobserved to the econometrician

and the goal of estimation is to recover reliable estimates of these parameters in addition to

estimates of f() and γ.6

In this paper, we consider the case where education production is no longer linear in teacher

6Empirical Bayes techniques are common to reduce noise in individual teacher effect estimates, which are only
consistent as class size grows (see e.g. Koedel and Rockoff 2015; Gilraine et al. 2021. Note that these techniques
can be combined with the results and methods in this paper in the same “two step” fashion.
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quality because the return is heterogeneous across students. This heterogeneity is summarized

by the inclusion of a new term that is the interaction of teacher quality with observed student

covariates. For example:

yijg = f(yig−1) + γxig + αj + βyig−1αj + υijg (5)

This equation is equivalent to the standard setup above, except for the addition of the βyig−1αj .

This term captures the heterogeneity in the return to αj with respect to students’ current learning

level, with β governing the magnitude and nature of the heterogeneity. In the case where β > 0,

students with higher prior scores will benefit relatively more from an increase in teacher quality,

while students with lower prior scores benefit more when β < 0 (all else held equal).

In Section 5, we apply the results in this paper to matched student-teacher data to estimate

models like equation (5) that relax the assumption that the return to teacher quality is common

across students.

2.2 Identification of Baseline Model

For identification, we maintain that E [|Yit|] < ∞, E [|Xit|] < ∞, and that E [|αi|] < ∞. The main

assumption we make, in addition to these maintained assumptions, is a form of strict exogeneity

assumption.

Assumption 1 For each t = 1, 2, and s ̸= t E [Uit|Xit, Xis] = E [Uit|Xit] = 0.

Strict exogeneity assumptions are commonly made for identification of panel data models. While

this assumption is restrictive, it may be more believable in the context of fixed (short) T panels

considered in this paper.7 In Section 6, we discuss identification of the baseline model under a

pre-determinedness assumption instead.

Our identification approach will rely on first differencing. Specifically, under Assumption 1,

7Note that in Section 3, we discuss how to introduce covariates Wit into the baseline model. In that version of
the model, we require strict exogeneity of Xi conditional on these additional covariates.
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for s ̸= t we have

E [Yt − Ys|Xs = xs, Xt = xt] = (xt − xs) (β1∗ + β2∗E [α|Xs = xs, Xt = xt]) . (6)

When xt ̸= xs we can divide both sides of equation (6) by (xt − xs) to identify

β1∗ + β2∗E [α|Xs = xs, Xt = xt] . (7)

Note that equation (2) implies that

E [Yt|Xt = xt, Xs = xs] = E [α|Xs = xs, Xt = xt] + xtβ1∗ + xtβ2∗E [α|Xs = xs, Xt = xt] . (8)

Subtracting xt times the identified object (7) from (8), we identify

E [α|Xs = xs, Xt = xt] . (9)

Inspection of (7) leads to our key insight: if E [α|Xs = xs, Xt = xt] depends on Xis, we could use

the variation in Xis to identify β1∗ and β2∗ .

This strategy in essence treats Xis with s ̸= t as an instrument for the endogenous variable

αi. In order to understand this interpretation, note that we can rewrite (2) as

Yit = E [α|Xis, Xit] +Xitβ1∗ +Xitβ2∗E [α|Xis, Xit] + Uit + ϵit,s,

where ϵit,s := Yit − E[Yit|Xis, Xit]. Thus, dependence of E [α|Xs = xs, Xt = xt] on Xis plays the

role of the relevance condition. On the other hand, the strict exogeneity assumption, together

with the fact that Xis does not directly enter the structural equation for Yit for s ̸= t means that

Xis is a valid instrument for the endogenous variable αi. The difference between our method and

the standard instrumental variables methods is that αi is an unobserved variable. The following

theorem formalizes this intuition.

Theorem 1 Suppose T = 2 and that Assumption 1 holds. Let ρ∗(x1, x2) = E [α|X1 = x1, X2 = x2],
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and

A1 := {x1 : ∃x2, x̃2 such that (x1, x2), (x1, x̃2) ∈ Supp(X1, X2) with x1 ̸= x2, x1 ̸= x̃2, x2 ̸= x̃2,

and ρ∗(x1, x2) ̸= ρ∗(x1, x̃2)},

A2 := {x2 : ∃x1, x̃1 such that (x1, x2), (x̃1, x2) ∈ Supp(X1, X2) with x1 ̸= x2, x̃1 ̸= x2, x1 ̸= x̃1,

and ρ∗(x1, x2) ̸= ρ∗(x̃1, x2)}.

Suppose that A1 ∪ A2 is measurable and has strictly positive probability. Then β1∗ and β2∗ are

identified.

Proof. Suppose that P(A2) > 0, and a ∈ A2 with b and c as corresponding to two different

values of X1 as specified in A2. Then,

E [Y2 − Y1|X1 = b,X2 = a]

a− b
= β1∗ + β2∗ρ∗(b, a), (10)

aE [Y1|X1 = b,X2 = a]− bE [Y2|X1 = b,X2 = a]

a− b
= ρ∗(b, a), (11)

E [Y2 − Y1|X1 = c,X2 = a]

a− c
= β1∗ + β2∗ρ∗(c, a), (12)

aE [Y1|X1 = c,X2 = a]− cE [Y2|X1 = b,X2 = a]

a− c
= ρ∗(c, a). (13)

Subtracting (12) from (10) yields

E [Y2 − Ys|Xs = b,X2 = a]

a− b
− E [Y2 − Ys|Xs = c,X2 = a]

a− c
= β2∗ (ρ∗(b, a)− ρ∗(c, a)) .

Given equations (11) and (13), we can check if ρ∗(b, a) − ρ∗(c, a) ̸= 0. Moreover, if ρ∗(b, a) −

ρ∗(c, a) ̸= 0, then β2∗ is identified. Finally, since β1∗ + β2∗ρ∗(b, a) is identified, these arguments

show that β1∗ is identified as well. The arguments for the case in which P(A1) > 0 are similar.

This theorem says that if the support of (Xi1, Xi2) contains {a, b, c}2 (with a, b, c distinct

from each other), and if holding Xi2 (Xi1) fixed, varying the value of Xi1 (Xi2) causes a change

in ρ∗(x1, x2), then we can identify (β1∗, β2∗). If T = 2 and if X1 and X2 each take the same two
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values, however, we cannot use this theorem. The proposition below shows β1∗ and β2∗ can still

be identified.

Proposition 1 Suppose T = 2 and that Assumption 1 holds. In addition, suppose that {a, b}2 ⊆

Supp(X1, X2) with a ̸= b. If ρ∗(b, a) ̸= ρ∗(a, b), then β1∗ and β2∗ are identified.

Proof. See Appendix.

As the proof of Theorem 1 illustrates, ρ∗(x1, x2) is identified whenever x2 ̸= x1. Therefore,

the assumption that ρ∗(a, b) ̸= ρ∗(b, a) is empirically verifiable. The next proposition shows that

even if Xit takes only (the same) two values in each period, we can still identify β1∗ and β2∗ as

long as T ≥ 3.

Proposition 2 Suppose T = 3 and that Assumption 1 holds. In addition, suppose that Supp(X1, X2, X3) =

{a, b}3 with a ̸= b. If E [α|X1 = X2 = a,X3 = b] ̸= E [α|X1 = a,X2 = X3 = b], then β1∗ and β2∗

are identified.

Proof. See Appendix.

Next, we discuss identification of E [α|Xt = x] once β1∗ and β2∗ are identified:

Proposition 3 Suppose that E [Uit|Xit] = 0, β1∗ and β2∗ are identified, and P(Xitβ2∗ = −1) = 0.

Then E [αi|Xit] is identified a.s., and E [αi] is identified.

Proof. See Appendix.

Finally, if (1) is the preferred way of writing the structural equation, recalling that αi =

α̃i + β̃0∗, we can see that β0∗ is identified under the location normalization E [α̃i] = 0.

The identification approach outlined so far suggests a straightforward estimation strategy.

When Xit is continuously distributed, however, an alternative estimation procedure based on a

moment condition approach might be preferable. In Section 4, we discuss how β1∗ and β2∗ can

be identified and estimated using this alternative approach.

2.3 Extensions

In the Appendix we discuss some extensions of the model. These include the case of multiple

treatment variables and of higher order terms of treatment variables in the structural equation.
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Appendix Section A.4 and A.5 consider these cases, respectively. The next section considers

the inclusion of covariates. In Section 6, we extend the identification results to the case of

weak exogeneity. Finally, we also discuss estimation of the model using unconditional moment

restrictions in the Appendix.

3 Covariates

In this section, we discuss how we could add controls to the baseline model. By controls we mean

observable variables, denoted Wt, whose partial effects on the outcome are not of interest to the

researcher. Typically, controls are used to make exogeneity assumptions more credible.

