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I Introduction

Regression discontinuity (RD) designs have become increasingly popular in empiri-

cal research over the past three decades (Cook (2008), Abadie and Cattaneo (2018),

Brodeur et al. (2020), Boon et al. (2021), and Wuepper and Finger (2023)). This

framework leverages plausibly exogenous discontinuities in treatment likelihood at

predetermined cutoffs to identify the causal effect of the treatment (Imbens and

Lemieux (2008), Abadie and Cattaneo (2018)). When the discontinuity in treat-

ment likelihood is fuzzy – i.e., some individuals on the treatment side of the cutoff do

not receive treatment while some individuals on the other side receive treatment – a

common approach is to use an instrumental variables (IV) design where being on the

treatment side of the cutoff is used as an instrument for receiving treatment (Imbens

and Lemieux (2008), Abadie and Cattaneo (2018)). While such fuzzy designs gen-

erally provide compelling evidence of the treatment effect, the IV estimator yields a

local average treatment effect (LATE) in two ways.

First, the estimated effects only apply to individuals for whom being on the treat-

ment side of the cutoff determines treatment status (Bertanha and Imbens (2020)).

Second, similar to sharp RD designs with perfect compliance, it is hard to generalize

these estimates to individuals identified for treatment who are away from the cut-

off (Angrist and Rokkanen (2015), Cattaneo et al. (2021), Dong and Lewbel (2015)).

Yet, understanding treatment effects beyond compliers at the cutoff is important from

a public policy perspective. For example, moving beyond LATE is necessary if one

wants to (1) assess how increasing compliance among those identified for treatment

may influence the effectiveness of the policy; (2) understand whether exemptions of-

ten incorporated into public policies indeed identify individuals less likely to benefit

from treatment; or (3) examine the effect of the treatment on individuals away from

the cutoff who typically have higher needs (e.g., educational), which is essential to

assess the overall benefits of the policy.

This paper addresses the locality issue by introducing a new estimator for use in a

fuzzy regression discontinuity setting that generates global treatment effect estimates.

The estimator jointly models the two potential outcomes and selection into treatment.

We then greatly restrict the set of potential control functions to ensure that our

estimator converges to a unique marginal treatment effect (MTE) function.

Although identification is obtained by restricting the set of potential control func-
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tions, we show that the estimator can be easily interpreted and motivated even in

cases where the true MTE function does not lie in this restricted set. For example, we

show that the estimator can be thought of as an extrapolation of the traditional fuzzy

regression discontinuity estimate, where the initial extrapolation to the non-compliers

at the threshold is done using existing approaches usually employed in the RCT set-

ting (e.g., Brinch et al. (2017); Kowalski (forthcoming)) and extrapolation away from

the threshold is done using the assumption that the amount of endogenous selection

stays constant. Similarly the estimator can also be interpreted as starting with an

observational study and then adjusting for bias using information at the discontinuity

in a similar fashion as Bertanha and Imbens (2020).

We also highlight two additional ways the approach can be motivated. First,

we show that the resulting estimate is the least complex model that is consistent

with the data observed. We then develop a Bayesian hierarchical model to contrast

our estimator with two alternative approaches: estimating the ATE assuming no

endogenous selection into treatment (e.g., ignoring the discontinuity) and estimating

the average treatment effect (ATE) using the local estimate at the discontinuity. We

then show that our estimator dominates these two alternatives, in that it has a lower

mean-squared error regardless of what hyperparameters are employed in the Bayesian

hierarchical model. We conclude our theoretical analysis by showing that no other

estimator dominates our proposed estimator, i.e., no alternative estimator has a lower

mean-squared error for all plausible hyperparameters.

We then use this estimator to examine the broader effects of early grade retention

policies in the United States. This application is important for two reasons. First,

this exercise has important implications for education policy in the United States: as

of 2020, about half of all states and the District of Columbia require or encourage

school districts to retain third-grade students who lag behind based on their third-

grade reading scores. There is growing literature examining the effects of these policies

using RD designs1, yet we know very little about their effects on students away from

the retention cutoff who have lower initial achievement.

Second, several early grade retention policies include “exemptions” to test score

thresholds, such as for students who have disabilities, who are recent English learners,

1For example, see Greene and Winters (2007), Winters and Greene (2012), Özek (2015), Schwerdt
et al. (2017), Figlio and Özek (2020) in Florida; Hwang and Koedel (2022) in Indiana; and Mumma
and Winters (2023) in Mississippi.
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or whose proficiency can be demonstrated with a teacher’s portfolio. As such, nearly

all existing RD studies on early grade retention rely on a fuzzy RD design to identify

the effect of retention on student outcomes. Yet we do not know if these exemptions

indeed identify students who are less likely to benefit from retention. We examine

these research questions using student-level administrative data from Florida, which

requires third graders to score at or above Level 2 (out of 5 achievement levels) on

the statewide reading test to be promoted to fourth grade.

Our findings suggest that the benefits of retention (1) are larger for students with

lower baseline reading achievement and (2) are indeed smaller for students exempt

from retention. Together, these results imply that the average treatment effect on the

treated (ATT) is much larger than the predicted effects that would come from remov-

ing the exemptions or increasing the passing threshold, i.e., the average treatment

effect on the control (ATC). For example, we find that, as currently implemented,

retaining students increases their sixth grade reading scores by 0.69σ, but further in-

creasing the threshold by 50 points (0.8σ, roughly equivalent to moving the threshold

from Level 2 to slightly above Level 3 on the third-grade reading test) and removing

exemptions would have no impact on the sixth grade reading scores of the newly

retained students. These findings also imply that existing studies on early grade re-

tention policies that rely on traditional fuzzy RD designs significantly underestimate

the benefits of retention. In particular, we show that the ATT estimates are roughly

20 percent larger than the LATE estimates of the retention effects on reading scores

in grades 4 through 8.

II Model and Estimation Approach

II.A Underlying Model and Assumptions

We use as our base model one of the canonical models used to consider the effect

of a binary treatment on a single outcome, and in particular the model that forms

the basis for marginal treatment effect (MTE) estimation (e.g., Heckman (2010);

Heckman and Vytlacil (2007a,b); Brinch et al. (2017); Mogstad et al. (2018); Kline

and Walters (2019)). Specifically, we assume that each individual is defined by four

variables: their outcome if they are not treated, the effect that the treatment has

on their outcome, their propensity to enroll in the treatment, and their value of the
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running variable; we denote these as µi, τi, ηi, and Zi, respectively. In other words, we

use µi to denote individual i’s outcome in the absence of treatment and τi to denote

the causal effect of the treatment on individual i’s outcome; clearly µi + τi is then

their outcome if they are treated.

Letting Ti be a dummy variable denoting whether someone is in the treatment or

control group, the observed outcome can be written as: Yi = µi+ τiTi. As is common

in the MTE literature, we further assume that treatment is determined according

the following choice equation: Ti = 1(ν∗(Zi) ≥ ηi) for some (unknown) function of

the running variable ν∗(Zi). As a researcher, we observe Yi, Ti, and Zi, but do not

observe the latent variables µi, τi, and ηi.

We then define following two conditional moments:

µ∗(η, Z) = E[µi|ηi = η, Zi = Z] and τ ∗(η, Z) = E[τi|ηi = η, Zi = Z] (1)

The function τ ∗(η, Z), in particular, corresponds to the marginal treatment effect

(MTE) function as defined in Heckman and Vytlacil (1999, 2005) and is generally

the object of interest itself or, more commonly, the objects of interest can be derived

from it. For example, full knowledge of the function τ ∗(η, Z) would allow one to

calculate the overall average treatment effect (ATE), the average treatment effect on

the treated (ATT), and the average treatment effect on the compliers (LATE), and

other estimands of interest. We use the star notation, i.e., denoting the functions as

µ∗ and τ ∗, to distinguish the true conditional moment functions from generic potential

conditional moment functions µ and τ .

While the conditional moment functions in Equation (1) correspond most closely

with the objects of interest, they are a bit removed from what is observed in the data.

We therefore also define two additional conditional moments, which are more closely

related to what we observe. These moments are defined as follows:

k∗
0(η, Z) = E[µi|ηi > η,Zi = Z] and k∗

1(η, Z) = E[µi + τi|ηi ≤ η, Zi = Z] (2)

In the method, we estimate k = (k0, k1) and then transform this estimate into an

estimate of τ . We denote the parameter space of k as K = K0 ×K1 and endow each

of the spaces Ki with the sup norm, i.e., ||ki||∞ = sup{|ki(η, Z)|}. Similarly, we will

note the implied parameter space of τ as T and also endow it with the sup norm.

In the definitions above, we implicitly assume that the conditional first moments
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exist. We make this assumption explicit below, along with the other assumptions we

use:

Assumption 1. E[µ2
i |ηi, Zi] < ∞ and E[τ 2i |ηi, Zi] < ∞ for all ηi ∈ (0, 1) and Zi ∈

Z ≡ (Z,Z).

Assumption 2. Zi is continuously distributed over Z with a strictly positive distri-

bution function and νi is continuously distributed conditional on Zi.

Assumption 3. Both µ∗(ηi, Zi) and τ ∗(ηi, Zi) are twice-continuously differentiable

functions of (ηi, Zi).

Assumption 4. ν∗(Zi) ∈ (0, 1) for all Zi and there exists a Z∗ ∈ Z such that:

lim
Zi↑Z∗

ν∗(Zi) ≡ pl < ph ≡ lim
Zi↓Z∗

ν∗(Zi)

Assumption 5. The parameter space V = V1 × V2, where:
2

ν(Zi) =

ν1(Zi) if Zi < Z∗

ν2(Zi) if Zi > Z∗

and where νi ∈ Vi. Let W2,2 be the Sobolov space of functions f : Z → R and ||f ||W2,2

be its norm, as defined in Freyberger and Masten (2019). Then Vi = {νi ∈ W2,2 :

||νi||W2,2 ≤ Vi} for some constant Vi. Furthermore, we will assume that ν∗ ∈ V.

Assumption 6. The parameter space K = K1 × K2. Let W2,2 be the Sobolov space

of functions f : (0, 1) × Z → R and ||f ||W2,2 be its norm, as defined in Freyberger

and Masten (2019). Then Ki = {ki ∈ W2,2 : ||ki||W2,2 ≤ Ki} for some constant Ki.

