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Abstract

Targeted instruction is one of the most effective educational interventions in low- and
middle-income countries, yet reported impacts vary by an order of magnitude. We study
this variation by aggregating evidence from prior randomized trials across five contexts, and
use the results to inform a new randomized trial. We find two factors explain most of the
heterogeneity in effects across contexts: the degree of implementation (intention-to-treat or
treatment-on-the-treated) and program delivery model (teachers or volunteers). Accounting
for these implementation factors yields high generalizability, with similar effect sizes across
studies. Thus, reporting treatment-on-the-treated effects, a practice which remains limited,
can enhance external validity. We also introduce a new Bayesian framework to formally incor-
porate implementation metrics into evidence aggregation. Results show targeted instruction
delivers average learning gains of 0.42 SD when taken up and 0.85 SD when implemented
with high fidelity. To investigate how implementation can be improved in future settings, we
run a new randomized trial of a targeted instruction program in Botswana. Results demon-
strate that implementation can be improved in the context of a scaling program with large
causal effects on learning. While research on implementation has been limited to date, our
findings and framework reveal its importance for impact evaluation and generalizability.
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1 Introduction

617 million young people worldwide are in school but unable to read fluently or perform sim-
ple numerical operations. These learning deficits are particularly acute in developing countries
(UNESCO 2017; World Bank 2018; Angrist et al. 2021). Although many policies designed to
address the learning crisis have yielded disappointing results, programs which target educational
instruction to a child’s learning level have improved learning in a variety of contexts.1 Random-
ized trials show consistently positive impacts in India, Kenya, and Ghana, receiving significant
attention in academic and policy circles (Banerjee et al. 2007; Banerjee et al. 2010; Duflo,
Dupas and Kremer 2011; Banerjee et al. 2017; Duflo, Kiessel, and Lucas 2020).2 A recent high-
profile report highlighted targeted instruction as a cost-effective approach to address the global
learning crisis (Global Education Evidence Advisory Panel 2020). However, while effects are
consistently positive, they range from 0.07 to 0.78 standard deviations – an order of magnitude
difference.3 Systematic analysis of this variation could reveal important information on how
generalizable effects might be, and uncover factors that yield the largest frontier effects in the
literature. This is especially important as targeted instruction is adapted across contexts with
multiple ambitious scale-up efforts underway.

In this paper, we first assess the generalizability of targeted instruction by aggregating evi-
dence across prior randomized trials. We then use the results to inform a new randomized trial,
optimizing delivery of a targeted instruction scale-up in Botswana. For our aggregation, we
consider data across 8 study arms covering nearly 75,000 students across 5 contexts. We col-
lect data on effect sizes as well as contextual covariates such as baseline learning, geographical
context, sample size, year, and implementation delivery model (teachers or external volunteers).
We also consider data on program implementation first using the notion of “takeup”, measured
by attendance or presence of classroom materials. Second, we consider the “fidelity” of imple-
mentation, measured by adherence to core program principles, such as whether instruction is
targeted and students are grouped as expected. Targeted instruction is an ideal setting in which
to study the different role of these two aspects of implementation, as both vary widely across
studies: takeup ranges from 8% to 90%, and fidelity from 23% to 83%.

Given heterogeneity in both program features and reported effects, careful attention to ev-
idence aggregation methodology is required. We provide results from both standard Frequen-
tist random-effects meta-analysis and a series of Bayesian hierarchical models, including meta-
regression models which formally incorporate data on program features. We also report several
metrics of generalizability: first, the frequentist I-squared metric. A low I-squared indicates that
most observed variation in effects is sampling variation, rather than true treatment effect vari-
ation, indicating high generalizability. We also report the Bayesian hyper-standard-deviation
which measures the standard deviation in true effects, and the Bayesian posterior predictive

1Targeted instruction groups students in classrooms and tailors instruction to each students’ actual learning
level rather than to an average expected learning level determined by a one-size-fits-all grade-level curriculum.
A specific model of this approach called “Teaching at the Right Level” has been pioneered by Pratham, a large
education NGO in India.

2Multiple reviews identify targeted instruction as an effective educational approach (Kremer, Brannen and
Glennerster 2013; Snilstveit et al. 2016; Angrist et al. 2020)

3It is important to note that these reported effects are all substantial in a context where a 0.10 standard
deviation effect size is considered large (Kraft 2020; Evans and Yuan 2020).
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distribution which captures all uncertainty about the predicted effect in the next hypothetical
study setting. Given a sample of 9 study arms, which is large for evidence synthesis, but small
for frequentist statistical approaches relying on large-sample properties, we prefer the Bayesian
approach for evidence aggregation in our setting.