3.1 Coefficients Depending on Covariates

In this section we consider the following alternative model:

Yt = α̃+ β0(Wt) +Xtβ̃1(Wt) +Xtβ2(Wt)α̃+ Ut. (14)

For brevity of exposition, we assume T = 2. Now suppose for each t and any s ̸= t, E [Ut|Xt,Wt, Xs,Ws] =

E [Ut|Xt,Wt] = E [Ut|Wt] := λ0(Wt). Note that under this assumption Wt is not required to be

exogenous. Let εt := Ut−E [Ut|Xt,Wt, Xs,Ws] = Ut−λ0(Wt). Substituting this into the outcome

equation (14) we get

Yt = α̃+ β0(Wt) + λ0(Wt) +Xtβ̃1(Wt) +Xtβ2(Wt)α̃+ εt. (15)

Recall that Xt is the treatment variable. The potential outcomes are

Yt(x) = β0(Wt) + λ0(Wt) + α̃+ xβ̃1(Wt) + xβ2(Wt)α̃+ εt,

Yt(x
′) = β0(Wt) + λ0(Wt) + α̃+ x′β̃1(Wt) + x′β2(Wt)α̃+ εt.
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Individual treatment effect equals

Yt(x)− Yt(x
′) = (x− x′)β̃1(Wt) + (x− x′)β2(Wt)α̃.

Average treatment effect conditional on Wt equals

E
[
Yt(x)− Yt(x

′)
∣∣Wt

]
= (x− x′)β̃1(Wt) + (x− x′)β2(Wt)E [α̃|Wt] .

Now let us define α := β0(Wt) + λ0(Wt) + α̃ and β1(Wt) := β̃1(Wt)− β2(Wt) [β0(Wt) + λ0(Wt)].

With this notation, the model given in equation (15) can equivalently be written as

Yt = α+Xtβ1(Wt) + xtβ2(Wt)α+ εt. (16)

We now discuss identification of the model (16). To keep the notation simple, we as-

sume that Supp(Wt) = Supp(Wt−1).
8 Also assume that for each w in this common support,

Supp(Xt−1, Xt|Wt−1 = Wt = w) contains the points (a, b) and (a, c) with a, b, c all distinct. Then

using the conditional versions of the arguments in the proof of Theorem 1, we can show that for

each w ∈ Supp(Wt), β1(w) and β2(w) is identified. Next, we write

E [Yt|Xt = x,Wt = w]− xβ1(w) = E [α|Xt = x,Wt = w] (1 + xβ2(w)) .

Then if support of (Xt,Wt) is such that 1+xβ2(w) = 0 occurs with zero probability, E [α|Xt = x,Wt = w]

will be identified for almost every (x,w). Integrating Xt and Wt out we identify E [α].

The last point we make is that, even though we only identified β1(Wt) and E [α] as opposed

to β̃1(Wt) and E [α̃], and did not even discuss identification of either β0(Wt) or λ0(Wt), if Xt is

the treatment variable, none of this matters for causal analysis. To see this note that potential

8Otherwise we can identify the average treatment effect for w ∈ Supp(Wt) ∩ Supp(Wt−1).
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outcomes based on equation (16) are equal to

Yt(x) = α+ xβ1(Wt) + xβ2(Wt)α+ εt,

Yt(x
′) = α+ x′β1(Wt) + x′β2(Wt)α+ εt.

Thus, individual treatment effect of changing Xt exogenously from x′ to x equals

Yt(x)− Yt(x
′) = (x− x′)β1(Wt) + (x− x′)β2(Wt)α

= (x− x′)
(
β̃1(Wt)− β2(wt) (β0(Wt) + λ0(Wt))

)
+ (x− x′)β2(Wt) (α̃+ β2(wt) (β0(Wt) + λ0(Wt)))

= (x− x′)β̃1(Wt) + (x− x′)β2(Wt)α̃.

Moreover,

E[Yt(x)− Yt(x
′)|Wt = w] = (x− x′)β1(w) + (x− x′)β2(w)E [α|Wt = w] ,

which is identified.

3.2 Linear Controls

Estimation of the model in the previous section will be infeasible if the dimension of Wt is big.

For that reason, researchers might prefer controlling for Wt in a linear fashion. To illustrate how

this can be done for our model, recall our model as expressed in equation (2)

Yit = αi +Xitβ1∗ +Xitβ2∗αi + Uit.

Let Wit denote the controls. The following assumption is the extension of the usual assumption

made by empirical economists when they introduce controls in cross-section settings to short T

panel data setting. Before we discuss identification with covariates, we present the strict and

weak exogeneity assumptions with covariates:
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Assumption 2 Strict exogeneity with covariates: For each t, E [Uit|Xi1,Wi1, ..., XiT ,WiT ] =

E [Uit|Xit,Wit] a.s.

Assumption 3 Weak exogeneity with covariates: For each t, E [Uit|Xi1,Wi1, ..., Xit,Wit] =

E [Uit|Xit,Wit] a.s.

Assumption 4 (Covariates)

(i) E [αi|Xit,Wit] = W⊤
it κ1∗ + ϕt(Xit) a.s.;

(ii) E [Uit|Wit, Xit] = W⊤
it κ2∗ a.s..

This assumption allows the conditional expectation of each unobservable given treatment and

controls to depend on the controls. It requires, however, that each of these conditional expectation

functions to be additively separable in treatment and controls, with the part that depends on

the controls being linear. Under this assumption, we can write

Yit = ξi +Xitβ1∗ +Xitβ2∗ξ +W⊤
it δ1∗ +XitW

⊤
it δ2∗ + ϵit, (17)

where ϵit := Uit − E [Uit|Xit,Wit], ηi := αi − E [αi|Xit,Wit], ξi := ηi + ϕ(Xit), δ1∗ := κ1∗ + κ2∗

and δ2∗ := κ1∗β2∗. Then

Yit − E [Yit|Xit] = (Wit − E[Wit|Xit])
⊤ δ1∗ +Xit (Wit − E [Wit|Xit])

⊤ δ2∗

+ (ξi − E [ξi|Xit]) (1 +Xitβ2∗) + ϵit. (18)

Note that ξi − E [ξi|Xit] = ηi. Moreover, E [ηi|Xit,Wit] = E [ϵit|Xit,Wit] = 0. Therefore,

 E [(Wit − E [Wit|Xit]) ((ξi − E [ξi|Xit]) (1 +Xitβ2∗) + ϵit)]

E [Xit (Wit − E [Wit|Xit]) ((ξi − E [ξi|Xit]) (1 +Xitβ2∗) + ϵit)]

 = 0.

As a result, OLS regression of Yit − E [Yit|Xit] on Wit − E [Wit|Xit] and Xit (Wit − E [Wit|Xit])

consistently estimates δ1∗ and δ2∗. Since Yit,Wit and Xit are observed, E [Yit|Xit] as well as

E [Wit|Xit] can be estimated, so that running such an OLS regression is feasible. Once δ1∗ and
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δ2∗ are identified/estimated, we can subtract W ⊺
itδ1∗ and XitW

⊺
itδ2∗ from Yit and we will be back

to the scalar covariate model. That is, all of our identification methods can be applied to the

model

Ỹit = ξi +Xitβ1∗ +Xitβ2∗ξi + ϵit,

where Ỹit = Yit −W⊤
it δ1∗ −XitWitδ2∗.

Remark 1 Note that when Xit is binary taking values 0 and 1 only, E[Yit|Xit], E [Wit|Xit]

and E [XitWit|Xit] are all linear functions and can respectively be estimated by OLS regres-

sion of Yit and Wit on constant and Xit. In fact, by applying Frisch-Waugh-Lovell Theorem

OLS regression of Yt = (Y1t, Y2t, ..., Ynt)
⊤ on constant, Xt, Wt and (XW )t, where (XW )t =

(X1tW1t, X2tW2t, ..., XntWnt)
⊤ will yield consistent estimators of δ1 and δ2.

4 Estimation

In this section, we derive conditional moment restrictions that provide the basis for estimation

via linear IV regression. For ease of exposition, we first adopt the framework where Xs are

strictly exogenous, Xit contains a single regressor or treatment variable, and T = 2. However,

the transformation applied is easily generalized beyond these cases, as appropriate. We also use

this transformation later when extending the results to the case of weak exogeneity in Section 6.

Given Yit = αi +Xitβ1∗ +Xitβ2∗αi + Uit, it follows that:

Yit −Xitβ1∗
1 +Xitβ2∗

= αi +
Uit

1 +Xitβ2∗
(19)

Differencing this expression for t = 1 from t = 2, we further obtain

Yi2 −Xi2β1∗
1 +Xi2β2∗

− Yi1 −Xi1β1∗
1 +Xi1β2∗

=
Ui2

1 +Xi2β2∗
− Ui1

1 +Xi1β2∗
. (20)
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Strict exogeneity then implies that

E
[
Yi2 −Xi2β1∗
1 +Xi2β2∗

− Yi1 −Xi1β1∗
1 +Xi1β2∗

∣∣∣∣Xi1, Xi2

]
= 0, (21)

which further implies that

E [ (1 +Xi1β2∗) (Yi2 −Xi2β1∗)− (1 +Xi2β2∗) (Yi1 −Xi1β1∗)|Xi1, Xi2] = 0. (22)

This equation can be simplified to

E [ (Yi2 − Yi1)− (Xi2 −Xi1)β1∗ − (Xi2Yi1 −Xi1Yi2)β2∗|Xi1, Xi2] = 0.