Furthermore, we will assume that k∗ ∈ K.

Assumptions 1 and 2 are both relatively benign assumptions; the first ensures that

we can use the standard asymptotic methods and the second ensures that asymptot-

ically there will be a large number of observations arbitrarily close to each point

Zi ∈ Z. The second also allows us to normalize ηi to be distributed uniformly from

(0, 1). With this standard normalization, the cutoff value ν∗(Zi) is equal to Pr(Ti|Zi),

i.e. to the propensity score.

2Note here that we leave ν(Z∗) undefined.
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The next two assumptions are reformulations of the standard assumptions re-

quired for RD designs. Assumption 3 captures the fact that the conditional moment

functions are continuous around the discontinuity, although we extend the assumption

such that the functions are continuous everywhere. We also require them to be twice-

continuously differentiable, which ensures that our penalty functional described below

to be well-defined. Assumption 4 captures the fact that it is a fuzzy RD context, in

that there is a point Z∗ at which the probability of treatment jumps discontinuously

and that for every value of the running variable there are both treated and untreated

individuals. We assume that there is a single discontinuity and that the probability

increases as one moves across the threshold from left to right, but the first is easy

to relax and the second is without loss of generality and so both are for expositional

ease.

Assumptions 5 and 6 are that the parameter space is compact, which helps ensure

that our non-parametric estimation approaches converge. As written, this assump-

tions permits us to consider uniform convergence and both could be relaxed if one

was only interested in pointwise convergence. By assuming that the true functions,

i.e., ν∗ and k∗, fall within the parameter space, these also capture the assumption

that the true functions are smooth.3

II.B Proposed Estimator

The key challenge is that the functions ki(η, Z) are not non-parametrically identified.

Roughly speaking, we will obtain identification by greatly restricting the set of pos-

sible functions we consider. In particular, we will restrict the set of k functions to be

those in which each of the ki(η, Z) functions are additively separable and linear in η,

i.e., that KR is defined as follows:4

KR = {k ∈ K|k0(η, Z) = αη + γ(Z) & k1(η, Z) = βη + δ(Z)} (3)

We discuss in the next section ways to this restriction can be justified and the esti-

mator interpreted even if the true functions do not satisfy this restriction, i.e., even

3This makes Assumption 3 redundant, but we included to more explicitly capture one of the main
assumptions of an RD design.

4This is equivalent to the restriction that µ(η, Z) = γ(Z)+α(1−2η) and τ(η, Z) = δ(Z)−γ(Z)+
α+ 2η(β − α).
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if k∗ /∈ KR.

Given this restriction, we define our estimator as follows:

Global Regression Discontinuity Design. Our proposed estimator consists of

three steps:

1. Estimate ν(Zi) as follows:

ν̂ = argmin
ν∈V

{∑
∀i

(
Ti−1(Zi > Z∗)·ν(Zi)

)
−1(Zi < Z∗)·ν(Zi)

)2
+Jν(ν)

}
(4)

for some penalty functional Jν.

2. Estimate k as follows:

k̂ = arg min
k∈KR

{∑
∀i

(
Yi−(1−Ti)·k0

(
ν̂(Zi), Zi

)
−Ti·k1

(
ν̂(Zi), Zi

))2
+Jk(k)

}
(5)

for some penalty functional Jk.

3. Estimate τ using k̂ as follows:

τ̂(η, Z) = T
(
k̂0, k̂1

)
(6)

where:

T (k0, k1) = k1 − k0 + η
∂k1
∂η

+ (1− η)
∂k0
∂η

(7)

= δ(Z)− γ(Z) + 2(β − α)η + α (8)

In our implementation, we let the the penalty functionals take the form:

Jν(ν) =

∫ [
ν ′′(Z)

]2
dZ (9)

Jk(k) =

∫ [
γ′′(Z)

]2
dZ +

∫ [
δ′′(Z)− γ′′(Z)

]2
dZ (10)

Most of the theoretical results are not dependent on this particular form of the penalty

function, however, and generally apply to any non-parametric approach to estimate

ν̂, δ̂, and γ̂. Note also that we penalize
∫
[δ′′(Z)−γ′′(Z)]2dZ rather than

∫
[δ′′(Z)]2dZ
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directly; this could roughly be thought of as separately penalizing the functions µ

and τ as defined in Equation (1) rather than separately penalizing the functions k0

and k1 as defined in Equation (2). Again, this choice matters for the implementation,

but not for the theoretical results.

Before discussing the interpretation of the estimator in the next section, we start

by showing that it is well-defined and consistent. That is, with enough data – gen-

erated according the assumptions in Section II.A – the estimator defined above will

result in an estimate of the marginal treatment effect (MTE) function that becomes

arbitrarily close to a unique MTE function, which we denote τ ∗GRDD.
5 The formal

theorem and a sketch of the proof are below, with the full proof in Appendix A:

Proposition 1. Let τ̂GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined above. Then given Assumptions 1 - 6, there exists τ ∗GRDD

such that τ̂GRDD
p→ τ ∗GRDD.

Proof Sketch. Our approach is to first show that there exists k∗
GRDD ∈ KR such that

that k̂
p→ k∗

GRDD and then appeal to the fact that T is continuous to conclude that

τ̂GRDD = T (k̂)
p→ T (k∗) ≡ τ ∗GRDD.

Showing that there exists such a k∗
GRDD can be done using the basic results about

extremum estimators, e.g., Theorem 2.1 of Newey and McFadden (1994). The only

component unique to this context is to show that with the restriction that k ∈ KR

we obtain identification, i.e., that there is a unique minimizer of the function that

Equation (5) converges to. For this, we rely on the fact that the probability of

treatment jumps at the discontinuity, which pins down the linear terms α and β.

Given these linear terms, we then can choose γ(Z) and δ(Z) to match the rest of the

observed moments and therefore minimize the function.

Based on this result, we will ignore the statistical uncertainty in the next section

and focus on ways to interpret and motivate τ ∗GRDD. We note, however, that the

method can improve precision over a traditional RDD; see Mulhern et al. (2023) for

more discussion about the relative precision of the estimates.

5To be clear, this choice of norms described in Section II.A implies that we define “arbitrarily

close” in a uniform sense, rather than a pointwise sense. Specifically, τ̂
p→ τ̂∗ means that for all

ϵ, δ > 0 there exists an N such that ∀n ≥ N we have that P
(
sup{|τ̂n(η, Z) − τ̂∗(η, Z)| : (η, Z) ∈

(0, 1)× Z} > ϵ
)
< δ.
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III Interpreting and Motivating the Estimator

In the previous section, we introduced the estimator and showed that it converges.

The fact it converges to a MTE function does not imply that it converges to the true

MTE function; however, and so we now discuss various ways this estimator can be

motivated and interpreted. First, we highlight that locally the estimator converges

to the true treatment effect even though it assumes – potentially incorrectly – that

the conditional moment functions are additively separable and linear in η. Formally,

we get that following theorem:6

Proposition 2. The estimated effect on the set of compliers at the Z∗ converges to

the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (11)

Of course, if all one was concerned about was the local average treatment effect,

one could instead use a traditional fuzzy RD estimator. In contrast to a traditional

fuzzy RD design, however, the global RD design also provides effect estimates away

from the complier population at the cutoff. We first discuss two alternative ways in

which these estimates can be interpreted and then discuss three ways our proposed

estimator can be motivated.

To do so, we first define two natural alternatives: (1) an observational study in

which one simply compares the the treatment average to control average at every

point Z ∈ Z and (2) a traditional fuzzy regression discontinuity design. Formally, we

get that:

τ ∗obs(η, Z) = E[Yi|Ti = 1, Zi = Z]− E[Yi|Ti = 0, Zi = Z] (12)

τ ∗RDD(η, Z) =
1

ph − pl

(
lim
Z↓Z∗

E[Yi|Zi = Z]− lim
Z↑Z∗

E[Yi|Zi = Z]

)
(13)

Note that although we define τ ∗obs and τ ∗RDD to be functions of (η, Z), τ ∗obs will not

vary based on η and τ ∗RDD will not vary based on η or Z.

In what follows, we will generally focus on the conditional average treatment effect

6This result is in many ways the RD version of Theorem 1 of Kline and Walters (2019); however,
since the RD design requires using observations “near” Z∗ to infer the moments at Z, the result
only holds asymptotically.
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(CATE) – conditioning on the value of the running variable – or τ(Z) ≡
∫ 1

0
τ(η, Z)dη.

The general idea can be extended to other estimands of interest and, given the con-

ditional effect estimates, it is straightforward to aggregate them to estimates of the

overall average treatment effect (ATE) or overall treatment on the treatment (ATT).

The interpretations and motivations discussed below therefore also hold for the overall

ATE, ATT, and other estimands of interest.

III.A Interpreting the Estimator

We start by discussing two potential alternative estimators and show that they are

in fact equivalent to the one proposed in Subsection II.B.

Bias-Adjusted Observational Study

Consider an alternative approach, where instead of employing the estimator de-

fined in Section II.B we start with the traditional estimator that simply uses the

observational data, i.e., τ ∗obs(Z). We then start by noting that this estimate is – by

definition – the true CATE plus a bias term. Given an estimate of the bias term, it

would therefore make sense to estimate the CATE as τ ∗obs(Z) minus an estimate of

the bias term. Of course, estimating the bias is quite challenging, but here we have

information at the discontinuity. In particular, we observe the true average treatment

effect on the compliers at the discontinuity. Roughly speaking, it seems reasonable to

estimate the bias in τ ∗obs(Z) by comparing the fuzzy RD estimate of the LATE to the

τ ∗obs(Z) estimates at the discontinuity. If the fuzzy RD estimates are identical to the

observational estimates at the cutoff, this suggests that the observational estimates

have minimal bias. In contrast, if the fuzzy RD design diverges from them at the

cutoff, this suggests that the observational estimates estimates are quite biased.