While many factors might explain effect size differences across contexts, such as geography or
baseline learning, results show that most of the heterogeneity in reported effects is explained by
two implementation factors: implementation delivery model (teachers or volunteers) and the de-
gree of implementation (intention-to-treat or treatment-on-the-treated effects). The frequentist
random-effects meta-analysis finds that intention-to-treat (ITT) effects for teachers are mod-
erate (0.07 SDs on average) and highly generalizable (I-squared of 0.01%), whereas volunteers
have large average effects (0.24 SDs) with high variation (I-squared of 95.6%). When account-
ing for implementation using instrumental variables estimation, treatment-on-treated (TOT)
effects for teachers are three times larger (0.21 SD) and are generalizable (I-squared of 0.00%).
Similarly, effects for volunteers are three times larger, with an average effect of 0.76 SDs. Most
strikingly, effects now converge almost fully, with TOT effects showing high generalizability with
an I-squared of 0.00%. This result reveals that much of the original heterogeneity in volunteer
estimates was due to variation in implementation. Thus, conditional on implementation factors,
the effects of targeted instruction appear large and highly generalizable across studies.

The Bayesian analysis upholds these patterns, although results are somewhat tempered.4

The TOT effect is still much larger than the ITT on average, particularly for volunteer delivery,
and highly generalizable across settings. Moreover, individual studies’ TOT estimates see large
gains in precision due to partial pooling, combining information from low and high implementa-
tion settings.5 Bayesian meta-regression confirms that implementation takeup and instruction
delivery model are two key factors in predicting variation in effects. This is not obvious ex-ante,
with these two dimensions playing a more substantial role than other factors which a priori
could have mattered most, such as students’ baseline learning levels. The evidence on the pos-
itive impact of targeted instruction is clear even when we impose strong null priors (a form of
Ridge regularization), which suggests the patterns in the data are robust and informative. We
show that these results are robust to dropping any individual study and show no evidence of
publication bias. Overall, these results show that features of program implementation predict
the largest effects in the literature as well as generalizability of effects across settings.

We introduce a framework which formally incorporates data on implementation into the ev-
idence aggregation process. Implementation features are random variables about which we are
uncertain and which may be correlated. To formally account for this, a Bayesian approach
permits us to jointly account for uncertainty in effects and uncertainty in implementation across
studies and contexts. Our model offers several theoretical results, namely that neither treat-
ment effects nor their variation across settings are identified in the absence of information on
implementation, or if implementation is poor. For intuition, consider the case of null treatment
effects. Null effects could be due to an ineffective program or an effective program which was
never implemented. Without information on implementation, a null result may be misattributed

4This is due to accounting for joint uncertainty in effect averages and variation (Meager 2019).
5For example, First UP Camps becomes statistically significant by conventional Frequentist standards.
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to a treatment effect when in fact it is null implementation.6 Simulations show that the simplest
version of the model performs well even with small samples. We apply our framework to our
data. Results show that targeted instruction offers 0.42 standard deviation improvements in
learning on average when fully taken up, and 0.85 standard deviation gains when implemented
with high fidelity, consistent with the upper range of effects in the literature.

Our evidence aggregation and model establish the importance of implementation, motivating
research into concrete ways to increase program takeup and fidelity. We conduct a random-
ized trial optimizing fidelity for a targeted instruction intervention that is being scaled up in
Botswana. As of 2022, over 20 percent of primary schools in the country were reached through
a partnership between the Ministry of Education and Youth Impact, one of the largest NGOs
in the country. We randomly vary implementation fidelity – achieved via more detailed learning
assessments and grouping of students relative to standard implementation, enabling even more
targeted instruction – in a subsample of 52 classes and over 1000 students in 4 regions. We find
that improved fidelity increases the program’s impact by up to 0.22 standard deviations (SD).
These results confirm that the correlation between implementation and impact observed in the
literature reflects a causal relationship – it is not merely the case that favorable settings yield
both high implementation and large effects; rather, improving implementation directly improves
program results holding all else equal. Overall, we find that implementation factors are decisive
in both the size and generalizability of a program’s impact, and that implementation can be
further optimized in the context of a scaling program.

Our findings contribute to a literature on education in low- and middle- income countries.
Improving learning outcomes is difficult, with decades of stagnant learning outcomes, despite
increasing enrollment in school (Pritchett 2013; Angrist et al. 2021). Moreover, input-focused
interventions which simply provide more resources, such as provision of textbooks or computer
hardware only, have been found to rarely improve learning (Glewwe, Kremer, and Moulin 2009;
Kremer, Brannen, and Glennerster 2013; Beuermann et al. 2015). In contrast, pedagogy-focused
interventions which aim to improve the quality and type of teaching in the classroom have had
far greater success in improving learning, such as targeted instruction and structured pedagogy
approaches (Duflo, Dupas and Kremer 2011; Piper et al. 2014; Banerjee et al. 2017; Muralid-
haran, Singh, and Ganimian 2019; Duflo, Kiessel, and Lucas 2020). Our results are consistent
with this emerging view and show that this insight generalizes across heterogeneous contexts. In
contrast with evidence aggregations in other sectors, such as microcredit, which show small or
null effects (Meager 2019), we find that targeted instruction has large and generalizable effects.