Therefore, one may hope to use the conditional expectation

E [ (Yi2 − Yi1)− (Xi2 −Xi1)β1 − (Xi2Yi1 −Xi1Yi2)β2|Xi1, Xi2] = 0 (23)

as a basis for estimation. Note that this equation is linear in parameters β1∗ and β2∗ and

αi does not appear following the initial differencing. Y2 − Y1 is the dependent variable and

the equation contains two right hand side variables: the differences in Xs and X2Y1 − X1Y2.

This latter term is endogenous. Following the identification argument earlier and reflected in

this moment restriction, identification is obtained from the interaction between X1 and X2, an

instrument which is “excluded” from the structural equation. The conditional moment restriction

in equation (23) thus provides the basis for estimation of β1∗ and β2∗ via linear IV regression.

E [αi|Xit] and E [αi] can then be estimated using equation (19) above.

In the empirical application that follows, we use this conditional moment restriction to esti-

mate a model that features multiple regressors that interact with the unobserved heterogeneity

(including one that is continuously distributed) and also includes other covariates that do not

interact with the unobserved heterogeneity.
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5 Empirical Application: Heterogeneity in the Return to Teacher

Quality

In this section, we apply our results to examine and test for heterogeneity in the return to teacher

quality across students. To do so, we adapt our proposed estimator to the classroom setting and

marshal student-teacher matched administrative from North Carolina. We focus our attention

on end-of-grade math and reading scores in 4th and 5th grades in school years 2002-3 to 2008-9.

The Data Appendix describes the data and sample construction in detail; Table A1 presents

summary statistics.

We begin by estimating the following equation for each subject pooling both grades and all

years:

yijt = γxit + αjt + βαjtzit + υijt (24)

Note that this equation is similar to equation (5) previewed earlier, but differs in a couple respects.

First, we drop the grade notation and add time (t) subscripts to reflect pooling data across school

years. Second, we interact teacher quality with a vector of student covariates, zit. We examine

results when only student i’s lagged score interacts with teacher quality as well as models that

additionally include indicators for economic disadvantage and underrepresented minority (i.e.

Black or Hispanic) status in zit. xit then includes the elements in zit as well as lagged score

squared and cubed (recall f() in equation (5)), indicators for female, Asian or other non-White

race/ethnicity, and whether flagged as an English learner, special education, or gifted. If the

commonplace assumption that the return to teacher quality is the same for all students is true,

then we expect to fail to reject that β = 0.

To estimate equation (24), we first residualize yijt with respect to the covariates not in zit (i.e.

those that do not interact with teacher quality). Denote by ẏijt the residualized test score. We

then apply the transformation from the previous section with respect to the classroom average,

¯̇yjt.
9 In the case where zit contains one variable (e.g. only lagged score), we obtain the following

9In principle, however, the transformation could be applied to all student pairs in each classroom.
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conditional moment restriction:

E[(ẏijt − ¯̇yjt)− γ(zit − z̄jt)− β(¯̇yjtzit − ẏijtz̄jt)|xit, x̄jt] = 0 (25)

where z̄jt collects classroom average characteristics among teacher j’s students. This expectation

forms the basis of the estimator we use—2SLS. ¯̇yjtzit − ẏijtz̄jt is an endogenous regressor. The

instruments we use for our main results are the other elements of xit not in zit, e.g. whether

female; class averages of the covariates x̄jt; and student-class average interactions, e.g. xitx̄jt.

For models that include economic disadvantage and underrepresented minority status in zit, the

estimating equation includes several additional terms.10 We cluster standard errors by teacher.

Table 1 presents results for both math and reading. The results allowing for heterogeneity in

the return to teacher quality are presented side-by-side with results from estimating models that

assume homogeneity. The results show that assumption of common returns to teacher quality is

rejected by the data. Column (2) reports estimates for math and shows that the interaction on

lagged score and teacher quality is -0.05 and statistically significant. The economic interpretation

of this is that a one standard deviation increase in teacher quality would be 5% more effective

for a student who is one standard deviation below average in their prior score. Column (3)

adds additional teacher quality interactions to the model. The estimates show that an increase

in teacher quality is about 3% less effective for an economically disadvantaged student and 6%

less effective for an underrepresented minority student in math. Columns (4) through (6) report

parallel estimates for reading and show that the economic significance of the interactions with

teacher quality is even larger. A one standard deviation improvement in teacher quality would

be 16% more effective for a student one standard deviation below average, but 12% less effective

for a minority student.

These results in Table 1 show that not all students in a classroom benefit to the same degree

by improvements in teacher quality and that, all else equal, lower performing, advantaged, and

non-minority students benefit relatively more. These results have important implications for

estimates of how teacher quality is distributed and of individual teachers’ qualities. On the first

10We write out the full estimating equation for this case in the Appendix.
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Table 1: Estimates of Education Production Function

Math score Reading score
(1) (2) (3) (4) (5) (6)

Lagged score 0.82*** 0.83*** 0.82*** 0.79*** 0.79*** 0.79***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Lagged score × Teacher quality -0.05*** -0.07*** -0.15*** -0.16***
(0.00) (0.00) (0.01) (0.01)

Econ. disadv. -0.07*** -0.07*** -0.07*** -0.09*** -0.09*** -0.08***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Econ. disadv. × Teacher quality -0.03*** -0.04***
(0.01) (0.01)

URM -0.06*** -0.06*** -0.06*** -0.09*** -0.09*** -0.09***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

URM × Teacher quality -0.06*** -0.12***
(0.01) (0.01)

Female 0.00 0.00 0.00 0.03*** 0.03*** 0.03***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asian 0.11*** 0.10*** 0.10*** 0.01** 0.01** 0.01**
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

other race/ethnicity -0.03*** -0.03*** -0.03*** -0.04*** -0.04*** -0.03***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Teacher quality µ 0.03 0.03 0.03 0.04 0.04 0.04
Teacher quality σ 0.25 0.25 0.26 0.19 0.20 0.21

N =544,546 student-years (13,747 unique teachers). Standard errors clustered by teacher. All models
also control for the square and cubic of lagged score, and indicators of limited English proficiency, special
education, and gifted status.
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point, a standard deviation increase in the classroom share of economic disadvantage is associated

with a 0.003 increase in how much reading teacher quality is overestimated by the homogeneous

model. For many teachers, the bias can be economically large: Appendix Table A3 shows that,

when heterogeneity is ignored, reading teacher quality is underestimated by more than 0.02 for

21% of the sample and overestimated by more than 0.02 for 22% of the sample.11

5.1 Does Accountability Pressure Affect the Return to Teacher Quality?

The previous results show that the data reject the assumption that the return to teacher quality

is the same for all students. In this section, we examine whether and how the return varies with

working conditions. In particular, we examine whether test-based accountability pressure under

No Child Left Behind (NCLB) shifts the return and whether the shift is in the direction implied

by the policy’s goals. The specific aspect of NCLB we focus on is failure to make Adequate

Yearly Progress (AYP).

We examine accountability-induced shifts in returns in a difference-in-differences framework.

The basic idea is to estimate equation (5) on those schools belonging to each of the four cells—

pre-treatment, pre-control, post-treatment, and post-control—and then difference. To implement

this idea, we create subsamples for each “cohort” τ from 2004 to 2008.12 We code as “treated”

those schools that missed AYP for the first time the prior year and so experience accountability

pressure in school year τ . We code as “control” those schools who have not yet failed AYP—but

who eventually will.13 This variation is summarized in Table A4.

11In reading and math, teachers whose quality is overestimated tend to serve more disadvantaged and minority
classrooms, while teachers who quality is underestimated tend to serve higher prior achieving classrooms. See the
cross tabulations in Appendix Tables A2 and A3 for details.

12Note that 2004 is the first year a school could be treated, while schools treated in 2009 have no valid control
schools that were first treated in 2010.

13Schools that previously failed AYP are excluded from subsequent subsamples and thus do not re-enter the
sample as later controls.
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(a) Math (b) Reading

Figure 1: Impact of Accountability Pressure on Lagged score × Teacher quality

The difference-in-differences estimating equation is given by:14

ẏijt − ¯̇yjt =γ0(zit − z̄jt) + β0(¯̇yjtzit − ẏijtz̄jt) + ...+ ϵτijt

+ 1[t ≥ τ ][γ1(zit − z̄jt) + β1(¯̇yjtzit − ẏijtz̄jt)]

+ Treatτj [γ2(zit − z̄jt) + β2(¯̇yjtzit − ẏijtz̄jt)]

+ Treatτj1[t ≥ τ ][γ3(zit − z̄jt) + β3(¯̇yjtzit − ẏijtz̄jt)] (26)

where Treatτj is indicator for whether teacher j was treated in year τ .15 The subsamples are

pooled in estimation and weighted by their inverse number of observations.16 β0 summarizes the

pre-control return to teacher quality, while β2 is the difference in the return among treatment

group schools—before they are treated. β3 thus represents the main estimates of interest: the

change in the return to teacher quality associated with the onset of accountability pressure.

Figure 1 plots estimates from estimating equation (26) for math and reading, respectively.

The figure focuses on how the lagged score interactions with teacher quality are impacted by

accountability pressure. In math, the figure shows that control schools’ interaction is around -0.06

and this level changes only slightly from pre- to post-. However, treatment schools’ interaction

14Note that we do not write out all of the terms in the equation for when zit contains multiple variables. In our
application, zit contains three variables and the estimating equation includes twelve additional terms in total.