The arguments above suggests an approach where one: (i) first ignores the discon-

tinuity and uses the observational data to generate an estimate of the CATE function

using traditional approaches; (ii) then estimates the LATE using a traditional fuzzy

RD approach; (iii) then estimates the bias in the initially estimated CATE function

by comparing the LATE estimates to the CATE estimates at the discontinuity; and

(iv) generates the final estimates by adjusting the CATE estimates for the estimated

bias. While this seems a very different approach than the one defined in Section II.B,

as shown in the theorem below one can think of the proposed estimator as doing

exactly that.
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Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

the traditional observational study, as defined in Equation (12). We then have:

τ ∗GRDD(Z) = τ ∗obs(Z)− b (14)

where b is a measure of the bias in the observational estimates. Specifically, we have:

b = ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(15)

where ξi ∈ R is a function of ph, pl and ν(Z), and τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z) and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

Extrapolated Regression Discontinuity Design

Next, consider a third approach where one starts with the LATE estimate gener-

ated by the fuzzy regression discontinuity design. As discussed, however, the LATE

estimate is generally not sufficient because it is the local average treatment effect

rather than the global average; in the fuzzy RD context, locality refers both to the

estimate being local to the set of compliers and to the estimate being local to the

discontinuity. A natural approach is therefore to adjust the LATE estimate by first

extrapolating to an estimate of the CATE at the discontinuity and then extrapolating

away from the discontinuity.

Again, the challenge here is clearly how one can extrapolate from the LATE to

an estimate of the CATE at the discontinuity, as well as how one can extrapolate

the CATE away from the discontinuity. To guide this, however, there has been some

recent work exploring how to extrapolate from the average treatment effect on the

compliers to the average treatment effect on everyone (Brinch et al., 2017; Mogstad

et al., 2018; Kowalski, forthcoming; Opper, 2023). Furthermore, it seems reasonable

to extrapolate away from the discontinuity by comparing the τ ∗obs(Z) estimates. If we

consider the simple case in which the propensity scores are constant away from the

discontinuity, it seems reasonable to infer that if τ ∗obs(Z) is larger than than τ ∗obs(Z
′)

then it is more likely than not that the CATE at Z is larger than the CATE at Z ′.

In short, the above suggests an estimation approach that: (i) first estimates the

LATE using a traditional fuzzy RD approach; (ii) using the conditional moments at

the discontinuity, extrapolate the LATE estimate to an estimate of CATE using the
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linear approach in Brinch et al. (2017) and Kowalski (forthcoming); (iii) generate

an estimate of the τ ∗obs(Z) function using traditional approaches; and finally (iv) use

the estimates of the τ ∗obs(Z) function to adjust for differences in the CATE at the

discontinuity to those away from the discontinuity. Again, at first glance this seems

a very different approach than the one defined in Section II.B, but as we show in the

theorem below one could also think of the proposed estimator as doing exactly that.

Remark 2. Let τ ∗GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined in Section II.B, and τ ∗RDD be the estimate generated from

the traditional regression discontinuity design, as defined in Equation (13). We then

have:

τ ∗GRDD(Z) = τ ∗RDD + lC + lZ (16)

where lC adjusts for fact that τ ∗RDD is local to the set of compliers and lZ adjusts for

the fact that τ ∗RDD is local to the discontinuity. Specifically, we have that:

lC =
[
β∗ · (1− ph) + k∗

1(ph, Z
∗)
]
−
[
k∗
0(pl, Z

∗)− α∗ · pl
]
− τ ∗RDD (17)

lZ = τ ∗obs(Z)− τ ∗obs(Z
∗
h) + (α∗ − β∗) ·

(
ν(Z)− ph

)
(18)

where α∗ =
k∗0(ph,Z

∗)−k∗0(pl,Z
∗)

ph−pl
, β∗ =

k∗1(ph,Z
∗)−k∗1(pl,Z

∗)

ph−pl
.

III.B Motivating the Estimator

While the above subsection suggests that the proposed estimator can be interpreted

in two alternative and generally intuitive ways, it does not provide explicit rationale

for the proposed estimator. We now discuss three such motivations.

Additional Strong Assumptions

For this motivation, we simply add the required assumptions need to ensure that

the estimated MTE function our estimator converges to is in fact the true MTE

function. This result can be stated succinctly in the following theorem:

Proposition 3. Suppose that k∗ ∈ KR. Then the estimated MTE function converges

to the true MTE function, i.e., τ ∗GRDD = τ ∗.

The assumptions required for Theorem 3 are, in our opinion, relatively strong. As-

suming that k∗ ∈ KR amount to assuming that the true conditional moment functions

are indeed additively separable and linear in ν. It is worth emphasizing, however,
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that the assumption becomes much more tenable with the addition of covariates. For

example, if we only aim to extrapolate away from the cutoff and not to the set of

non-compliers, the assumption needed to generate consistent estimates away from

the cutoff is weaker than in Angrist and Rokkanen (2015). It is not the only way to

motivate the estimator, however, and we turn next to alternative motivations.

Preference for Less Complex Models

One motivation for the proposed estimator stems from a general preference for

less complex models (e.g., Hastie et al. (2009)). To formalize this, we need to develop

a way to compare the relative complexity of two models; in other words, we need to

define a relation ⪯ such that k ⪯ k′ iff k is a less complex model than k′. We will do

so, by first defining a triple for each model – c(k) = (c11, c12, c22) – where:

c11 = E

[∑
i=0,1

(
∂2

∂η2
ki(η, Z)

)2]
c12 = E

[∑
i=0,1

(
∂2

∂η∂Z
ki(η, Z)

)2]
c22 = E

[∑
i=0,1

(
∂2

∂Z2
ki(η, Z)

)2]

We then use a lexicographic order to compare the complexity of any two models.

Specifically, we say that model k is a less complex model than k′ – i.e., k ⪯ k′ – if: (i)

c11(k) < c11(k
′); (ii) c11(k) = c11(k

′) and c12(k) < c12(k
′); or (iii) c11(k) = c11(k

′) and

c12(k) = c12(k
′) and c22(k) ≤ c22(k

′). It follows that we can similarly write that k is

a strictly less complex model than k′ – i.e., k ≺ k′ – if k ⪯ k′ and c22(k) < c22(k
′).

Given this ordering, we can then motivate our estimator as being the least complex

model that is consistent with the observed data. More formally, we have the following

theorem:

Proposition 4. Define KD to be the k functions that are consistent with the true

conditional moments, i.e.,

KD =
{
k : E[Yi|ν(Zi), Zi, Ti] = (1−Ti)·k0

(
ν(Zi), Zi

)
+Ti·k1

(
ν(Zi), Zi

)
for all zi ∈ Z

}
Then τ ∗GRDD = T (k∗

GRDD) where k∗
GRDD is the minimum element of the preordered set(

KD,⪯
)
when the preorder ⪯ is defined as the lexicographic order on c(k), defined

above.

While we leave the proof of the theorem to Appendix A, we highlight a few aspects

of the theorem here. First, note that the proof states that k∗
GRDD is the minimum

element rather than a minimal element: In other words, the theorem states that every
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other model k consistent with the observed data is strictly more complex than k∗
GRDD.

We also want to acknowledge explicitly that it is not obvious that the lexicographic

ordering is the correct way to measure model complexity nor are we even arguing that

it is the right way to do so. Instead, the theorem states that if one believes that it

is the correct way to measure model complexity, then the estimator proposed in

Section II.B gives the least complex model consistent with the data. If one wants

to prioritize this motivation (the least complex model consistent with the observed

data) but prefers a different measure of model complexity, e.g., where the complexity

of model k is measured as c11(k) + c12(k) + c22(k), one could adjust the estimator

defined in Section II.B to allow for alternative measures of model complexity; see

Appendix B for the details. We have opted to define model complexity using the

lexicograph ordering as it makes it more clear how the conditional moments translate

into estimated effects – again, see Appendix B for more discussion – and because it

more readily permits the other motivations discussed below.7

Preferable to the Alternatives

As a final motivation, we compare the proposed estimator to alternative ap-

proaches – with a particular focus on the purely observational study and the tra-

ditional fuzzy regression discontinuity design defined formally in Equations (12) and

(13). A challenge is that we cannot expect the proposed estimator to be preferable

under all data generating processes; there are simply too many plausible data gener-

ating processes that are consistent with what is observed by the researcher for any

one estimator to dominate all others under all data generating processes.8 We there-

fore have to limit ourselves to the hope that the proposed estimator is preferable to

the alternatives on average or under most data generating process. Of course, doing

so requires that we define a probability measure over the data generating processes

itself – as opposed to just over the observed data conditional on the true underlying

moments – and a more precise definition of “preferable.”

7While we specify the lexicographic ordering such that we first compare c11(k) to c11(k
′) and

then compare c12(k) to c12(k
′), this decision is not particularly important and the proof under

the canonical fuzzy RDD setup also holds if the ordering under consideration instead first compares
c12(k) to c12(k

′) and then compares c11(k) to c11(k
′). However, that ordering does become important

if there are instead multiple discontinuities.
8For example, a traditional fuzzy RD design is preferable to the proposed estimator when the

true model is one in which the treatment effect is identical for everyone and selection varies based
on the value of the running variable; similarly, a purely observational study is preferable when the
true model is one in which there is large endogenous selection into the treatment at the discontinuity
and little selection away from the discontinuity.

15



III.B Motivating the Estimator Opper and Özek

To do so, we will assume that the conditional moments are generated according to

a modified Gaussian process (GP). Specifically, let k(ηi, Zi, Ti) = Tik1(ηi, Zi) + (1 −
Ti) · k0(ηi, Zi) and h(ηi, Zi) be the 1× 2 vector [1, ηi]. We then assume that:

kj(η, Z) = h(η, Z) · βj + k̃j(η, Z) (19)

where k̃j(η, Z) is generated according to a Gaussian process with mean zero and

covariance Cj for j ∈ {0, 1}.9 For the comparison with the traditional RD design, we

will restrict the class of Cj functions by assuming that Cj is stationary in Z (but not

necessarily in η) and that there is a large enough direct effect of Z on the moments

(as opposed to the interaction between Z and η). Formally, we make the assumption

that:

Cj

(
(Z, η), (Z ′, η′)

)
= Cj,Z(|Z − Z ′|)Cj,η(η, η

′) (20)

with Cj,Z(|Z−Z ′|) > 0 decreasing in |Z−Z ′| and Cj,η(η, η
′) = cη+f(η, η′)+ > 0 with

f decreasing in η and increasing in η′ if η > η′ and where cη – which corresponds to the

direct effect – is sufficiently large relative to the interaction term – i.e., max f(η, η′).