We also contribute to the literature on external validity and advance the practice of evidence
synthesis. Although systematic evidence aggregation is rare in economics, researchers are in-
creasingly engaging in evidence synthesis across contexts (Card and Krueger 1995; Banerjee et
al 2017b, Andrews and Oster, 2019; Bando, Näslund-Hadley, and Gertler 2019; Vivalt 2020;
Bandiera et al. 2021; Meager 2022; Lund et al. 2022; Gechter 2023; Kremer et al. 2023). We
contribute methodologically to this literature along a few dimensions. We are one of the first

6A full exposition is provided in the paper. Here we summarize a key component. We define Realized Treatment
Effects (RTE) as equal to Latent Treatment Effects (LTE), θj , multiplied by an implementation factor, mj ∈ [0, 1]
such that RT E = mj ∗ θj . A program that has no impact could be driven by a situation in which θj = 0 but,
equally possibly, mj = 0. Without explicit information on mj , a treatment effect of zero can not be logically used
to infer a null latent treatment effect θj . In other words, the underlying effect θj is not identified from the data.
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to directly combine evidence aggregation of prior studies with a new randomized trial, link-
ing experimental and synthesis methods. Second, we show that accounting for implementation
through intsrumental variable estimation of treatment-on-the-treated effects enables better gen-
eralization of effects across contexts. TOT estimation has well-developed frameworks (Imbens
and Angrist 1994), but remains infrequent in practice. Out of a set of papers in development
from 2019 and 2022, for example, all report ITT effects but only 12.1 percent of education RCTs
reported TOT effects or implementation metrics.7 Our results show that in order to achieve
external validity, reporting and aggregating TOT estimates should become common practice.
Third, while internal validity questions have several frameworks, fewer formal frameworks ex-
ist for external validity. Informed by our results, we introduce a new framework for external
validity. We formalize the essential role of implementation information, which we refer to as
m-factors, in identification of treatment effects and for generalizability. We further present a
novel Bayesian model incorporating implementation into the evidence aggregation process.

Finally, we advance a nascent literature on implementation science in education. Implemen-
tation science is best developed in health, where it is viewed as a largely qualitative concept
(Bauer et al. 2015). This paper demonstrates how to quantitatively account for implemen-
tation. Our results also show that implementation is the decisive dimension in generalizing
results across contexts, motivating a research agenda on the details of effective implementation,
consistent with the notion of “the economist as plumber” (Duflo 2017). Given that targeted
instruction yields 0.85 SD when delivered with high fidelity – 10-fold higher than the typical
education intervention – research on better implementing known productive interventions, such
as targeted instruction, can be higher return than discovery of new interventions. Our trial in
Botswana provides a concrete example of the return to studying implementation fidelity.

The results in this paper have significant implications for policy. Targeted instruction has
the potential to help address the global learning crisis and is on track to reach over 60 million
children in South Asia and sub-Saharan Africa by 2025 (J-PAL 2022).8 High-profile scale up
examples include Zambia, where the government has already scaled up to over 3,000 schools, and
Nigeria where targeted instruction is being delivered in over 5 states; in addition, in Botswana
the government has signed a 9-year Memorandum of Understanding to scale-up nationally. This
paper estimates the generalizability of targeted instruction and identifies factors that mediate
the largest effects in the literature, informing adaption and scale-up in new contexts.

The rest of the paper is organised as follows. Section 2 describes the intervention and context,
Section 3 describes the data, and Section 4.2 explains the evidence aggregation approach. Results
are presented in Section 5. In Section 6 we introduce a new framework to include implementation
metrics in evidence aggregation; we further formalize the role of implementation in identification
of treatment effects and for generalizability. Section 7 includes results from a new randomized
trial in Botswana optimizing implementation of a scaling program, and Section 8 concludes.

7We conduct a review to identify how frequent the practice of accounting for implementation is in program
evaluation. Out of 4,000 papers in development from 2019 to 2022, nearly 25 percent were RCTs; of those that
were RCTs in education, only 12.1 percent reported implementation metrics or TOT estimates. We include papers
captured in the 3ie database, the Top 5 economic journals (American Economic Review, Quarterly Journal of
Economics, Econometrica, Journal of Political Economy, Review of Economic Studies), top-tier general interest
journals (Review of Economics and Statistics, Economic Journal, Journal of the European Economic Association,
all American Economic Journal AEJ journals), and a top field journal (the Journal of Development Economics).