15We residualize yijt separately by treatment-control/pre-post cell for each τ in a first step.
16Note that observations corresponding to a school-year may appear up to twice in the final pooled dataset,

e.g. year 2004 observations for a school that experiences accountability pressure in 2005 will appear in subsample
τ = 2004 (as post-control) and in subsample τ = 2005 (as pre-treatment). The weighting is to guard against
negative weights arising from heterogeneity in the effects across τ .
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is near zero prior to accountability pressure and then drops to about -0.05. The difference-in-

differences estimate is reported in Table 2 and is -0.09 and is statistically different from zero.

For reading, the figure is similar: control schools’ interaction actually increases from pre- to

post-, while the onset of accountability likewise drives the interaction to be much more negative

for treated schools. The net impact in reading is likewise an effect of -0.07. In words, these

results show that in both math and reading accountability pressure causes the relative return to

teacher quality to increase for lower ability students. Table (2) reports estimates on the other

quadruple interactions in the model, which show no statistically significant effects on the return

for economically disadvantaged or underrepresented minority students.

Table 2: Impact of Accountability Pressure on Return to Teacher quality

Math Reading

Lagged score × Teacher quality × Treat × Post -0.09*** -0.07*
(0.03) (0.04)

Econ. disadv. × Teacher quality × Treat × Post 0.02 0.02
(0.06) (0.07)

URM × Teacher quality × Treat × Post -0.00 -0.07
(0.07) (0.08)

N =176,496 student-years (4,206 unique teachers). Standard errors clustered
by school.

The results above provide novel evidence that NCLB-era accountability raised the relative

return to teacher quality for lower ability students. What do our results imply for the net im-

pact of accountability pressure? Conceptually, accountability can raise teacher quality—perhaps

through an effort channel—in addition to changing how quality maps into students’ learning.

To examine this, we take the teacher quality estimates implied by the results above and regress

them on accountability pressure in a difference-in-differences fashion.17 These results, reported

in Appendix Table A5, show that teacher quality increases by around 0.03 in math and 0.04 in

reading.18 We then consider the net effects of accountability on two students, both assigned to

a high-quality teacher (i.e. a teacher one standard deviation better than the average teacher):

one who is one standard deviation below average in lagged score and one who is one standard

17Specifically, we estimate α̂jt = δPostt × Treatj + θj + ψt + ejt.
18Notably, this direct effect of accountability pressure on reading teacher quality is not present when hetero-

geneity in the return to teacher quality is ignored. See Appendix Table A5.
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deviation above average. For the above average student, the net impact of accountability is zero

in math and about 0.02σ in reading. This is because the direct effect channel on teacher qual-

ity is offset (fully, in the case of math) by teacher quality becoming less effective for them. In

contrast, the below average student benefits from both better teacher quality and that teacher

quality being more effective: the implied policy impact on the below average student is 0.06σ in

math and 0.07σ in reading.

6 Identification Under Weak Exogeneity

In this section we discuss identification of parameters without assuming strict exogeneity. Thus,

we replace Assumption 1 with the following assumption:

Assumption 5 For each t = 1, 2, ..., T , the Uit in the model (1) satisfies E
[
Uit|Xt

i

]
= E [Uit|Xit] =

0, where Xt
i := (Xi1, Xi2, ..., Xit)

⊤.

In contrast to the strict exogeneity assumption, this assumption only requires Uit to be condi-

tionally mean independent of Xt−1
i when we also condition on Xit. Thus, Uit can arbitrarily

depend on future values of treatment even after we condition on the current value of the treat-

ment. Before we start discussing identification under this assumption, we maintain the following

additional assumption throughout this section:

Assumption 6 For each t = 1, 2, ..., T , E
[∣∣∣ Ut

1+X2β2∗

∣∣∣] < ∞.

6.1 Conditional Moment Restrictions

Under Assumption 5, the identification arguments leading up to Theorem 1 as well as those in

sections 2.3, A.4, and A.5 no longer work. Similarly, equation (22) no longer holds. We can,

however, still use a similar idea underlying equation (21), i.e., the conditional moment condition

E
[
Yit −Xitβ1∗
1 +Xitβ2∗

− Yit−1 −Xit−1β1∗
1 +Xit−1β2∗

∣∣∣∣Xt−1
i

]
= 0
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to identify the parameters. With T = 2, identification of β∗ requires that the (β1, β2) that solves

0 = E
[

(Xi1 −Xi2)αi

(1 +Xi2β2) (1 +Xi1β2)
(β2∗ − β2) +

Xi1 −Xi2

(1 +Xi2β2) (1 +Xi1β2)
(β1∗ − β1)

∣∣∣∣Xi1

]
(27)

is equal to (β1∗, β2∗). Because of the nonlinearity, it is difficult to come up with a primitive

condition for identification, although we can discuss it in some special cases. For example, if

(Xi1, Xi2) has only four support points (a, a) , (a, b) , (b, a) , (b, b), each associated with positive

probability, and if (1 + aβ2∗)(1 + bβ2∗) ̸= 0, it is straightforward to show that requirement (27)

becomes equivalent to (β1, β2) = (β1∗, β2∗) be the only solution to

0 =
(a− b) ρ∗ (a, b)

(1 + bβ2) (1 + aβ2)
(β2∗ − β2) +

a− b

(1 + bβ2) (1 + aβ2)
(β1∗ − β1) ,

0 =
(b− a) ρ∗ (b, a)

(1 + aβ2) (1 + bβ2)
(β2∗ − β2) +

b− a

(1 + aβ2) (1 + bβ2)
(β1∗ − β1) .

After some simplification we can show that identification of β∗ is equivalent to

0 ̸= det

 ρ∗ (a, b) 1

−ρ∗ (b, a) −1

 = ρ∗ (b, a)− ρ∗ (a, b) .

When T = 3, we can exploit

0 = E
[
Yi3 −Xi3β1∗
1 +Xi3β2∗

− Yi2 −Xi2β1∗
1 +Xi2β2∗

∣∣∣∣Xi1, Xi2

]

as well. Thus, point identification of β∗ means that any (β1, β2) that solves

0 = E
[

(Xi2 −Xi3)αi

(1 +Xi3β2) (1 +Xi2β2)
(β2∗ − β2) +

Xi2 −Xi3

(1 +Xi3β2) (1 +Xi2β2)
(β1∗ − β1)

∣∣∣∣Xi1, Xi2

]

is equal to (β1∗, β2∗). Suppose that (Xi1, Xi2, Xi3) = {a, b}3 with each point in this support

associated with positive probability. Consider β such that (1 + aβ2)(1 + bβ2) ̸= 0, and let

θ∗(x1, x2, x3) := E [α|X1 = x2, X2 = x2, X3 = x3], a.s. Note that for the case (Xi1, Xi2, Xi3) =
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(a, b, a), the above equality is equivalent to

0 =
(b− a) θ∗ (a, b, a)

(1 + aβ2) (1 + bβ2)
(β2∗ − β2) +

b− a

(1 + aβ2) (1 + bβ2)
(β1∗ − β1) .

When (Xi1, Xi2, Xi3) = (b, b, a), the above equality is equivalent to

0 =
(b− a) θ∗ (b, b, a)

(1 + bβ2) (1 + aβ2)
(β2∗ − β2) +

b− a

(1 +Xi3β2) (1 + aβ2)
(β1∗ − β1) .

These two equations, after multiplication by (1 + bβ2) (1 + aβ2) / (b− a), become

0 = θ∗ (a, b, a) (β2∗ − β2) + (β1∗ − β1) ,

0 = θ∗ (b, b, a) (β2∗ − β2) + (β1∗ − β1) .

The solution exists as a unique value at (β1∗, β2∗) if

0 ̸= det

 θ∗ (a, b, a) 1

θ∗ (b, b, a) 1

 = θ∗ (a, b, a)− θ∗ (b, b, a) .

Thus, as long as θ∗ varies with the value of X1 we obtain point identification of β∗ in this case

even if θ∗ is symmetric in (x2, x3).
19

Before we end this section, let us consider the T = 2 case again. Suppose there exists

E ⊆ Supp(X1) with P(E) > 0, such that for each x1 ∈ E, the support of X2|X1 = x1 contains

at least three distinct points and that E contains at least two distinct values x1 and x̃1. Let

fX2|X1
(x2|x1) denote the conditional density of X2 given X1 = x1. Then evaluating equation

(27) at X1 = x1 and X1 = x̃1 for x̃1 ̸= x1 and x1, x̃1 ∈ E yields20

 ∫ x2−x1
(1+x2β2)(1+x1β2)

fX2|X1
(x2|x1)dx2

∫ (x2−x1)ρ∗(x1,x2)
(1+x2β2)(1+x1β2)

fX2|X1
(x2|x1)dx2∫

x2−x̃1
(1+x2β2)(1+x̃1β2)

fX2|X1
(x2|x̃1)dx2

∫ (x2−x̃1)ρ∗(x̃1,x2)
(1+x2β2)(1+x̃1β2)

fX2|X1
(x2|x̃1)dx2


19If θ∗ does not vary with X1, but varies with X2, we could use 0 = E

[
Yi3−Xi3β1∗
1+Xi3β2∗

− Yi1−Xi1β1∗
1+Xi1β2∗

∣∣∣Xi1, Xi2

]
to

obtain point identification of β∗ in a similar fashion.
20In writing these equations we assumed that for each x1 ∈ E (27) is well-defined.
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If fX2|X1
(x2|x1) = fX2(x2) for each x1 ∈ E and ρ∗ does not depend on X1 (so that ρ∗(x1, x2) =

ρ∗(x̃1, x2) for almost all x2), the second column is a multiple of the first, and β∗ is not identified.