Finally, we will assume that βj ∼ N(0,Σβ) and will consider the uninformative prior

limit in which Σ−1
β → 0 where 0 is the zero-matrix.

In contrast to k, we will consider the function ν(Z) to be fixed and further as-

sume that (conditional on k) the rest of the data generating process accords to the

assumptions outlined in Section II.A.10 As before, we can transform any realization

of k into the implied marginal treatment effect function according to the bounded

linear operator T , defined in II.B, and so this process also defines a data generating

process over the marginal treatment effect functions.

As in Mogstad et al. (2018), we assume that the researcher is interested in some

summary measure of τ̂ ∗, defined as:

Γ(τ ∗) =

∫
Z

∫ 1

0

τ ∗(η, Z)ω(η, Z)dηdZ (21)

9The covariance is often referred as the “kernel” and denoted as K. We use the term “covariance”
and denote it as C to ensure it does not get confused with the conditional moment functions ki.

10We acknowledge some tension between the modified GP which generates k and the assumptions
in Section II.A that the conditional moments are bounded and twice-continuously differentiable. We
will ignore these subtleties for now, e.g., by implicitly putting restrictions on C to ensure the sample
paths are twice-continuously differentiable and allowing the bounds to differ for each realization of
the modified GP.
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for some weighting scheme ω(η, Z). For example, if ω(η, Z) equals the pdf of Zi,

then Γ(τ ∗) corresponds to the ATE. As discussed in Mogstad et al. (2018), different

weighting schemes generate other such parameters of interest. Given a realization of

the modified GP and its implied MTE function τ ∗ as well as an estimate of the MTE

function τ̂ ∗, we then define the loss as:

lk(τ̂
∗, τ ∗) =

(
Γ(τ ∗)− Γ(τ̂ ∗)

)2
(22)

We subscript the loss by k to make clear that lk(τ̂
∗, τ ∗) depends on the realization

of the modified GP. It is natural, therefore, to evaluate the performance of an esti-

mator using the expected loss, where the expectation is taken over realization of the

modified GP. Formally, consider any estimator τ̂alg, i.e., an algorithm to transform

the observed data to an estimate of the MTE function, and define its expected loss

as:

LC(τ̂alg) = E[lk(τ̂ ∗, τ ∗)] (23)

Note this depends on the covariance matrix of the GP, i.e., on C, since the expectation

depends on the assumed hyperparameters of the GP. We can now precisely define the

way in which the global RD design is preferred to the alternative approaches, as

evidence by the following theorem:

Proposition 5. We say that the estimator τ̂a dominates τ̂b iff LC(τ̂a) < LC(τ̂b)

for all C. Then:

1. The global RD design dominates the traditional observational study.

2. If ν(Z) = ph above the cutoff and ν(Z) = pl below the cutoff, the global RD

design dominates the traditional fuzzy regression discontinuity design.

3. No estimator dominates the global RD design.

Proof Sketch. For the first statement – that the global RD design dominates the

traditional observational study – we use the fact that the only difference between the

two estimates is a bias measure b; see Theorem 1. We then show that conditional on

the four moments observed at the discontinuity – i.e., k0(pl, Z
∗), k0(ph, Z

∗), k1(pl, Z
∗),

and k1(ph, Z
∗) – the global RDD approach generates unbiased estimates of τ(Z). This

suggests that the only difference between the two estimates is a bias term that exists in
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the observational study and is absent in the global RD design, which implies that the

global RDD estimates are preferred. Since this is true regardless of which moments

at the discontinuity are observed, it is true in expectation regardless of C.

For the second statement – that the global RD design dominates the traditional

fuzzy regression discontinuity design – we start by showing that instead of comparing

the global RDD estimator to a traditional RDD estimator, we can compare the global

RDD estimator to one that extrapolates from the observed moments at the cutoff to

the overall CATE at the cutoff, but – unlike the global RDD – does not use information

away from the cutoff to extrapolate away from the cutoff. Ignoring this information

means that expected loss is large as long as there is the possibility of direct effects

of the running variable on the condition moments. In this case, the proposed global

RDD dominates the version in which information away from the threshold is ignored,

which in turn dominates the traditional RDD. In other words, the condition that

the direct effect is large enough along with the assumption that ν(Z) = ph above

the cutoff and ν(Z) = pl below the cutoff, ensures that the best information about

k1(1, Z) – which we do not observe – is k1(ν(Z), Z) rather than some other value

k1(ν(Z
′), Z ′).

For the final statement – that no estimator dominates the global RD design – we

use the fact that if the true effects functions are separable and linear in η then the

global RDD gives rise to the true effect function; see Theorem 3. In this case, it is

clear that no estimator would be better and if C = Cz then the true effect functions

are guaranteed to be separable and linear in η. Thus, if C = Cz then the global RDD

estimator minimizes LC(τ̂alg) and so no estimator can dominate it.

IV Empirical Application: Grade Retention Poli-

cies

In this section, we present an application of our estimator in education policy: a

field where fuzzy RD design has become more popular with the increasing use of

student test score cutoffs (or performance index cutoffs based on student test scores)

to identify eligibility for educational interventions. In particular, we explore the

broader effects of test-based retention policies. As we detail below, there is extensive

18



IV.A Policy Background and Data Opper and Özek

literature examining the effects of grade retention on student outcomes using fuzzy RD

designs; however, these estimated effects often apply only to compliers (i.e., students

not exempt from retention) right below retention cutoffs. In this exercise, we ask

whether these effects differ for exempt students and for lower-performing students

identified for retention.

IV.A Policy Background and Data

Calls to end social promotion in schools in the 1990s and an increased popularity

of educational accountability and standardized testing led to test-based retention

policies in many states and school districts in the United States over the past three

decades. Perhaps the most influential of these policies has been Florida’s third grade

retention policy, which was enacted in 2002 and provided the blueprint for others

nationwide. This policy requires students who score in the lowest achievement level

on statewide reading test to repeat third grade and receive instructional support (e.g.,

additional instruction time in reading, being assigned to highly effective teachers).

There are several “good cause exemptions” that allow students to be promoted

to the fourth grade despite failing to score at the Level 2 benchmark or above. In

particular, students in the lowest achievement level in reading can be promoted to

fourth grade (1) if they have been in the English learner program for less than two

years; (2) if they have certain disabilities and have been already retained once until

third grade; (3) if they have received intensive reading remediation for two years

and have already been retained twice between kindergarten and third grade; (4) if

they demonstrate that they are reading at a level equal to or above a Level 2 on

the statewide reading test by performing at an acceptable level on an alternative

standardized reading assessment approved by the State Board of Education; or (5)

if they demonstrate proficiency through a teacher-developed portfolio. Despite these

exemptions, the policy has affected a significant share of third graders in the state: in

the first year of the policy, 21 percent of third graders were flagged for retention (i.e.,

scored below the retention cutoff) and 15 percent had to repeat third grade (Licalsi

et al. (2019)). Among those flagged for retention, one-third received an exemption

and were promoted to fourth grade. While retention rates gradually declined partly

due to improvements in reading achievement and the increase in exemption rates,

they remained sizable with roughly 10 percent of the third graders being retained in
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2021-22 school year.

Several studies have examined the effects of being retained (and receiving in-

structional support) under Florida’s retention policy on student outcomes using the

discontinuity in retention likelihood and RD designs (Greene and Winters (2007),

Winters and Greene (2012), Özek (2015), Schwerdt et al. (2017), Figlio and Özek

(2020)). The overarching conclusion is that retained students outperform their same-

age peers in the short term (one to three years), these achievement gains fade out

over time. That said, retained students under Florida’s retention policy significantly

outperform their promoted peers when they reach the same grade level, and are also

less likely to be retained in a later grade. While providing compelling evidence, by

using traditional RD designs these papers all focus on the complier population at the

discontinuity. In this paper, we use the proposed estimator to determine how these

benefits differ for students away from the cutoff and for students who were promoted

to fourth grade using exemptions.

To address these questions, we use student-level administrative data from a large

urban school district (LUSD) in Florida. In our analysis, we use students who entered

third grade for the first time between 2005-06 and 2010-11 school years and follow

them until 8th grade. Roughly 17 percent of these students were flagged for retention

and of those identified for retention, 38 percent were retained, corresponding to 7

percent of the third graders in these cohorts. Of those who were not flagged for

retention, a small number of students ( 1 percent) were retained regardless and so

there is two-sided non-compliance in this setting. Our main outcomes of interest are

standardized reading scores in grades 4 through 8.11

IV.B Results

Figures 1 and 2 (along with Table 1) present the estimated effects for exempt and

non-exempt students around and away from the retention cutoff in different ways.

The overarching conclusion from this analysis is that the impact of retaining students

11In the analysis that follows, we use a same-grade comparison: That is, we compare the test
scores of retained and promoted students when they reach the same grade level. Another approach
commonly used in the grade retention literature is to compare the test scores of treated and com-
parison students in years following the treatment (i.e., same-age comparison). We prefer the former
approach as we see additional time provided to retained students as part of the treatment. That said,
we also conducted a same-age comparison (results available upon request) and the main conclusions
remain unchanged.
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is largest for those with the lower third grade reading scores and for those who –

conditional on their third-grade reading score – are most likely to be retained.

For example, Figure 1 shows how the conditional average treatment effect on

the treated individuals depends on third grade reading scores. Specifically, the solid

line shows how the estimated effect – formally E[τi|Zi = Z, Ti = 1]) – depends on

the value of the running variable (Zi, third grade reading scale scores centered at

the retention cutoff). The dashed lines indicate the 95 percent point-wise confidence

interval and were using a Bayesian bootstrap procedure, in which we repeatedly (n =

100) drew weights for each student from a Dirichlet distribution and estimate τ̂ using

the procedure defined in Section II.B. The dashed lines then illustrate the range of

these estimates.12

The results in Figure 1 suggest that the positive effects of retention on fourth grade

reading scores monotonically decline with students’ baseline reading achievement. At

the cutoff, we find that retention increases fourth grade reading scores by roughly 0.9σ,

which is consistent with the effect sizes found in the previous literature (Schwerdt et

al. (2017), Figlio and Özek (2020)). This benefit grows to 1.2σ for students whose

third grade reading scores fell 25 points below the cutoff, and to 1.4σ for students 50

points below the cutoff. In contrast, the positive effects decline to 0.8σ for students

25 points above the cutoff and to 0.6σ for those 50 points above. Since most students

who are retained are below the cutoff, these findings suggest that the LATE estimates

presented in prior RD studies in this context significantly underestimate the overall

benefits of retention in the short term.