8See J-PAL website: https://www.povertyactionlab.org/case-study/teaching-right-level-improve-learning
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2 Educational Intervention and Context

Educational enrollments have increased worldwide to above 90% in all regions, yet learning
progress has been much more limited. International education agencies have called this phe-
nomenon a “learning crisis” (World Bank 2018). The learning crisis is most pronounced in low-
and middle-income countries. For example, in Kenya, Tanzania, and Uganda three-quarters of
grade 3 students cannot read a basic sentence such as “the name of the dog is Puppy.” In rural
India, half of grade 3 students cannot solve a two-digit subtraction problem such as 46 minus
17 (World Bank 2018). The global learning crisis is estimated to cost over 129 billion USD in
lost social welfare (UNESCO 2017).

A combination of factors contributes to the learning crisis, including curricula targeted mostly
to advanced students, rote learning, and automatic promotion regardless of learning achieved
in prior grades (Banerji and Chavan 2016). Many education interventions have focused on
providing inputs to improve learning, such as textbooks, computers, cash transfers, reducing
class size, or increasing teacher salaries. However, decades of randomized trials show input-
focused initiatives rarely improve learning (Kremer, Brannen, and Glennerster 2013; Evans and
Popova 2016; Ganimian and Murnane 2016; Snilstveit et al. 2016; Angrist et al. 2020).

In contrast, a pedagogical shift – targeting instruction to the level of the child – has been
shown in randomized trials to dramatically improve learning across multiple contexts including
India (Banerjee et al. 2017), Kenya (Duflo, Dupas and Kremer 2011), and Ghana (Duflo,
Kiessel, and Lucas 2020). Targeted instruction involves regrouping students by their learning
level (e.g., addition, subtraction) rather than using grade-level grouping determined by rigid
curricula. Most education systems are organized to teach a one-size-fits-all curriculum by grade.
However, there is often substantial heterogeneity in student learning level in each grade, with
most students well below grade-level expectations. For example, a teacher’s syllabus might
prescribe them to teach division to a class of grade 3 students which is the curriculum-level
expectation. Yet, if only 10 percent of the class knows division, 90 percent of the class is being
left behind. If a child cannot recognize or add numbers, they will not be able to learn division.
Targeting instruction involves regrouping students by learning proficiency rather than by grade.
Instead of using mass education that reaches a few, this approach uses customized and engaging
teaching and learning that is targeted to the learning level of the child.

A specific model of targeted instruction approaches is called “Teaching at the Right Level”
(TaRL), developed by Pratham, one of the largest education NGOs in India. Targeted instruc-
tion approaches have been shown to consistently improve learning outcomes for children across
diverse contexts.9 But as yet no systematic meta-analysis across studies has been conducted. A
systematic analysis could help identify factors which drive heterogeneity and predict the highest
frontier effects in the literature. Making progress on this question has significant implications
as targeted instruction approaches are actively being adopted by dozens of countries and scaled
up to over 60 million children worldwide. The World Bank, USAID, FCDO, governments, and
NGOs are all actively engaged in targeted instruction scale-up efforts (see Figure A1).

9In this paper we focus largely on in-school and Pratham delivered models. However, other targeted instruction
models exist such as mindspark software which adapts to the level of the child (Muralidharan, Singh, and Ganimian
2019) as well as low-tech phone-based tutorials (Angrist, Bergman and Matsheng 2022).
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3 Data for Evidence Aggregation

Studies included. We analyze microdata across a series of existing clustered randomized con-
trolled trials conducted over the last two decades across India and Kenya.10 In total, these trials
represent eight geography-treatments. The total sample across the studies is nearly 75,000 stu-
dents. We start our analysis with studies recognized as consistent with the targeted instruction
model by both the original evaluators and implementers.11 Moreover, we access the microdata
for all these studies, allowing us to replicate original results as well as enhance our ability to
conduct a comprehensive evidence aggregation exercise capturing study-level covariates and pro-
gram features. We focus our analysis on randomized controlled trials to ensure we aggregate
causal effects.

Table 1 lists included studies and highlights key sample characteristics for each. We consider
the relevant level of observation to be the study-treatment-geography. States in India have a
population on the scale of most countries, and are highly heterogeneous, so we include states as a
geographical unit in India; moreover, the trials in India often stratify or randomize within a state.