On the other hand, even if fX2|X1
(x2|x1) and ρ∗(x1, x2) both vary with x1 ∈ E, we cannot rule

out that the possibility that the determinant of the above matrix will be 0, although we would

expect the set of β values for which the above matrix has zero determinant to be countable.

Thus, proper analysis of estimation and inference of the set of β∗ satisfying these conditional

moment restrictions will have to use tools from the partial identification literature. We leave this

for future research.

6.2 Special Case: Binary Treatment

In this section, we discuss identification of parameters under pre-determinedness when Xt is

binary taking values a and b, with b ̸= a, for each t, even when T is small. For this purpose,

consider the T = 2 case first.

E [Y1|X1 = a] = E [Y1|X1 = X2 = a]P(X2 = a|X1 = a)

+ E [Y1|X1 = a,X2 = b)P(X2 = b|X1 = a]

= {ρ∗(a, a) + a[β1∗ + β2∗ρ∗(a, a)]}P(X2 = a|X1 = a)

+ {ρ∗(a, b) + a[β1∗ + β2∗ρ∗(a, b)]}P(X2 = b|X1 = a)

= E [Y2|X1 = X2 = a]P(X2 = a|X1 = a)

+ {ρ∗(a, b) + a[β1∗ + β2∗ρ∗(a, b)]}P(X2 = b|X1 = a).

Therefore,

ρ∗(a, b) + a[β1∗ + β2∗ρ∗(a, b)] =
E [Y1|X1 = a]− E [Y2|X1 = X2 = a]P(X2 = a|X1 = a)

P(X2 = b|X1 = a)
. (28)

Moreover,

E [Y2|X1 = a,X2 = b] = ρ∗(a, b) + b (β1∗ + β2∗ρ∗(a, b)) . (29)
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Combining (28) and (29), we can see that β1∗ + β2∗ρ∗(a, b) is identified by

E [Y2|X1 = a,X2 = b]− E[Y1|X1=a]−E[Y2|X1=X2=a]P(X2=a|X1=a)
P(X2=b|X1=a)

b− a
= β1∗ + β2∗ρ∗(a, b). (30)

Next, by subtracting b times (30) from (29), we identify ρ∗(a, b) . Repeating these steps for

X1 = b and X2 = a, we can identify β1∗ + β2∗ρ∗(b, a) and ρ∗(b, a) . Now we can test whether

ρ∗(a, b) is equal to ρ∗(b, a). If they are not equal, then we can identify β2∗ , and then also β1∗ .

Next suppose T = 3. Note that

E [Y2|X1 = X2 = a] = E [Y2|X1 = X2 = a,X3 = a]P(X3 = a|X1 = X2 = a)

+ E [Y2|X1 = X2 = a,X3 = b]P(X2 = b|X1 = X2 = a)

= {θ∗(a, a, a) + a[β1∗ + β2∗θ∗(a, a, a)]}P(X3 = a|X1 = X2 = a)

+ {θ∗(a, a, b) + a[β1∗ + β2∗θ∗(a, a, b)]}P(X3 = b|X1 = X2 = a)

= E [Y3|X1 = X2 = X3 = a]P(X3 = a|X1 = X2 = a)

+ {θ∗(a, a, b) + a[β1∗ + β2∗θ∗(a, a, b)]}P(X3 = b|X1 = X2 = a).

Therefore,

E [Y2|X1 = X2 = a]− E [Y3|X1 = X2 = X3 = a]P(X3 = a|X1 = X2 = a)

P(X2 = b|X1 = X2 = a)

= θ∗(a, a, b) + a (β1∗ + β2∗θ∗(a, a, b)) . (31)

We also have

E [Y3|X1 = X2 = a,X3 = b] = θ(a, a, b) + b (β1∗ + β2∗θ∗(a, a, b)) . (32)

From (31) and (32), we identify

β1∗ + β2∗θ∗(a, a, b) , and θ∗(a, a, b) . (33)
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Repeating the same steps with E [Y2|X1 = X2 = b] and E [Y3|X1 = X2 = b,X3 = a], we can also

identify

β1∗ + β2∗θ∗(b, b, a) , and θ∗(b, b, a) . (34)

Then provided θ∗(a, a, b) ̸= θ∗(b, b, a), we can identify β2∗ and β1∗ from the identified objects

(33) and (34).

7 Conclusion

In this paper, we introduced a short T panel data model in which the intercept and the coeffi-

cient on treatment variable are both functions of a scalar variable which represents unobserved

individual heterogeneity. We provided novel identification results as well as intuitive linear IV

estimators for parameters of this model. We also provided identification results for extensions

of the model, including multiple treatment variables and in which higher order terms of treat-

ment variables and their interactions with the unobserved individual heterogeneity enter into the

structural equation (under strict exogeneity). Finally, we provided sufficient conditions for iden-

tification and estimation of parameters in our baseline model assuming that the regressors are

only weakly endogenous (pre-determined). Our identification results illustrate clearly that the

dependence of the conditional expectation of the unobserved individual heterogeneity on other

periods’ treatment values holding current period’s treatment value fixed is essential to obtain

identification.

We applied the results to matched student-teacher data to test the assumption, common in the

prior literature, that the return to unobserved teacher quality is the same for all students. In this

application, identification leverages that interactions between a student’s own characteristics and

those of their classmates are excluded from the structural equation. We show that the assumption

that the return to teacher quality is homogeneous is rejected by the data in both math and

reading: teacher quality is less effective on average for disadvantaged and minority students, all

else equal, and its effectiveness decreases with a student’s prior test score. Further, we show that

exogenous changes in incentives due to No Child Left Behind-era school accountability pressure

raised the effectiveness of teacher quality for those students lagging behind.
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A Appendix

A.1 Proof of Proposition 1

As discussed in the text below Proposition 1, ρ∗(b, a) and ρ∗(a, b) are identified since a ̸= b and

(a, b), (b, a) ∈ Supp(X1, X2). Then

E [Y2 − Y1|X1 = b,X2 = a]

a− b
= β1∗ + β2∗ρ∗(b, a), (35)

E [Y2 − Y1|X1 = a,X2 = b]

b− a
= β1∗ + β2∗ρ∗(a, b), (36)

so that
E[Y2−Y1|X1=b,X2=a]

a−b − E[Y2−Y1|X1=a,X2=b]
b−a

ρ∗(b, a)− ρ∗(a, b)
= β2∗.

Since every term on the left side of the above expression is either known or identified, β2∗ is

identified. Then β1∗ can be identified using equation (35) or (36). ■

A.2 Proof of Proposition 2

Let θ∗(x1, x2, x3) := E [α|Xi1 = x1, Xi2 = x2, Xi3 = x3]. Then

E [Yi3|Xi1 = Xi2 = a,Xi3 = b]− E [Yi2|Xi1 = Xi2 = a,Xi3 = b] = (b− a)[β1 + β2θ∗(a, a, b)],

From this equation, we see that β1+β2θ∗(a, a, b) is identified. Moreover, using the level equation

for period 3 (or period 2 or period 1 potentially), we can identify θ∗(a, a, b). Similarly,

E [Yi2|Xi1 = a,Xi2 = Xi3 = b]− E [Yi2|Xi1 = a,Xi2 = Xi3 = b] = (b− a)[β1 + β2θ∗(a, b, b)].

This equation identifies both β1 + β2θ∗(a, b, b) and θ∗(a, b, b) using period 2 outcome equation.

Then the following two equations in two unknowns identifies β1 and β2 as long as θ∗(a, a, b) ̸=
θ∗(a, b, b).

E [Yi3|Xi1 = Xi2 = a,Xi3 = b]− θ∗(a, a, b)

b
= β1 + β2θ∗(a, a, b),

E [Yi2|Xi1 = a,Xi2 = Xi3 = b]− θ∗(a, b, b)

b
= β1 + β2θ∗(a, b, b). ■

A.3 Proof of Proposition 3

Since β1∗ and β2∗ are assumed to have been identified, under the strict exogeneity assumption

we have

E [αi|Xit = x] =
E [Yit −Xitβ1∗|Xit = x]

1 + xβ2∗
.

Since E [αi|Xit = x] is identified for almost every value of Xit, E [αi] is also identified. ■
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A.4 Interactions of Treatment Variables

In this section, we discuss identification and estimation of the following model in which two

distinct treatment variables interact with each other: Consider T = 4.

Yt = α+X1tβ11∗ +X1tβ12∗α+X2tβ21∗ +X2tβ22∗α+X1tX2tδ1∗ +X1tX2tδ2∗α+ Ut.

Consider xj , xk, xl, xm and t1, t2, with xj ̸= xk, xl ̸= xm and t1 ̸= t2, such that (xj , xk, xl, xm, t1, t1, t2, t2)

is in the support of (X11, X12, X13, X14, X21, X22, X23, X24), and let

λ∗(X11, X12, X13, X14, X21, X22, X23, X24) := E [α|X11, X12, X13, X14, X21, X22, X23, X24] .