It is also clear from Figure 1 that at the discontinuity, the effect on the treated

individuals jumps. This stems from the fact that, by construction, the characteristics

of the treated population discontinuously change at the threshold. We illustrate the

effect of this more directly in Figure 2, which illustrates how τ̂(η, Z) varies by both

Z and η. In this exercise, ηi can be interpreted as ”promotion likelihood”: a student

is retained if and only if their ηi falls below a given cutoff. In other words, effect

estimates for higher values of ηi indicate the retention effect for students who are

least likely to be retained and vice versa. In this graph, each line corresponds to a set

of (ηi, Zi) values with the same estimated effect. There are two important takeaways

from this figure.

12We used a Bayesian bootstrap instead of a traditional bootstrap to ensure that in every iteration
there was two-sided imperfect compliance at the discontinuity.
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First, consistent with Figure 1, the estimated effect declines as students’ baseline

reading achievement increases (moving from left to right). Second, we also observe

that students who are less likely to receive an exemption and be promoted to fourth

grade benefit significantly more from retention. For example, at the retention cutoff,

the average effect for students who are least likely to be retained (ηi=1) is roughly

0.3σ where the average effect for those most likely to be retained (ηi=0) is 1σ. This

finding suggest that the exemptions to the retention rule incorporated into Florida’s

policy indeed identify students who are least likely to benefit from retention. That

said, exempt students with lower baseline achievement would still benefit from re-

tention: the effect of retention on students 25 points below the cutoff who are most

likely to receive an exemption is nearly 0.7σ while the effect for exempt students 50

points below the cutoff is roughly equivalent to the effect of retention for non-exempt

students at the cutoff.

Table 1 extends this analysis to reading scores in grades 4 through 8 under different

scenarios for treatment assignment. In the first column, we present the treatment

effects under optimal treatment assignment (i.e., keeping the retention rate constant,

yet assigning the individuals who would benefit most from retention). The second

column presents the average treatment effect under the realized treatment assignment

(average treatment effect on the treated or ATT); the third column gives the estimated

effect on the complier population at the threshold (or LATE); the fourth gives the

average treatment effect if students were randomly retained (overall average treatment

effect on the treated or ATE); and the last column provides the average treatment

effect if those who are not retained under the realized treatment assignment were

retained (average treatment effect on the controls or ATC).

The results suggest that the realized assignment is nearly equivalent to the optimal

assignment. In particular, average treatment effects under realized assignment are

larger than 77 percent of the average treatment effects under optimal assignment in

all cases. It also suggests that the ATT is larger than the LATE, implying that the

policy increases test scores of those retained by more than has been shown in previous

studies which use an RD approach to identify the LATE. However, the results in the

last column shows that expanding the program would have minimal effects in the years

after the student was retained and that these effects fade-out completely by sixth-

grade. This suggests that Florida’s policy is quite successful in identifying students

most likely to benefit from retention.
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V Conclusion

The trade-off between internal and external validity is a common issue in causal in-

ference. In the context of RD design, this trade-off manifests itself in two ways. First,

the RD estimates obtained using traditional methods only apply to individuals iden-

tified for treatment within a small bandwidth around the treatment cutoff. Second, in

many RD applications, treatment assignment is fuzzy: that is, being on the treatment

side of the cutoff does not fully determine treatment status due to non-compliance

or policy-dictated exemptions. In those settings, it is hard to generalize traditional

RD estimates to non-compliers. That said, understanding treatment effects beyond

compliers around the treatment cutoff is critical from a public policy perspective in

many settings for several reasons.

In this study, we propose a new method for use in fuzzy RD settings, which we

call global regression discontinuity design, to address this issue. The estimator can

be thought of either as a bias-adjusted observational study or an extrapolation of the

traditional fuzzy regression discontinuity estimate (first to non-compliers at the cutoff

and then to individuals away from the cutoff). We show that it can be motivated

as being the least complex model consistent with the data or as an estimator that

generates better estimates (on average) than either of the traditional approaches.

We further show theoretically that no other estimators consistently generate better

estimates than our proposed estimator.

We then present an application of this method in education policy. In particular,

we examine the broader effects of early grade retention policies, which often require

students to score above a predetermined threshold on third-grade reading tests to

be promoted to fourth grade, on student outcomes using student-level data from

Florida. Several prior students have addressed this question using traditional RD

designs and found significant benefits. Here, we ask how these benefits differ for

lower-performing students away from the cutoff and for low-performing students who

were promoted using exemptions. We find that the positive effects of retention are

larger for students with lower baseline reading achievement and smaller for student

exempt from retention. Our findings also suggest that retaining more students, by

either increasing the threshold or removing exemptions, would have limited effect on

the newly retained students.
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VI Graphs and Tables

VI.A Graphs

Figure 1: Average Treatment Effect on the Treated
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Note: The figure plots how the estimated the conditional average treatment effect
on the treated varies with the running variable. Specifically, the solid line shows the
estimated Ê[τi|Zi = Z, Ti = 1] and the dashed lines indicated the 95% confidence
interval, estimated via a Bayesian bootstrap with school-level clustering.
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Figure 2: Estimates of τ(η, Z)
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Note: The figure illustrates how τ̂(η, Z) = E[τi|ηi = η, Zi = Z] varies with both Z
and η. Each line corresponds to a set of (η, Z) values with the same value of τ̂(η, Z).
Roughly speaking, ηi is a latent variable that serves as a measure of how likely an
individual is to enroll in the treatment; individuals’ with low values of ηi are more
likely to enroll than individuals with high values and so it is sometimes referred to as
the “latent cost” of enrolling. See Section II.A for the formal definition.
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VI.B Tables

Table 1: Average Effect with Different Treatment Assignments

Optimal Realized Local Random Program
Assignment Assignment Effect Assignment Expansion

(ATT) (LATE) (ATE) (ATC)

Grade 4 1.36 1.11 0.90 0.50 0.42
(0.42) (0.11) (0.12) (0.47) (0.53)

Grade 5 0.84 0.74 0.62 0.37 0.31
(0.15) (0.11) (0.11) (0.27) (0.33)

Grade 6 0.69 0.61 0.53 0.07 −0.00
(0.11) (0.09) (0.11) (0.35) (0.39)

Grade 7 0.53 0.45 0.36 0.01 −0.04
(0.11) (0.10) (0.09) (0.37) (0.41)

Grade 8 0.61 0.47 0.39 0.12 0.08
(0.22) (0.11) (0.08) (0.44) (0.48)

Note: Standard errors, generated via a Bayesian bootstrap procedure, are shown in
parentheses. Optimal Assignment keeps the fraction of individuals treated fixed, but
assigns the individuals with the highest treatment effects to the treatment. Realized
Assignment is the average treatment effect of the realized assignment, which cor-
responds to the average treatment on the treated (ATT). Local Effect corresponds
to the effect of the program on compliers at the treatment threshold (LATE). Ran-
dom Assignment is the average treatment effect if treatment was assigned randomly,
which corresponds to the overall average treatment on the treated (ATE). Program
Expansion is the average treatment effect if treatment expanded to the individuals
not currently receiving the treatment and corresponds to the average treatment on
the controls (ATC).
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Figlio, David and Umut Özek, “An extra year to learn English? Early grade

retention and the human capital development of English learners,” Journal of Public

Economics, 2020, 186, 104184.

Freyberger, Joachim and Matthew A. Masten, “A practical guide to compact

infinite dimensional parameter spaces,” Econometric Reviews, 2019, 38 (9), 979–

1006.

Greene, Jay and Marcus Winters, “Revisiting grade retention: An evaluation of

Florida’s test-based promotion policy,” Education Finance and Policy, 2007, 2 (4),

319–340.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer

Series in Statistics, 2009.

Heckman, James J., “Building Bridges Between Structural and Program Evalua-

tion Approaches to Evaluating Policy,” Journal of Economic Literature, 2010, 48

(2), 356–398.

and Edward J. Vytlacil, “Econometric Evaluation of Social Programs, Part

I: Causal Models, Structural Models and Econometric Policy Evaluation,” in J. J.

Heckman and E. E. Leamer, eds., Handbook of Econometrics, Vol. 6, Elsevier, 2007,

chapter 70, pp. 4779–4874.

and , “Econometric Evaluation of Social Programs, Part II: Using the Marginal

Treat- ment Effect to Organize Alternative Econometric Estimators to Evaluate

Social Programs, and to Forecast Their Effects in New Environments,” in J. J.

Heckman and E. E. Leamer, eds., Handbook of Econometrics, Vol. 6, Elsevier,

2007, chapter 71, pp. 4785–5143.

and Edward Vytlacil, “Local Instrumental Variables and Latent Variable Mod-

els for Identifying and Bounding Treatment Effects,” Proceedings of the National

Academy of Sciences, 1999, 96 (8), 4730–4734.

and , “Structural Equations, Treatment Effects, and Econometric Policy Eval-

uation,” Econometrica, 2005, 73 (3), 669–738.

28



REFERENCES Opper and Özek
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A Proofs

A.A Main Proofs

Proposition 1. Let τ̂GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined above. Then given Assumptions 1 - 6, there exists τ ∗GRDD

such that τ̂GRDD
p→ τ ∗GRDD.

Proof. Our approach is to first show that there exists k∗
GRDD ∈ KR such that that

k̂
p→ k∗

GRDD and then appeal to the fact that T is continuous to conclude that τ̂GRDD =

T (k̂)
p→ T (k∗

GRDD) ≡ τ ∗GRDD.