Table 1: Studies Considered for Evidence Aggregation

Authors State/Country Treatment Arm Delivery Sample Size

Studies included

Banerjee et al. (2007) Maharashtra, India Balshaki Camps Volunteer 10000
Banerjee et al. (2010) Uttar Pradesh, India First UP Camps Volunteer 9442
Duflo et al (2011) Kenya Tracking Teachers 6000
Banerjee et al. (2017) Bihar, India School Volunteers Volunteer 3325
Banerjee et al. (2017) Bihar, India Teacher Camps Teachers 2474
Banerjee et al. (2017) Uttar Pradesh, India UP 10-day Camps Volunteer 17266
Banerjee et al. (2017) Uttar Pradesh, India UP 20-day Camps Volunteer 13054
Banerjee et al. (2017) Haryana, India In-school Teachers Teachers 11966

Total 5 8 - 73527

Outcome Data and Measurement. We access the microdata from each study to produce
new standardized outcome variables. In all studies, the central outcome is a measure of learning
basic numeracy and literacy skills. Most studies use an assessment similar to the Annual Status
of Education Report (ASER) test. Figure A2 shows examples of ASER assessments for literacy
and numeracy. Our primary outcome is an average of numeracy and literacy.

The ASER test is a validated learning measure which tests competencies used across 14 coun-
tries and is consistently used in the education literature (Banerjee et al. 2017). In numeracy,

10In the future, we hope to incorporate forthcoming results from studies in Ghana.
11For example, we exclude some treatment arms in Banerjee et al. (2017) which only provided generic materials,

but did not provided targeted instruction support. We also exclude some treatments where targeted instruction
did not occur in practice such as in Uttarakhand as verified in carefully collected monitoring data.
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questions include number recognition, addition, subtraction, multiplication, and division. In lit-
eracy, competencies tested include letter recognition, word recognition, ability to read a sentence
fluently, and reading comprehension of a paragraph and short story. The Kenya study is the
only study which uses a different assessment which is a 100-point test which also covers basic
numeracy and literacy. We examine average scores over both numeracy and literacy. In most
cases both subjects are available, however in two cases only one subject is available. All studies
include baseline and endline data and some studies also include midline data. For consistency
and to capture longer-lasting effects, we focus on effects at endline. To compare these outcomes,
we standardize each score relative to the standard deviation within a state/country-treatment
unit. We derive learning gains over the course of one year to compare outcomes on a consistent
time horizon. Given our underlying assessments measure a similar outcome and most use a
similar test, comparability of outcomes across contexts is high.

One of the advantages of the targeted instruction intervention is that the outcomes are
similar across intervention settings. In many cases, meta-analyses rely on outcomes which can
vary substantially, derived using entirely different surveys and definitions of outcomes, such as in
the case of microcredit (Meager 2019, Vivalt 2020, Pritchett and Sandefur 2015). Our relatively
uniform outcome data is well suited to aggregation and offers a substantial improvement in
the comparability of treatment effects across contexts. Throughout the paper, we use standard
deviation (SD) units, a common unit in the education literature.12

Implementation data. Most studies report intention-to-treat (ITT) effects using random
assignment to estimate treatment effects. We replicate intention-to-treat effects. We also esti-
mate treatment-on-the-treated (TOT) effects for those who actually received the program. We
calculate TOT effects using instrumental variables estimation in line with the Local Average
Treatment Effects (LATE) framework (Imbens and Angrist 1994). In some cases TOT effects
were originally reported, but not in all cases, so we calculate new estimates for all studies.13

Capturing the degree of implementation via take-up is likely to be central to understanding both
the average impact and the generalizability of the evidence, since in some studies the degree of
implementation is over 80 percent while in other studies it is around 10 percent. It is further
noteworthy that in many cases implementation was very high. This reveals that while implemen-
tation can vary, it can also reach near-complete levels, increasing the relevance of understanding
effects under full take up.

We consider four measures to capture distinct aspects of program implementation: (a) teacher
attendance (b) student attendance (c) materials usage and (d) whether students were grouped
by learning level. We define takeup as a combination of the first three measures (a)-(c) available
across nearly all studies. The last measure goes beyond takeup to capture implementation
fidelity – how targeted the instruction was – however this measure is only available in three
intervention arms. We incorporate this information into our Bayesian analysis, which is best
suited to small-sample statistical inference.

12The practice of using SD units is widespread. However, comparable effects on the raw scale may diverge in
SD units, or vice versa; this may be an important topic for future work.

13We access the microdata from original studies to quantify the degree of implementation. We have takeup
data for all studies, and we have fidelity data for a subset of studies.
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Additional data and covariates. We standardize and incorporate a series of additional data
and covariates likely to mediate effects across studies. These include: geography (country or
state), implementation delivery model (teacher or volunteer), year of intervention, sample size,
baseline learning levels, and the degree of implementation.14

Replication. We replicate original results prior to conducting a new meta-analysis. We find
broadly consistent results with original reported estimates. No signs change and findings remain
robust. Average differences across all studies are less than 0.1 standard deviations. In a few rare
cases, the magnitude of estimates differ from original estimates, but only slightly. Reasons for
this variation include our use of endline assessments across the board15, our uniform approach
to constructing standard deviations, and our primary measure being an average of scores across
both subjects. In addition, in our replication we do not include control variables which has
minor effects on final estimates.