Then

E [Y4 − Y3|X11 = xj , X12 = xk, X13 = xl, X14 = xm, X21 = X22 = t1, X23 = X24 = t2]

= (xm − xl) [β11∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)β12∗ + t2{δ1∗ + δ2∗λ∗(xj , xk, xl, xm, t1, t1, t2, t2)}]

= (xm − xl) [β11∗ + t2δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2){β12∗ + t2δ2∗}] . (37)

Since xl ̸= xm, we identify

β11∗ + t2δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2) (β12∗ + t2δ2∗) (38)

from (37). Similarly, we have

E [Y2 − Y1|X11 = xj , X12 = xk, X13 = xl, X14 = xm, X21 = X22 = t1, X23 = X24 = t2]

= (xk − xj) (β11∗ + t1δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2) (β12∗ + t1δ2∗)) . (39)

Since xj ̸= xk, we identify

β11∗ + t1δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2) (β12∗ + t1δ2∗) (40)

from (39). Next, note that the difference of (38) and (40)

β11∗ + t2δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2){β12∗ + t2δ2∗}

−
(
β11∗ + t1δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2){β12∗ + t1δ2∗}

)
= (t2 − t1)

(
δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)δ2∗

)
.
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Since t2 ̸= t1, this means that

δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)δ2∗ (41)

is identified. Subtracting t1 times (41) from (40), we achieve identification of

β11∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)β12∗ . (42)

On the other hand,

E [Y3 − Y2|X11 = xj , X12 = xk, X13 = xl, X14 = xm, X21 = X22 = t1, X23 = X24 = t2]

= (xl − xk) [β11∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)β12∗]

+ (xlt2 − xkt1) [δ1∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)δ2∗]

+ (t2 − t1) [β21∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)β22∗] . (43)

Because (41) and (42), which appear in the first two terms on the right of (43), are identified,

we can see that this equation identifies

β21∗ + λ∗(xj , xk, xl, xm, t1, t1, t2, t2)β22∗ . (44)

Now, note that

E [Y1|X11 = xj , X12 = xk, X13 = xl, X14 = xm, X21 = X22 = t1, X23 = X24 = t2]

= λ∗(xj , xk, xl, xm, t1, t1, t2, t2)

+ xj (β11∗ + β12∗λ∗(xj , xk, xl, xm, t1, t1, t2, t2))

+ t1 (β21∗ + β22∗λ∗(xj , xk, xl, xm, t1, t1, t2, t2))

+ xjt1 (δ1∗ + δ2∗λ∗(xj , xk, xl, xm, t1, t1, t2, t2)) . (45)

Because the last three terms on the right of (45) are multiples of (42), (44), and (41), we can see

that

λ∗(xj , xk, xl, xm, t1, t1, t2, t2) (46)

is identified. Next, consider changing exactly one of xj , xk, xl, xm, t1 or t2. Say it is the value of

X3 that is changed from xl to x̃l, with x̃l different from both xl and xm.21 Going through almost

21Obviously, changing all or a subset of components of (xj , xk, xl, xm, t1, t2) would also work, provided that the
support of (X11, X12, X13, X14, X21, X22, X23, X24) is sufficiently rich.

36



identical steps we can identify

δ1∗ + λ∗(xj , xk, x̃l, xm, t1, t1, t2, t2)δ2∗ , β11∗ + λ∗(xj , xk, x̃l, xm, t1, t1, t2, t2)β12∗ ,

β21∗ + λ∗(xj , xk, x̃l, xm, t1, t1, t2, t2)β22∗ , λ∗(xj , xk, x̃l, xm, t1, t1, t2, t2) .

Then if λ∗(xj , xk, x̃l, xm, t1, t1, t2, t2) ̸= λ∗(xj , xk, xl, xm, t1, t1, t2, t2), which is a testable assump-

tion, δ1∗ , δ2∗ , β11∗ , β12∗ , β21∗ and β22∗ are all identified. Once these parameters are

identified, λ∗(x1, x2, x3, x4, t1, t2, t3, t4) is also identified for each (x1, x2, x3, x4, t1, t2, t3, t4) in

the support of (X11, X12, X13, X14, X21, X22, X23, X24).

A.5 Higher Order Terms

Consider

Yt = α+Xtβ11∗ +X2
t β12∗ +Xtβ21∗α+X2

t β22∗α+ Ut. (47)

We assume T = 2 for brevity. We also maintain the strict exogeneity assumption (Assumption 1)

in this section. To discuss identification of this model we first assume that there exist x1, x2, x3, x4

all distinct from each other and distinct from 0 such that (0, x1), (0, x2), (0, x3), (0, x4) ∈ Supp(X1, X2).

With this assumption, E [Y1|X1 = 0, X2 = xj ] = ρ∗(0, xj) for j = 1, 2, 2, 3. So for each x such

that (0, x) ∈ Supp(X1, X2), ρ∗(0, x) is identified. Then for x ̸= 0:

E [Y2|X1 = 0, X2 = x] = ρ∗(0, x) + x[β11∗ + β21∗ρ∗(0, x)] + x2[β12∗ + β22∗ρ∗(0, x)] ⇐⇒
E(Y2|X1 = 0, X2 = x)− ρ∗(0, x)

x
= β11∗ + β21∗ρ∗(0, x) + x[β12∗ + β22∗ρ∗(0, x)].

Then if the matrix 
1 ρ∗(0, x1) x1 x1ρ∗(0, x1)

1 ρ∗(0, x2) x2 x2ρ∗(0, x2)

1 ρ∗(0, x3) x3 x3ρ∗(0, x3)

1 ρ∗(0, x4) x4 x4ρ∗(0, x4)


is invertible, β∗ = (β11∗, β12∗, β21∗, β22∗) is identified. Note that since ρ∗(0, xj) is identified, the

invertibility of this matrix is verifiable. Similarly, if the support of (X1, X2) is sufficiently rich,

in the sense that (0, x1), (0, x2), ..., (0, xJ) ∈ Supp(X1, X2) for J ≥ 2K + 1, then the parameters

in the model

Yt =
K∑
k=1

Xk
t β1k∗ + α

[
1 +

K∑
k=1

Xk
t β2k∗

]
+ Ut,

is identified.

Next, we discuss identification of the model given in equation (47) without requiring that the

support of X1 contains 0. Instead, we are going to assume we have three periods of data (T = 3)

and that (x, xj , xk), (x, xj , xl) ∈ Supp(X1, X2, X3) with x, xj , xk, xl all different from each other.
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Note that

E [Y1|X1 = x,X2 = xj , X3 = xk] = θ∗(x, xj , xk) + x [β11∗ + θ∗(x, xj , xk)β21∗] + x2 [β12∗ + θ∗(x, xj , xk)β22∗] ,

E [Y2|X1 = x,X2 = xj , X3 = xk] = θ∗(x, xj , xk) + xj [β11∗ + θ∗(x, xj , xk)β21∗] + x2j [β12∗ + θ∗(x, xj , xk)β22∗] ,

E [Y3|X1 = x,X2 = xj , X3 = xk] = θ∗(x, xj , xk) + xk [β11∗ + θ∗(x, xj , xk)β21∗] + x2k [β12∗ + θ∗(x, xj , xk)β22∗] .

Taking differences and rearranging we get

E [Y2|X1 = x,X2 = xj , X3 = xk]− E [Y1|X1 = x,X2 = xj , X3 = xk]

xj − x

= β11∗ + θ∗(x, xj , xk)β21∗ + (xj + x) (β12∗ + θ∗(x, xj , xk)β22∗) , (48)

and

E [Y3|X1 = x,X2 = xj , X3 = xk]− E [Y1|X1 = x,X2 = xj , X3 = xk]

xk − x

= β11∗ + θ∗(x, xj , xk)β21∗ + (xk + x) (β12∗ + θ∗(x, xj , xk)β22∗) . (49)

Differencing once more yields

E[Y2|X1=x,X2=xj ,X3=xk]−E[Y1|X1=x,X2=xj ,X3=xk]
xj−x

− E[Y3|X1=x,X2=xj ,X3=xk]−E[Y3|X1=x,X2=xj ,X3=xk]
xk−x

xj − xk
= β12∗ + θ∗(x, xj , xk)β22∗. (50)

Since everything on the left side of the above equation is identified, the above equation identifies

β12∗ + θ∗(x, xj , xk)β22∗ . (51)

Plugging (51) into (48) or (49) identifies

β11∗ + θ∗(x, xj , xk)β12∗ . (52)

Finally, plugging both x [β11∗ + θ∗(x, xj , xk)β21∗] and x2 [β12∗ + θ∗(x, xj , xk)β22∗] into the equa-

tion E[Y1|X1 = x,X2 = xj , X3 = xk] identifies

θ∗(x, xj , xk) . (53)

Repeating these arguments with X3 = xl instead of xk, we can identify

β12∗ + θ∗(x, xj , xl)β22∗ , β11∗ + θ∗(x, xj , xl)β21∗ , θ∗(x, xj , xl) . (54)

Then, as long as θ∗(x, xj , xl) ̸= θ∗(x, xj , xk),we can identify β12∗ , β22∗ , β11∗ , and β21∗ , using
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the identified objects (51), (52), (53), and (54).