To show that there exists such a k∗
GRDD, we first add a bit of notation. We let:

Q̂n(k) =
1

n

{∑
∀i

(
Yi − (1− Ti) · k0

(
ν̂(Zi), Zi

)
− Ti · k1

(
ν̂(Zi), Zi

))2
+ Jm(k)

}
(24)

and so k̂ minimizes Q̂n subject to the constraint that k̂ ∈ KR. Similarly, we let Q0(k)

be defined as:

Q0(k) = E

[(
Yi − (1− Ti) · k0

(
ν(Zi), Zi

)
− Ti · k1

(
ν(Zi), Zi

))2]
(25)

We then show that four assumptions in Theorem 2.1 of Newey and McFadden (1994)

hold, i.e., that: (i) Q0(k) has a unique minimum among k ∈ KR; (ii) KR is compact;

(iii) Q0(k) is continuous; and (iv) supk∈KR
|Q̂n(k) − Q0(k)|

p→ 0. Since the four

assumptions hold, we can then conclude that k̂
p→ k̂∗ for the unique k̂∗ ∈ KR that

minimizes Q0(k).

The proofs that conditions (iii) is straightforward to show and condition (ii) follows

from Assumption 6. Furthermore, from Lemma 1 and the law of large number, we

get that condition (iv) holds.

The only condition whose proof is unique to the this context is (i), i.e., that Q0(k)

has a unique minimum when we restrict the possible functions to the set KR. We

show in Lemma 2 that there exists a single k ∈ KR in which:

E[Yi|Zi, η, Ti] =
(
1− Ti

)
·
(
α∗η + γ∗(Z)

)
− Ti ·

(
β∗η + δ∗(Z)

)
(26)

for all observed points Z. This then is clearly the k that minimizes Q0(k) subject to
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the constraint that k ∈ KR, i.e., is k
∗
GRDD.

Finally, while not technically required for this proof, we can show that the T

operator is the correct operator by noting that:

∂k∗
0(η, Z)

∂η
=

∂

∂η

(
1

1− η

∫ 1

η

µ∗(η̃, Z)dη̃

)
(27)

=
1

1− η

(
k∗
0(η, Z)− µ∗(η, Z)

)
(28)

and

∂k∗
1(η, Z)

∂η
=

∂

∂η

(
1

η

∫ η

0

µ∗(η̃, Z) + τ ∗(η̃, Z)dη̃

)
(29)

=
1

η

(
µ∗(η̃, Z) + τ ∗(η̃, Z)− k∗

1(η, Z)

)
(30)

from which we can do some algebra to get the result.

Proposition 2. The estimated effect on the set of compliers at the Z∗ converges to

the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (11)

Proof. We start by noting that:∫ ph

pl

τ ∗(η, Z∗)dη =
(
phk

∗
1(ph, Z

∗)−plk
∗
1(pl, Z

∗)
)
−
(
(1−pl)k

∗
0(pl, Z

∗)−(1−ph)k
∗
0(pl, Z

∗)
)

and we can similarly write
∫ ph
pl

τ ∗GRDD(η, Z
∗)dη as an expression of the k∗

GRDD obser-

vations as (ph, Z
∗) and (pl, Z

∗).

From the proof of Theorem 1, however, it is clear that k∗
GRDD equals k∗ at every

observed point, i.e., at every point (ν(Z), Z). Since both (ph, Z
∗) and (pl, Z

∗) are

observed points - by definition of ph and pl in Assumption 4 – the theorem follows.

Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

32



A.A Main Proofs Opper and Özek

the traditional observational study, as defined in Equation (12). We then have:

τ ∗GRDD(Z) = τ ∗obs(Z)− b (14)

where b is a measure of the bias in the observational estimates. Specifically, we have:

b = ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(15)

where ξi ∈ R is a function of ph, pl and ν(Z), and τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z) and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

Proof. We start by rearranging the traditional RD estimate to show that:

τ ∗RDD = τ ∗obs(Z
∗
l ) +

k∗
0(ph, Z

∗)− k∗
0(pl, Z

∗)

ph − pl
· (1− ph) +

k∗
1(ph, Z

∗)− k∗
1(pl, Z

∗)

ph − pl
· ph

= τ ∗obs(Z
∗
h) +

k∗
0(ph, Z

∗)− k∗
0(pl, Z

∗)

ph − pl
· (1− pl) +

k∗
1(ph, Z

∗)− k∗
1(pl, Z

∗)

ph − pl
· pl

where k∗ are the true conditional moments at the specified points, which are observed

by the assumptions regarding the regression discontinuity design.

We next note that in the global regression discontinuity design we restrict the

functional form of the estimated moments to be of the form: k0(ν(Z), Z) = αν(Z) +

γ(Z) and k1(ν(Z), Z) = βν(Z) + δ(Z). Thus, we get that:

τ ∗GRDD(Z) = k1(1, Z)− k0(0, Z)

=
(
k1(1, Z)− k1(ν(Z), Z)

)
+
(
k1(ν(Z), Z)− k0(ν(Z), Z)

)
+
(
k0(ν(Z), Z)− k0(0, Z)

)
=
(
1− ν(Z)

)
· β + τ ∗obs(Z) + ν(Z) · α

We then connect the traditional RDD and the Global RDD estimate by noting

that the GRDD estimation implies that:

α =
k∗
0(ph, Z

∗)− k∗
0(pl, Z

∗)

ph − pl
and β =

k∗
1(ph, Z

∗)− k∗
1(pl, Z

∗)

ph − pl
(31)

Thus, we get that [
1− ph ph

1− pl pl

][
α

β

]
=

[
τ ∗RDD − τ ∗obs(Z

∗
l )

τ ∗RDD − τ ∗obs(Z
∗
h)

]
(32)
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Solving for α and β and then plugging those into the equation for τ ∗GRDD(Z), we

finally get that:

τ ∗GRDD(Z) = τ ∗obs(Z) +

(
ph · ν(Z)− (1− ph) · (1− ν(Z))

ph − pl

)
·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)

+

(
(1− pl) · (1− ν(Z))− pl · ν(Z)

ph − pl

)
·
(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

Remark 2. Let τ ∗GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined in Section II.B, and τ ∗RDD be the estimate generated from

the traditional regression discontinuity design, as defined in Equation (13). We then

have:

τ ∗GRDD(Z) = τ ∗RDD + lC + lZ (16)

where lC adjusts for fact that τ ∗RDD is local to the set of compliers and lZ adjusts for

the fact that τ ∗RDD is local to the discontinuity. Specifically, we have that:

lC =
[
β∗ · (1− ph) + k∗

1(ph, Z
∗)
]
−
[
k∗
0(pl, Z

∗)− α∗ · pl
]
− τ ∗RDD (17)

lZ = τ ∗obs(Z)− τ ∗obs(Z
∗
h) + (α∗ − β∗) ·

(
ν(Z)− ph

)
(18)

where α∗ =
k∗0(ph,Z

∗)−k∗0(pl,Z
∗)

ph−pl
, β∗ =

k∗1(ph,Z
∗)−k∗1(pl,Z

∗)

ph−pl
.

Proof. From the previous theorem, we can write that:

τ ∗GRDD(Z) = τ ∗obs(Z) + β∗ ·
(
1− ν(Z)

)
+ α∗ · ν(Z) (33)

where α∗ and β∗ are defined in the statement of the theorem. We then note that by

definition:

τ ∗obs(Z) = k∗
1

(
ν(Z), Z

)
− k∗

0

(
ν(Z), Z

)
(34)

Using the fact that k∗
0(pl, Z

∗)− α∗ · pl = k∗
0(ph, Z

∗)− α∗ · ph, we get that:

τ ∗RDD + lc = τ ∗obs(Zh) + β∗ ·
(
1− ph

)
+ α∗ · ph (35)
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and so:

τ ∗GRDD(Z) = τ ∗RDD + lc +
[
τ ∗obs(Z) + β∗ ·

(
1− ν(Z)

)
+ α∗ · ν(Z)

]
−
[
τ ∗obs(Zh) + β∗ ·

(
1− ph

)
+ α∗ · ph

]
(36)

= τ ∗RDD + lc +
[
τ ∗obs(Z)− τ ∗obs(Zh) +

(
α∗ − β∗) · (ν(Z)− ph

)]
(37)

Proposition 3. Suppose that k∗ ∈ KR. Then the estimated MTE function converges

to the true MTE function, i.e., τ ∗GRDD = τ ∗.

Proof. This follows directly from the fact that k∗
GRDD is the only k ∈ KR such that

k∗
GRDD

(
ν(Z), Z

)
= k∗(ν(Z), Z), i.e., from Theorem 1 and Lemma 2.

Proposition 4. Define KD to be the k functions that are consistent with the true

conditional moments, i.e.,

KD =
{
k : E[Yi|ν(Zi), Zi, Ti] = (1−Ti)·k0

(
ν(Zi), Zi

)
+Ti·k1

(
ν(Zi), Zi

)
for all zi ∈ Z

}
Then τ ∗GRDD = T (k∗

GRDD) where k∗
GRDD is the minimum element of the preordered set(

KD,⪯
)
when the preorder ⪯ is defined as the lexicographic order on c(k), defined

above.

Proof. From the proof of Theorem 1, we get that k∗
GRDD ∈ KD. We therefore only

need to show that any other k ∈ KD is such that c(k∗
GRDD) ⪯ c(k). This again

follows directly from Theorem 1, which shows that k∗
GRDD is the only function that

is both separable and linear in η and is in KD. Thus, any other k ∈ KD has either

c11(k) > c11(k
∗
GRDD) or c11(k) = c11(k

∗
GRDD) and c12(k) > c12(k

∗
GRDD), which implies

that c(k∗
GRDD) ⪯ c(k).

Proposition 5. We say that the estimator τ̂a dominates τ̂b iff LC(τ̂a) < LC(τ̂b)

for all C. Then:

1. The global RD design dominates the traditional observational study.

2. If ν(Z) = ph above the cutoff and ν(Z) = pl below the cutoff, the global RD

design dominates the traditional fuzzy regression discontinuity design.

3. No estimator dominates the global RD design.
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Proof. For the proof, we will assume that ω(η, Z) = 1, e.g., we are interested in the

ATE and Z is uniformly distributed, but this is just to simplify notation and the

results extend to other choices of ω.