4 Methodological Approach

4.1 Part 1: Estimating ITT and TOT Effects For Each Study

Prior to conducting an evidence aggregation, we estimate treatment effects for each study using
a uniform approach across all studies as described in the data section to facilitate evidence
aggregation. Moreover, we account for implementation, calculating treatment-on-the-treated
effects (TOT) in addition to intention-to-treat (ITT) effects. While original studies calculated
ITT effects, TOT effects were not always calculated, and we provide novel estimates of treatment-
on-the-treated effects across all studies using instrumental variables analysis.

We start by estimating intention-to-treat (ITT) effects of targeted instruction on learning as
per the original studies. We calculate effects for each study, exploiting random assignment to
identify causal effects of being randomized to targeted instruction treatments as follows:

Yij = α + β1TargetedInstructionj + ϵij (4.1)

where Yij is a learning outcome for individual i in school j. TargetedInstructionj refers to
any of the targeted instruction interventions and takes on the value 1 in the treatment arms and
0 otherwise.

We next explore the extent to which results are driven by the degree of implementation, cal-
culating new estimates of treatment-on-the-treated effects. Since those who are actually treated
might have been treated due to non-random reasons, such as teacher motivation to implement
in areas more with lower learning levels to begin with, we cannot simply analyze effects for those
who received the program. Rather, we use instrumental variables estimation to derive unbiased
causal effects, instrumenting for implementation of targeted instruction with random assignment
to receive the program, following the Local Average Treatment Effects (LATE) framework (Im-
bens and Angrist 1994). While the assumptions for instrumental variables estimation to identify

14A series of additional model dimensions might be important, such as whether the intervention was conducted
during school hours or after school hours, and could merit further future exploration.

15The original studies reported a midline assessment for one study.
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causal treatment effects do not always hold in quasi-experimental research designs, they often
do hold in the case of randomized controlled trials, the study design for all studies included in
our analysis.16

A first criterion for reliable instrumental variable estimation is a strong first stage – that is,
whether randomization indeed leads to implementation. We indeed find a strong first stage as
expected given implementation of targeted instruction is a direct function of random assignment
to the program, with take-up varying from 8% to 90% and with large t-statistics, indicating a
highly statistically significant relationship. A series of additional assumptions need to hold for
instrumental variables estimates to capture causal effects. A monotonicity assumption ensures
a perverse scenario does not arise where only those not offered targeted instruction participate,
and those who are offered targeted instruction do not. This assumption is clearly satisfied since
those randomized to receive targeted instruction receive access to it while those that are not do
not. A final assumption is the exclusion restriction, where randomization to targeted instruction
only affects learning outcomes through the channel of receiving targeted instruction. In the case
of targeted instruction programs, this assumption is also plausibly satisfied since randomization
to the program has no benefits or channel for influence beyond receiving the program itself.

We estimate the causal effect of receiving the targeted instruction program on Yij as follows:

Yij = α + β1Ij + ϵij (4.2)

where I is our measure of implementation. We instrument for I using random assignment
to receive the targeted instruction program. As described in the data section, implementation
of targeted instruction is first captured simply as take-up (e.g., students attend the classes and
materials for the program were present in the classroom).17

Of note, our data highlights that implementation rates can be as high as 90%, revealing
that local average treatment effects identified do not apply only to a small group receiving the
program in practice, but rather can be relevant for a substantial share of the population.

4.2 Part 2: Evidence Synthesis – Aggregating Effects Across Studies

We next systematically aggregate effects across studies. Using meta-analysis, we analyze the
variation in treatment effects of targeted instruction across studies and conduct a generalizability
analysis. We use the term generalizability, capturing whether evidence translates to broader
populations, in contrast with transferability, which refers to extrapolation from one specific
setting to another. The term external validity, most common among economists, is sometimes
used to refer to both concepts. We conduct various types of meta-analyses. An advantage of
meta-analyses is quantitative synthesis of evidence. Moreover, systematic synthesis generates
statistics which can be used to gauge average effects sizes across contexts and generalizability,
such as the I-squared statistic. The I-squared metric measures the percentage of total variation
which is genuine variation in treatment effects rather than sampling variation. A low I-squared

16For example, while a national policy to reform education might be rolled out inconsistently and bundled
alongside other interventions, randomized trials for a particular program, such as targeted instruction, are direct,
focused, and often result in a clearly identified treatment.