A.6 Unconditional Moment Restrictions

In practice, some unconditional moment restrictions implied by the conditional moment restric-

tions discussed in the main text are likely to be adopted as a basis of estimation. In this section

we discuss how this could be done both under strict and weak exogeneity assumptions.

A.6.1 Under Strict Exogeneity

Under strict exogeneity, one can adopt

E

[
X1 {(Y2 − Y1)− (X2 −X1)β1∗ − (X2Y1 −X1Y2)β2∗}
X2 {(Y2 − Y1)− (X2 −X1)β1∗ − (X2Y1 −X1Y2)β2∗}

]
= 0

as a basis of estimation. The identifiability of the β is an empirical matter that can be tested.

For example, one can rewrite the above equation as

E

[
X1 (Y2 − Y1)

X2 (Y2 − Y1)

]
= E

[
X1 (X2 −X1) X1 (X2Y1 −X1Y2)

X2 (X2 −X1) X2 (X2Y1 −X1Y2)

][
β1∗

β2∗

]

and we can see that the identifiability is guaranteed if the matrix

E

[
X1 (X2 −X1) X1 (X2Y1 −X1Y2)

X2 (X2 −X1) X2 (X2Y1 −X1Y2)

]

is nonsingular, which can be tested from the data.

We can repeat the same idea for T = 3 case. We have the conditional moment restriction

E [ (1 +Xsβ2∗) (Yt −Xtβ1∗)− (1 +Xtβ2∗) (Ys −Xsβ1∗)|X1, X2, X3] = 0,

which delivers the estimating equation

E [ (Yt − Ys)− (Xt −Xs)β1 − (XtYs −XsYt)β2|X1, X2, X3] = 0. (55)

Because E [Yt|X1, X2, X3] = θ∗ (X1, X2, X3)+Xtβ1∗+Xtθ∗ (X1, X2, X3)β2∗, where θ∗(X1, X2, X3) :=

(α|X1, X2, X3), this amounts to

(Xt −Xs) (β1∗ − β1)+ (X2 −X1) θ∗ (X1, X2, X3) (β2∗ − β2) = 0.

In particular, the identification would be achieved if there exist (X1, X2) = (x1, x2, x3) , (x
′
1, x

′
2, x

′
3)
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such that the matrix [
x3 − x2 (x3 − x2) θ∗ (x1, x2, x3)

x′2 − x′1 (x′2 − x′1) θ∗ (x
′
1, x

′
2, x

′
3)

]
is nonsingular. Let’s try (x1, x2, x3) = (a, a, b) , (x′1, x

′
2, x

′
3) = (a, b, b), in which case we have

det

[
b− a (b− a) θ∗ (a, a, b)

b− a (b− a) θ∗ (a, b, b)

]
= (b− a)2 (θ∗ (a, b, b)− θ∗ (a, a, b)) ̸= 0

under the earlier condition θ∗ (a, b, b) ̸= θ∗ (a, a, b).

We can also derive unconditional moment restrictions, we can derive a unconditional moment

restriction from (55). For example, we can use

E



X1 {(Y2 − Y1)− (X2 −X1)β1∗ − (X2Y1 −X1Y2)β2∗}
X2 {(Y2 − Y1)− (X2 −X1)β1∗ − (X2Y1 −X1Y2)β2∗}
X3 {(Y2 − Y1)− (X2 −X1)β1∗ − (X2Y1 −X1Y2)β2∗}
X1 {(Y3 − Y2)− (X3 −X2)β1∗ − (X3Y2 −X2Y3)β2∗}
X2 {(Y3 − Y2)− (X3 −X2)β1∗ − (X3Y2 −X2Y3)β2∗}
X3 {(Y3 − Y2)− (X3 −X2)β1∗ − (X3Y2 −X2Y3)β2∗}


= 0

as a basis of GMM estimation. Identifiability of β∗ is a testable restriction which amounts to the

question whether the rank of the matrix

E



X1 (X2 −X1) X1 (X2Y1 −X1Y2)

X2 (X2 −X1) X2 (X2Y1 −X1Y2)

X3 (X2 −X1) X3 (X2Y1 −X1Y2)

X1 (X3 −X2) X1 (X3Y2 −X2Y3)

X2 (X3 −X2) X2 (X3Y2 −X2Y3)

X3 (X3 −X2) X3 (X3Y2 −X2Y3)


is equal to 2 or not.

A.6.2 Under Weak Exogeneity

When Xt are continuous, using the conditional moment restrictions might be challenging, espe-

cially if the sample size is not large. For this reason, we discuss using unconditional moment

restrictions. As was the case in the previous section, the key challenge is to come up with intuitive

sufficient conditions for point identification of β∗.
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With T = 2, we can exploit the following moment restrictions:

E

 Yi2−Xi2β1∗
1+Xi2β2∗

− Yi1−Xi1β1∗
1+Xi1β2∗

Xi1

(
Yi2−Xi2β1∗
1+Xi2β2∗

− Yi1−Xi1β1∗
1+Xi1β2∗

)  =

(
0

0

)
. (56)

Let β := (β1, β2)
⊤. Then whether β∗ = (β1∗, β2∗)

⊤ is identified relative to β by the moment

conditions given above depends on whether

Apre
2 (β) := E

[
(X2−X1)

(1+X1β2)(1+X2β2)
(X2−X1)ρ∗(X1,X2)
(1+X1β2)(1+X2β2)

X1(X1−X2)
(1+X1β2)(1+X2β2)

X1(X2−X1)ρ∗(X1,X2)
(1+X1β2)(1+X2β2)

]

is invertible or not. It is because

E

 Yi2−Xi2β1∗
1+Xi2β2∗

− Yi1−Xi1β1∗
1+Xi1β2∗

Xi1

(
Yi2−Xi2β1∗
1+Xi2β2∗

− Yi1−Xi1β1∗
1+Xi1β2∗

) − E

 Y2−X2β1

1+X2β2
− Y1−X1β1

1+X1β2

X1

(
Y2−X2β1

1+X2β2
− Y1−X1β1

1+X1β2

)  = Apre
2 (β)

(
β1∗ − β1

β2∗ − β2

)
,

As in the previous section, we first discuss identification when Supp(X1, X2) = {a, b}2, with
each point having positive probability. In this case the determinant of Apre

2 (β) equals

−(b− a)3
(

fX1,X2(a, b)

(1 + aβ2)(1 + bβ2)

)2 fX1,X2(b, a)

fX1,X2(a, b)
[ρ∗(b, a)− ρ∗(a, b)],

which will be different from 0 if and only if ρ∗(b, a) ̸= ρ∗(a, b).

To investigate the possibility of point identification with binaryXt even when ρ∗ is symmetric,

we consider the case for which T = 3 and Supp(X1, X2, X3) = {a, b}3 with a ̸= b and each triplet

having positive probability. When T = 3, the unconditional moments we have can be summarized

by

E
[
X̃l

(
Yt −Xtβ1∗
1 +Xtβ2∗

− Ys −Xsβ1∗
1 +Xsβ2∗

)]
= 0,

where X̃l denotes any measurable function of the constant and X l with l ≤ s < t. We will focus

on two of these conditions:

E

[
Y2−X2β1∗
1+X2β2∗

− Y1−X1β1∗
1+X1β2∗

Y3−X3β1∗
1+X2β2∗

− Y2−X2β1∗
1+X2β2∗

]
=

(
0

0

)
.

The β∗ will be identified relative to any β such that the the expectations in the above equation

evaluated at β are all well-defined if

E

[
X2−X1

(1+X2β2∗)(1+X1β2∗)
(X2−X1)θ∗(X1,X2,X3)
(1+X2β2∗)(1+X1β2∗)

X3−X2
(1+X3β2∗)(1+X2β2∗)

(X3−X2)θ∗(X1,X2,X3)
(1+X3β2∗)(1+X2β2∗)

]
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has rank 2. When the support of (X1, X2, X3) equals {a, b}3, the above matrix evaluated at β

such that (1 + aβ2)(1 + bβ2) ̸= 0 equals b−a
(1+aβ2)(1+bβ2)

times

[
fX1X2X3(a, b, a)− fX1X2X3(b, a, a) θ∗(a, b, a)fX1X2X3(a, b, a)− θ∗(b, a, a)fX1X2X3(b, a, a)

fX1X2X3(a, a, b)− fX1X2X3(a, b, a) fX1X2X3(a, a, b)θ∗(a, a, b)− θ∗(a, , b, a)fX1X2X3(a, b, a)

]

+

[
fX1X2X3(a, b, b)− fX1X2X3(b, a, b) θ∗(a, b, b)fX1X2X3(a, b, b)− θ∗(b, a, b)fX1X2X3(b, a, b)

fX1X2X3(b, a, b)− fX1X2X3(b, b, a) θ∗(b, a, b)fX1X2X3(b, a, b)− θ∗(b, b, a)fX1X2X3(b, b, a)

]
.

Now suppose that θ∗(x1, x2, x3) = θ∗ (π(x1, x2, x3)) for each permutation π, of (x1, x2, x3). Then

the matrix above simplifies to[
q1 θ∗(a, a, b)q1

q2 θ∗(a, a, b)q2

]
+

[
q3 θ∗(a, b, b)q3

q4 θ∗(a, b, b)q4

]
,

where

q1 := fX1X2X3(a, b, a)− fX1X2X3(b, a, a),

q2 := fX1X2X3(a, a, b)− fX1X2X3(a, b, a),

q3 := fX1X2X3(a, b, b)− fX1X2X3(b, a, b),

q4 := fX1X2X3(b, a, b)− fX1X2X3(b, b, a).