For the first part, we start by noting that at any Z, we can re-write
∫ 1

0
τ ∗GRDD(η, Z)dη =

αν(Z) + β(1 − ν(Z)) + k∗
1(ν(Z), Z) − k∗

0(ν(Z), Z), where α and β are defined as in

Theorem 2. Notably, we can use the true conditional moment conditions k∗
i (ν(Z), Z)

since those are the conditional moments that are observe; see proof of Theorem 1.

Since
∫ 1

0
τ ∗(η, Z)dη = k∗

1(1, Z)− k∗
0(0, Z), we can therefore re-write the loss function

as:

lk(τGRDD, τ
∗) =

(∫
α(ν(Z) + β

(
1− ν(Z)

)
−∆k∗(ν(Z), Z)dZ

)2

(38)

where

∆k∗(Z) ≡
(
k∗
1(1, Z)− k∗

1(ν(Z), Z)
)
−
(
k∗
0(0, Z)− k∗

0(ν(Z), Z)
)

(39)

. We can similarly write the loss function when using τobs as:

lk(τobs, τ
∗) =

(∫
∆k∗(Z)dZ

)2

(40)

Now, rather than considering E[lk(τ ∗GRDD, τ
∗)], we consider the conditional ex-

pectation when conditioning on the four observed moments at the discontinuity, i.e.,

k∗
1(ph, Z

∗), k∗
0(ph, Z

∗), k∗
1(pl, Z

∗), and k∗
0(pl, Z

∗); we will refer to the vector of all four

of these moments as k∗. Note that when conditioning on these moments, both α and

β are deterministic. From the modified GP, we therefore get that
k∗
0(0, Z)

k∗
0(ν(Z), Z)

k∗
1(1, Z)

k∗
1(ν(Z), Z)

 ∼ N

(
k∗
0(pl, Z

∗)− αpl

k∗
0(pl, Z

∗)− αpl + αν(Z)

k∗
0(pl, Z

∗)− (1− pl)β

k∗
0(pl, Z

∗)− (1− pl)β + β(1− ν(Z))

 ,ΣC(Z)

)
(41)

where ΣC(Z) is some positive definite covariance matrix that depends on the assumed

covariance function C. See, for example, Equations (2.41) and (2.42) in Rasmussen

and Williams (2006) and note that when conditioning only on k∗ the linear model

perfectly predicts the data. This means that, in their notation, y = HTβ, which
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implies that g(X∗) = HT
∗ β and that weights K−1

y in the formula for the limiting β do

not matter.

Thus, we get that:

∆k∗(Z)|k∗ ∼ N
(
α(ν(Z) + β

(
1− ν(Z)

)
, σ2

C(Z)
)

(42)

where σ2
C(Z) depends on the assumed covariance function C.

We can extend this to get that for any finite number of points, we have that:

∆k∗(Zi)|k∗ ∼ N
(
α(ν(Zi) + β

(
1− ν(Zi)

)
,ΣC

)
(43)

where ΣC is a (potentially large) covariance matrix.

Thus, we can conclude that:

E
[
lk(τGRDD, τ

∗)|k∗] = E

[(∫
α(ν(Z) + β

(
1− ν(Z)

)
−∆k∗(ν(Z), Z)dZ

)2∣∣∣∣∣k∗

]
(44)

= lim
N→∞

E

[(
1

N

N−1∑
j=1

α(ν(Zj) + β
(
1− ν(Zj)

)
−∆k∗(ν(Zj), Zj)

)2]
(45)

= lim
N→∞

1ΣC1
′

N2
(46)

and

E
[
lk(τobs, τ

∗)|k∗] = E

[(∫
∆k∗(ν(Z), Z)dZ

)2∣∣∣∣∣k∗

]
(47)

= lim
N→∞

E

[(
1

N

N−1∑
j=1

∆k∗(ν(Zj), Zj)

)2∣∣∣∣∣k∗

]
(48)

= lim
N→∞

1

N

N−1∑
j=1

(
α(ν(Zj) + β

(
1− ν(Zj)

))2
+

1ΣC1
′

N2
(49)

where Zj = Z + j
N
· (Z − Z) and 1 is a vector of ones.

Thus, we have that E[lk(τGRDD, τ
∗)|k∗] < E[lk(τobs, τ ∗)|k∗] for almost every k∗.

The one exception is when k∗ is such that α = β = 0; however, this is a zero-
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probability event under our assumed GP. It is must therefore the case that:

LC(τGRDD) = E
[
E[lk(τGRDD, τ

∗)|k∗]
]
< E

[
E[lk(τGRDD, τ

∗)|k∗]
]
= LC(τobs) (50)

for every C.

We take a similar approach to show that τGRDD dominates τRDD. For this, we

start by noting that:

τRDD(Z)− τ ∗(Z) =
(
τRDD(Z)− τGRDD(Z

∗)
)
+
(
τGRDD(Z

∗)− τ ∗(Z)
)

(51)

where τGRDD(Z
∗) is the GRDD effect estimate at Z∗, which is equal to both αph +

β(1− ph) + k∗
1(ph, Z

∗)− k∗
0(ph, Z

∗) and αpl + β(1− pl) + k∗
1(pl, Z

∗)− k∗
0(pl, Z

∗).

Again conditioning on k∗, we can get that:

E
[(
τRDD(Z)− τGRDD(Z

∗)
)
·
(
τGRDD(Z

∗)− τ ∗(Z)
)]

= (52)

E
[
E
[(
τRDD(Z)− τGRDD(Z

∗)
)
·
(
τGRDD(Z

∗)− τ ∗(Z)
)
|k∗]
]]

= (53)

E
[(
τRDD(Z)− τGRDD(Z

∗)
)
· E
[(
τGRDD(Z

∗)− τ ∗(Z)
)
|k∗]
]]

= 0 (54)

which stems from the fact that conditional on k∗, both τGRDD(Z
∗) and τRDD(Z) are

deterministic and – for the same reasons above – that E
[(
τGRDD(Z

∗)−τ ∗(Z)
)
|k∗]
]
= 0

for all k∗. Thus, we can need only to show that V
( ∫

τGRDD(Z
∗) − τ ∗(Z)dZ

)
>

V
( ∫

τGRDD(Z)− τ ∗(Z)dZ
)
to conclude that τGRDD dominates τRDD.

For this, we start by noting that:

V
(∫

τGRDD(Z)− τ ∗(Z)dZ
)
= V

(∫
αν(Z) + β

(
1− ν(Z)

)
+∆k∗(ν(Z), Z)dZ

)
(55)

= V

(∫
∆k∗(ν(Z), Z)

)
− V

(∫
αν(Z) + β

(
1− ν(Z)

)
dZ

)
(56)

because:

C
(∫

αν(Z)+β
(
1−ν(Z)dZ,

∫
∆k∗(ν(Z), Z)dZ

)
= −V

(∫
αν(Z)+β

(
1−ν(Z)

)
dZ
)

(57)

which in turn follows from the fact that E
[∑N−1

j=1 ∆k∗(ν(Zj), Zj)|k∗] = −αν(Zj) −
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β
(
1− ν(Zj).

13

We then note that the analysis of V
( ∫

τGRDD(Z
∗)− τ ∗(Z)dZ

)
is nearly identical.

The only difference is that instead of using
(
k∗
1(1, Z) − k∗

1(ν(Z), Z)
)
−
(
k∗
0(0, Z) −

k∗
0(ν(Z), Z)

)
for ∆k∗(ν(Zj), Zj), we use

(
k∗
1(1, Z) − k∗

1(ν(Z
∗), Z∗)

)
−
(
k∗
0(0, Z) −

k∗
0(ν(Z

∗), Z∗)
)
. In particular, we have that – under the assumption that ν(Z) is

constant above and below the cutoff – the second term in Equation (56) is the same

for both approaches and so we need only compare:

V
(∫ (

k∗
1(1, Z)− k∗

1(ν(Z), Z)
)
+
(
k∗
0(0, Z)− k∗

0(ν(Z), Z)
)
dZ
)

(58)

to

V
(∫ (

k∗
1(1, Z)− k∗

1(ν(Z
∗), Z∗)

)
+
(
k∗
0(0, Z)− k∗

0(ν(Z
∗), Z∗)

)
dZ
)

(59)

To simplify the exposition, we will focus on comparing

V
(∫ (

k∗
1(1, Z)− k∗

1(ν(Z), Z)
)
dZ
)

(60)

to

V
(∫ (

k∗
1(1, Z)− k∗

1(ν(Z), Z
∗)
)
dZ
)

(61)

from which we are able to conclude the full result, since we have assumed that k∗
1 and

k∗
0 are generated from two independent GPs.

The fact that:

V
(∫ (

k∗
1(1, Z)− k∗

1(ν(Z), Z)
)
dZ
)
< V

(∫ (
k∗
1(1, Z)− k∗

1(ν(Z), Z
∗)
)
dZ
)

(62)

follows from the Lemma 3, since V
( ∫ (

k∗
1(1, Z) − k∗

1(ν(Z), Z
∗)
)
is equivalent to the

case where ξl = ξh = 0 and V
( ∫ (

k∗
1(1, Z) − k∗

1(ν(Z), Z)
)
dZ
)

is equivalent to the

case where ξl = Z∗ − Z and ξh = Z − Z∗.

Finally, to show that no estimator dominates τGRDD we consider the case in

which C is only a function of the running variable, i.e., Cov(τ ∗(η1, Z1), τ
∗(η2, Z2)) =

c(Z1, Z2) for some function c. Then τ ∗ is separable in Z and η and linear in η. From

Theorem 3, we then get that τGRDD = τ ∗ and so LC(τGRDD) = 0. Thus, there cannot

13Notably, if E[Y |X] = −X, we get that E[(Y + X)2] = E[Y 2 + 2X · Y + X2] = E[Y 2] +
2E[XE[Y |X]] + E[X2] = E[Y 2]− 2E[X2] + E[X2] = E[Y 2]− E[X2].
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be another τalg such that LC(τalg) < LC(τGRDD) for all C.

A.B Supporting Lemmas

Lemma 1. Let ν̂GRDD be the estimate of ν(Zi) obtained in the Step 1 of the Global

Regression Discontinuity Design approach defined in Section II.B. Then under As-

sumptions 2, 4, and 5 of Section II.A we have that ν̂GRDD
p→ ν∗.