17Later we also consider fidelity as captured by whether students were also grouped by their learning level,
although this data is only available for a subset of studies, with fidelity varying from 23% to 83%.
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indicates that most heterogeneity is due to sampling variation, rather than true treatment
effect variation, indicating high generalizability. We also report the Bayesian hypervariance
which measures the variation in effects, and the posterior predictive distribution which captures
uncertainty about the predicted effect in the next hypothetical study setting.

In some disciplines meta-analyses are seen as the next critical step to follow after conduct-
ing individual randomized controlled trials, enabling systematic aggregation of internally valid
studies across studies and contexts to inform both internal and external validity. However, oth-
ers argue that meta-analyses are atheoretical and often compute average effects sizes without
creating coherent classes of interventions to aggregate (e.g. averaging effects of interventions
that are quite different).

In this paper, we aim to draw on the benefits of systematic and quantitative study aggrega-
tion, while also ensuring we aggregate coherent classes of interventions and delivery models, and
inform our meta-analysis with theory and qualitative expertise. Bayesian synthesis lends itself
particularly well to this approach, especially since one can capture expertise and theoretical in-
sight through informed choices of priors. We use both frequentist random-effects synthesis, which
is a typical meta-analysis approach, and Bayesian hierarchical models, which is our preferred
approach and which we outline below.

4.2.1 The Bayesian Hierarchical Approach

Aggregating evidence from different settings requires joint estimation of average effects and het-
erogeneity in effects across studies. The statistical challenge is to separate genuine heterogeneity
in effects from sampling variation and simultaneously use this variation to inform the uncertainty
on the average impact. Hierarchical models are able to perform this decomposition (Gelman
et al 2004; Meager 2019). However, the interdependent uncertainty between the means and
the variances creates a challenging joint inference problem, particularly with a small number
of studies. In this setting, Bayesian methods can offer improved tractability and estimation
performance relative to popular frequentist counterparts such as random effects or Empirical
Bayes (Rubin 1981; Gelman et al. 2004; Gelman and Hill 2007; Chung et al. 2013; Chung et al.
2015).18

We use a set of Bayesian hierarchical models which estimate the average treatment effect
across all studies and the variance across contexts in line with Rubin (1981), Gelman et al
(2004), Vivalt (2020), Bandiera et al. (2021) and the Cochrane Handbook version 5.1 section
16.8. This approach provides an initial estimate of the degree of generalizability. We discuss our
modelling approach, followed by meta-regression, and then statistics to measure generalizability.

4.2.2 The Hierarchical Modeling Approach

We start with the canonical Rubin (1981) “Eight Schools” Bayesian hierarchical model. This
model has been extensively used in the literature and considers a set of J total estimated treat-
ment effects θ̂j and their standard errors ŝej (Rubin 1981, Gelman et al 2004, Meager 2019).

18The Bayesian hierarchical framework also permits multiple comparisons, automatically adjusting for multiple
testing problems since marginalization of the joint posterior appropriately conditions on all the evidence available
in the sample and priors.
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The estimates are typically assumed by authors of empirical research papers to be Normally
distributed around the true effects θj , since they use a consistent estimator and invoke the
Central Limit Theorem. These assumptions underlie the computation of confidence intervals
and p-values in frequentist research papers, imposing no additional structure on the original
papers’ analyses. The hierarchical component of the model additionally posits that these effects
are Normally distributed around some true average or “hypermean” effect θ, with some “hyper
standard deviation” or "hyperSD" σθ which governs their dispersion around the true effect. The
resulting hierarchical likelihood is written as follows:

θ̂j ∼ N(θj , ŝej)

θj ∼ N(θ, σ2
θ)

(4.3)

This parametric model is more general than it appears: for example, if the hyperSD is set to
0 this model nests classical Frequentist fixed-effects meta-analysis. The model can be estimated
in a frequentist manner, although it can be easier for this model to be estimated using Bayesian
methods. The model’s performance has been extensively discussed in Gelman et al. (2004)
and has good frequentist properties, including attaining nominal coverage rates for the posterior
credible intervals; i.e. the central 95% posterior intervals contain the true parameter 95 percent
of the time. The key assumption embedded in the model is that of exchangeability between the
effects being studied, which is a weaker form of the classical i.i.d assumption, and plausible in
meta-analytic settings (Meager 2019).

To estimate this likelihood model in a fully Bayesian manner it is necessary to include a
prior – that is, adding a prior distribution to the hyperparameters. Following Gelman et al.
(2004) and Meager (2019), we use weakly informative priors as a default approach: this imposes
some structure without unduly influencing the posterior results. For the hypermean, we tend to
center our prior at zero with a wide uncertainty interval, reflecting the principle that researchers
ought to have as their “null hypothesis” the contention that an untested intervention or policy
should be considered most likely to have no impact until proven otherwise by the data. For
the hypervariance, we use half-Normal or half-Cauchy priors as suggested in Gelman and Hill
(2007), which allows for large variation in effects across settings. Priors can improve overall
estimation by making a favorable bias-variance tradeoff even when the prior information is
incorrect. It is also possible to encode more substantive information in priors, such as basing
priors on economic theory or contextual knowledge. We conduct analysis with informative priors
in Appendix A5 and A6 and in Section F.1. This provides both results of substantive interest
as well as robustness checks on the strength of patterns in the data in the face of strong priors.