The determinant of this matrix equals (θ∗(a, a, b)− θ∗(a, b, b)) [q2q3 − q1q4]. Thus, β∗ will be

identified if (θ∗(a, a, b)− θ∗(a, b, b)) and [q2q3 − q1q4] are both different from 0. Note that a

necessary condition for the latter is that (X1, X2, X3) is not exchangeable. To further highlight

the importance of non-exchangeability of (X1, X2, ..., Xt) for identification we focus on T = 2

again:

Theorem 2 Suppose T = 2, (X1, X2) is exchangeable and ρ∗(x1, x2) = ρ∗(x2, x1) for almost

every (x1, x2). Then β∗ is not identified by the moment condition given in equation (56).
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Proof. (X1, X2) exchangeable means f12(x1, x2) = f12(x2, x1) for almost every (x1, x2). Then

E
[

(X2 −X1)

(1 +X1β2)(1 +X2β2)

]
=

∫
x2

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2 −

∫
x1

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2

=

∫
x2

(1 + x1β2)(1 + x2β2)
f12(x2, x1)dx1dx2 −

∫
x1

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2

= 0,

E
[
(X2 −X1)ρ∗(X1, X2)

(1 +X1β2)(1 +X2β2)

]
=

∫
x2ρ∗(x1, x2)

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2 −

∫
x1ρ∗(x1, x2)

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2

=

∫
x2ρ∗(x2, x1)

(1 + x1β2)(1 + x2β2)
f12(x2, x1)dx1dx2 −

∫
x1ρ∗(x1, x2)

(1 + x1β2)(1 + x2β2)
f12(x1, x2)dx1dx2

= 0.

Thus, the rank of Apre
2 (β2) is at most 1.

Our earlier results showed that when T = 2 and Supp(X1, X2) = {a, b}2, β∗ cannot be

identified if ρ∗ is symmetric, regardless of whether the joint density, fX1X2(x1, x2), of (X1, X2) is

symmetric or not. That is because in that special case, symmetry of ρ∗ means that ρ∗ is constant

and X1 cannot be used as an instrumental variable for ρ∗ in the second period equation because

of the failure of the relevance condition. In contrast, Theorem 2 says that when Supp(X1, X2)

is richer, a sufficient condition for failure of identification is symmetry of both fX1X2 and ρ∗ in

(x1, x2). When Supp(X1, X2) is richer, Theorem 2 leaves open the possibility that β∗ is identified

even if ρ∗ is symmetric, as long as fX1X2(x1, x2) is not symmetric, which is a testable condition.

On the other hand, even when fX1X2(x1, x2) is not symmetric and Supp(X1, X2) is richer than

{a, b}2, we cannot ensure that β∗ is the only element of R2 that satisfies the moment conditions

(56).

A.7 Data Appendix

We use detailed, student-level administrative records from the North Carolina Education Re-

search Data Center (NCERDC). The records include information about all North Carolina public

school students for the 2000-2013 school years from grades 3 through 10. The data contain an

identifier for the student’s school, reading and math test scores from standardized end-of-grade

exams, an identifier for the teacher who monitored the standardized exams, and student charac-

teristics including: sex, ethnicity, English proficiency, gifted/talented status, learning disabilities,

and economic disadvantage.

To generate the analysis sample, we first select students following several criteria to help limit
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measurement error in exam scores. We do this by removing observations where the reported test

score is from a retake exam or where a student is linked to multiple, different scores for a subject

in an academic year. Additionally, since the scores come from end-of-grade standardized exams,

we remove observations where the student is recorded as being in a grade that conflicts with the

raw data file specific grade, since it is unclear which grade is accurate and relevant for the exam

scores. Similarly, we remove observations where the student is either observed in multiple schools

or associated with multiple teachers in a given grade and academic year since it is unclear which

of these is accurate.

Our analysis to estimate teacher value added relies on the assumption that the observed

teacher associated with the student level observation is the teacher who actually taught the stu-

dent math. Since the teacher identified in the dataset is the teacher who proctored the exam, it is

reasonably likely that this teacher also taught the student, but it is not guaranteed. We therefore

further select on observed teacher characteristics to minimize the likelihood that the observed

teacher is not the associated student’s math teacher. First, we remove observations where the as-

sociated teacher is recorded as performing any administrative tasks, teaching nonstandard classes

such as special education or honors courses, or teaching at a charter school. Second, we remove

observations where the associated teachers are not recorded as specifically teaching both math

and reading or as teaching a self-contained class. Third, we limit our sample of students to those

in grades 3-5 (since beyond elementary school students are more likely to have multiple teachers

in a given year), and keep observations where the associated teacher also only teaches in grades

3-5. In cases where teachers are recorded as teaching multiple grades, we identify the teacher’s

primary grade taught as the grade with the most students in it. We remove observations where

the teacher has less than half of their students in their primary grade or the teacher teaches both

grades 3 and 5. We also remove observations where the grade of the student does not match the

teacher’s primary grade taught. Finally, we restrict the sample to classrooms with more than 10

and no more than 24 valid student observations and where fewer than 50% of valid students are

gifted/talented.

A.8 Estimating Equation

ẏijt − ¯̇yjt =γL(zLit − z̄Ljt) + βL(¯̇yjtz
L
it − ẏijtz̄

L
jt)

+ γE(zEit − z̄Ejt) + βE(¯̇yjtz
E
it − ẏijtz̄

E
jt)

+ γU (zUit − z̄Ujt) + βU (¯̇yjtz
U
it − ẏijtz̄

U
jt)

+ π1(z̄
L
jtz

E
it − z̄Ejtz

L
it)

+ π2(z̄
L
jtz

U
it − z̄Ujtz

L
it)

+ π3(z̄
E
jtz

U
it − z̄Ujtz

E
it ) + ϵijt
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where zLit is student i’s lagged score, zEit is an indicator for economic disadvantage, and zUit is an

indicator for underrepresented minority; z̄jt are the respective classroom averages.

A.9 Appendix Tables

Table A1: Summary Statistics

p5 p25 p50 Mean SD p75 p95

Math score -1.58 -0.62 0.05 0.04 0.96 0.71 1.63
Reading score -1.65 -0.61 0.07 0.03 0.97 0.75 1.53
Grade 4 4 4 4.47 0.50 5 5
Econ. disadv. 0 0 0 0.46 0.50 1 1
URM 0 0 0 0.35 0.48 1 1
Female 0 0 0 0.49 0.50 1 1
Asian 0 0 0 0.02 0.14 0 0
other race/ethnicity 0 0 0 0.04 0.21 0 0
Class size 12 15 18 17.85 3.48 21 23

N = 544,546 student-years

Table A2: Classroom Characteristics by Difference in Teacher Quality Estimates (Math)

Teacher quality Class average

Teacher-years (N) α̂Het. − α̂No het. α̂Het. α̂No het. Lag score Econ. dis. URM

2611 < −0.02 -0.35 -0.32 0.01 0.58 0.53
5135 ≥ −0.02 & < 0.01 -0.16 -0.15 -0.02 0.50 0.41
10130 ≥ −0.01 & < 0 -0.02 -0.01 -0.03 0.46 0.33
8613 ≤ 0.01 & > 0 0.13 0.13 0.03 0.44 0.32
3483 ≤ 0.02 & > 0.01 0.27 0.25 0.15 0.44 0.35
1834 > 0.02 0.44 0.41 0.31 0.45 0.40

31806 Mean 0.03 0.03 0.03 0.47 0.36
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Table A3: Classroom Characteristics by Difference in Teacher Quality Estimates (Reading)

Teacher quality Class average

Teacher-years (N) α̂Het. − α̂No het. α̂Het. α̂No het. Lag score Econ. dis. URM

7101 < −0.02 -0.12 -0.08 0.03 0.50 0.39
4219 ≥ −0.02 & < 0.01 -0.02 -0.01 -0.02 0.48 0.35
5113 ≥ −0.01 & < 0 0.02 0.02 -0.02 0.47 0.34
4946 ≤ 0.01 & > 0 0.06 0.05 -0.02 0.46 0.35
3866 ≤ 0.02 & > 0.01 0.10 0.08 0.00 0.46 0.35
6561 > 0.02 0.21 0.17 0.12 0.44 0.37

31806 Mean 0.04 0.04 0.02 0.47 0.36

Table A4: AYP Difference-in-differences: # schools (# teachers) by subsample

Control Treated

2004 138 (1718) 101 (1612)
2005 118 (1063) 33 (188)
2006 76 (611) 51 (350)
2007 56 (509) 43 (336)
2008 53 (501) 23 (175)

Table A5: Impact of Accountability on Estimated Teacher Quality

Math Reading
No het. Het. No het. Het.

Treat × Post 0.03* 0.03* 0.01 0.04**
(0.01) (0.02) (0.01) (0.02)

N =7,661 teacher-years (4,206 unique teachers). Standard
errors clustered by school. All models include teacher and
year fixed effects.
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