Proof. To show that there exists such a ν∗, we first add a bit of notation. We let:

V̂n(ν) =
1

n

{∑
∀i

(
Ti − ν(Zi))

)2
+ Jν(ν)

}
(63)

and so ν̂ minimizes V̂n subject to the constraint that ν̂ ∈ V . Similarly, we let V0(ν)

be defined as:

V0(ν) = E

[(
Ti − ν(Zi)

)2]
(64)

From our assumption that Ti = 1(ν∗(Zi) ≥ ηi), our normalization that ηi ∼ U(0, 1),

and the assumption on V it follows that supν∈V |V̂n(ν) − V0(ν)|
p→ 0 and that ν∗

minimizes V0(ν). It is also clear that V0(ν) is continuous and Assumption 5 ensures

that V is compact. In short, the assumptions in Theorem 2.1 of Newey and McFadden

(1994) hold; thus, ν̂GRDD
p→ ν∗.

Lemma 2. There exists a unique k ∈ KR such that k
(
ν(Z), Z

)
= k∗(ν(Z), Z) for all

Z.

Proof. From the assumption that there exists a discontinuity at Z∗, we know that

at Z∗ we observe k∗
j (η, Z

∗) at precisely two points – k∗
j (ph, Z

∗) and k∗
j (pl, Z

∗) – for

j ∈ {0, 1}. There is therefore a single choice of α and β that goes through the

observed points at Z∗; we denote those as α∗ and β∗. Since Z∗ is the only point

where we observe multiple values of k∗
1(η, Z) and k∗

0(η, Z), we can then set γ∗(Z) =

E[Yi|ν∗(Z), Z, Ti = 0]−α∗ν∗(Z) and δ∗(Z) = E[Yi|ν∗(Z), Z, Ti = 1]−β∗ν∗(Z). These

choices ensure that:

E[Yi|Zi, η, Ti] =
(
1− Ti

)
·
(
α∗η + γ∗(Z)

)
− Ti ·

(
β∗η + δ∗(Z)

)
(65)
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for all observed points.

Lemma 3. Define f(Z, ξl, ξh) as follows:

f(Z, ξl, ξh) =


Z∗ − ξl if Z ≤ Z∗ − ξl

Z if Z > Z∗ − ξl and < Z∗ + ξh

Z∗ + ξh if Z ≥ Z∗ + ξh

(66)

Then V
( ∫

k1
(
1, Z

)
− k1

(
ν(Z), f(Z, ξl, ξh)

)
dZ
)
is decreasing in both ξl and ξh.

Proof. To simplify notation, let ∆k1(Z, ξl, ξh) = k1
(
1, Z

)
− k1

(
ν(Z), f(Z, ξl, ξh)

)
. We

then note that:

V
(∫

∆k1(Z, ξl, ξh)dZ
)
=

∫ ∫
C
(
∆k1(Z, ξl, ξh),∆k1(Z̃, ξl, ξh)

)
dZdZ̃ (67)

We will next consider what happens when ξl increases to ξl + ϵ, for some small ϵ > 0.

Next, note that if both Z > Z∗ − ξl and Z̃ − ξl, then increasing ξl will not impact

∆k1(Z, ξl, ξh) or ∆k1(Z̃, ξl, ξh). Thus, we can write:

V
(∫

∆k1(Z, ξl + ϵ, ξh)dZ
)
− V

(∫
∆k1(Z, ξl, ξh)dZ

)
= (68)∫ Z∗−ξl

Z

∫ Z∗−ξl

Z

C
(
∆k1(Z, ξl + ϵ, ξh),∆k1(Z̃, ξl + ϵ, ξh)

)
− C

(
∆k1(Z, ξl, ξh),∆k1(Z̃, ξl, ξh)

)
dZdZ̃+

(69)

2

∫ Z

Z∗−ξl

∫ Z∗−ξl

Z

C
(
∆k1(Z, ξl + ϵ, ξh),∆k1(Z̃, ξl + ϵ, ξh)

)
− C

(
∆k1(Z, ξl, ξh),∆k1(Z̃, ξl, ξh)

)
dZdZ̃

(70)

Again, to slightly simplify notation we will consider the derivative as ξl increases. For

the first term, consider any Z, Z̃ < ξl. Then expanding the two terms of ∆k1 and

taking the covariances, we get that:

C
(
∆k1(Z, ξl + ϵ, ξh),∆k1(Z̃, ξl + ϵ, ξh)

)
− C

(
∆k1(Z, ξl, ξh),∆k1(Z̃, ξl, ξh)

)
= (71)

C ′
1,Z(|Z − (Z∗ − ξl)|)C1,η(1, ν(Z)) + C ′

1,Z(|Z̃ − (Z∗ − ξl)|)C1,η(1, ν(Z̃)) (72)

< 0 (73)
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where the fact that it’s less than zero stems from the assumption that C1,Z(|Z −Z ′|)
is decreasing in |Z − Z ′| and that C1,η(η, η

′) > 0 for all η, η′.

For the second term, we consider any Z < Z∗ − ξl and Z̃ > Z∗ − ξl. In this case,

we can again expand the two terms of ∆k1 and take the covariances to get that:

C
(
∆k1(Z, ξl + ϵ, ξh),∆k1(Z̃, ξl + ϵ, ξh)

)
− C

(
∆k1(Z, ξl, ξh),∆k1(Z̃, ξl, ξh)

)
= (74)

C ′
1,Z(|Z̃ − (Z∗ − ξl)|)C1,η(1, ν(Z))− C ′

1,Z(|Z̃ − (Z∗ − ξl)|)C1,η(ν(Z̃), ν(Z)) = (75)

C ′
1,Z(|Z̃ − (Z∗ − ξl)|) ·

[
C1,η(1, ν(Z))− C1,η(ν(Z̃), ν(Z))

]
(76)

This is negative as long as C1,η(ν(Z̃), ν(Z)) > C1,η(1, ν(Z)). Note that when Z̃ < Z∗,

ν(Z̃) = ν(Z) and so C1,η(ν(Z̃), ν(Z)) is clearly greater than C1,η(1, ν(Z)). When

Z̃ > Z∗, in contrast, the question is whether C1,η(ph, pl) is greater than C1,η(1, ph)

which is less clear.

Note, however, that the negative component (i.e., Equation 72) gets more negative

as the size of the direct effect (i.e., cη) increases, while the size of the direct effect has

no impact on the ambiguous component (i.e., Equation 76). Thus, if the direct effect

is large enough, the negative term dominates and the variance is decreasing in ξl.

The proof that the result also holds for ξh follows similarly.

B Identification Intuition

To highlight the identification challenge and convey the intuition behind our approach,

consider the simplified example in which we focus only on the function k1 and only

observe the conditional averages at the discontinuity – k1(pl, Z
∗) and k1(ph, Z

∗) – and

at a second point away from the discontinuity – here k1(ν(Z), Z). These three points

are illustrated in Figure 3a. While we focus on this simple example, the intuition

would equally apply if we were aiming to estimate both k1 and k0 and we observe N

points instead of three.

Of course, there are many functions k1(η, Z) that go through these three points,

which suggests that the function is not fully identified. This identification challenge

is mitigated if we assume – as we do in the paper – that k1(η, Z) = αη + γ(Z) for

some α ∈ R and function γ(Z). We then are able to identify α from the fact that
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Figure 3: Identification Intuition
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(a) Observed conditional moments
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(b) Linear selection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

k1(η, Z) = k1(η, Z
∗)

η

C
on

d
it
io
n
al

M
ea
n
s

(c) Nonlinear selection

we observe two points at Z∗ and then can choose γ(Z) to go through every other

observed point. The result is illustrated in Figure 3b. In this case, we prioritize the

fact that k1(η, Z) is separable and linear in η over ensuring that γ(Z) is a smooth

function of Z. This prioritization shows up in the lexicographic preferences defined

in Section III.B.

From this example, it is clear that could define a similar estimator under a different

prioritization scheme. At the opposite extreme, for example, one could allow k1 to be

a flexible function of η, but restrict the function to not vary based on Z. Figure 3c

illustrates what the resulting function k1(η) = k1(η, Z
∗) = k1(η, Z) might look like.

C Simulations

In additional to our empirical application, we conduct a simulation to compare the

performance of the proposed approach (i.e., the global RD design) to the two most
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natural alternatives – an observational study and a traditional RD design. The ad-

vantage of the simulation is that we can compare the estimated effect to the true

effect. For our simulation, we assume that the true moments are generated according

to the modified GP as defined in Section III.B. In particular, we assume that:

µ(η, Z) ∼ GP (0,Σµ,η) +N(0, 1) ∗ η +GP (0,Σµ,Z) (77)

τ(η, Z) ∼ GP (0,Στ,η) +N(0, 1) ∗ η +GP (0,Στ,Z) (78)

where GP (0,Σ) corresponds to a Gaussian process with covariance Σ. For our covari-

ance functions, we use a squared exponential with length scale 1 for Σµ,η and Στ,η and

length scale 2 for Σµ,Z and Στ,Z . We use an output variance of 1 for Σµ,η and Σµ,Z

and of 0.5 for the other two GPs. We ignore statistical uncertainty by assuming that

we observe the true conditional moments without error, although we only observe the

points
(
ν(Z), Z

)
, where:

ν(Z) = Φ
(
− 0.75 + 0.75 ∗ Z + 0.75 ∗ 1(Z > −.5)

)
(79)

where Φ(.) is the normal CDF and 1 represents the indicator function. Finally, we

specify that Zi ∼ U(−1, 1) and focus on the average treatment effect (ATE).

As can be seen in Figure 4, the proposed estimator outperforms the others two;

this is consistent with the results of Theorem 5. Specifically, the mean-squared error

of the global RD design is 0.02, while the mean-square error is 0.08 for the traditional

RD design and 0.57 for the observational study.
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Figure 4: Simulation Distributions

0

1

2

3

−2 −1 0 1 2
Estimated ATE − True ATE

 

global_rdd obs_study traditional_rdd

Note: The figure plots kernel densities showing have three estimators – the global
RDD (global rdd) proposed in this paper, as well as the observational study
(obs study) and a traditional RDD (traditional rdd) formally defined in Section III.A
– perform under a simulation. To create the figure, we substract the true ATE from
the estimated ATE and then plotted kernel densities of this measure for each of the
three estimators.
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