4.2.3 Meta-regression within the Hierarchical Framework

We use meta-regression to explore the role of program-level covariates. Meta-regression is
straightforward within the Bayesian hierarchical approach: in the Rubin (1981) model one need
only replace the hypermean θ with a conditional hypermean expression in the style of linear
regression. This can be implemented using the following model. Given a set of K contextual
factors and covariates, defined by vector Xj for site j, one can specify a parameter β such that
the expected value of the effects θj is the conventional regression surface, and hence E[θj ] = Xjβ.
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This is implemented via the hierarchical meta-regression likelihood below:

θ̂j ∼ N(θj , ŝej)

θj ∼ N(Xjβ, σ2
θ)

(4.4)

While the model is fully parametric, it can be generalized: If one were to discard informa-
tion about sampling variation and assume thetaj = θ̂j then the model above corresponds in
expectation to classical Frequentist meta-regression. This is because the kernel of the Gaussian
likelihood corresponds to the Ordinary Least Squares objective function.

One important note about this model is that in the context of few studies, say J < 15,
and many covariates of interest, say K > 3, then the estimation of the regression coefficients
β becomes very challenging and noisy. Moreover, the problem may be masked due to the
risk of overfitting. However this issue can be addressed via the use of a Machine Learning
technique known as regularization (Hastie et al 2009). Regularization involves the incorporation
of a penalty function to prevent an estimation procedure from freely wandering around the
parameter space. Classic examples include Ridge Regression, which imposes a squared penalty
on the size of the estimated regression coefficients, and Lasso, which imposes an absolute value
penalty on the same quantity. Within the Bayesian context, it is natural to use the priors to
impose the penalty.19 We use this penalty throughout our hierarchical meta-regression.

4.2.4 Assessing Heterogeneity and Generalizability

There are several approaches within the Bayesian framework to assessing heterogeneity in effects
and generalizability of results. The hyperSD parameters capture the population variation in
effects and deserve particular attention. We report the results on the hyperSD throughout,
which is usually treated as the fundamental parameter in Bayesian hierarchical models (Gelman
et al. 2004). However, it is challenging to know how large or small a particular hypervariance
estimate is, or how best to interpret it. Thus, we provide two additional metrics of heterogeneity:
the frequentist I-squared metric, and the Bayesian posterior predictive distribution.

The I-squared metric measures the percentage of the total variation in estimated effects
around the hypermean that is due to genuine variation in true effects, rather than to sampling
variation that causes estimates to vary more than the true effects. This is the reciprocal metric
to the conventional Bayesian pooling factor discussed in Meager (2019) and Gelman and Pardoe
(2006), which measures the percentage of total variation in effects attributable to within-study
sampling variation. When I-squared is high, this indicates true treatment effect variation is
higher than sampling variation – that is, the heterogeneity across settings dominates the uncer-
tainty within settings. This makes extrapolation across settings challenging and suggests low
generalizability. In this case, pooling of effects across studies is low. Conversely, when I-squared
is low, sampling variation is larger than true treatment effect heterogeneity across settings. This
corresponds to relatively high external validity, and the Bayesian hierarchical model will have
higher pooling factors and perform more “partial pooling” of effects.

Posterior predictive distributions provide another metric to assess heterogeneity in effects
19As discussed in Hastie et al (2009), in Bayesian analysis a Gaussian prior on the regression coefficients centered

at zero is analytically identical to a Frequentist Ridge Regression penalty.
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across settings. These distributions capture the uncertainty about the hypothetical treatment
effect in the next study. In the Rubin (1981) model, when defining the posterior distribution of
these hyperparameters as F (θ, σθ), the posterior predictive distribution for the next effects is:

θJ+1 ∼ N(θ, σ2
θ |F (θ, σ2

θ). (4.5)

If one uses an aggregation approach that does not explicitly measure heterogeneity in effects
across programs or studies, such as a fixed-effects meta-analytic model, the posterior predictive
distribution is simply the posterior distribution of the hypermean itself. This is because there
is no specified heterogeneity in effects across studies in such a model and thus no quantification
of the cross-study extrapolation error. Hence, the extent to which the Bayesian hierarchical
posterior predictive distribution is wider than the posterior distribution on the hypermean in-
dicates the extent of heterogeneity in the effects. Posterior predictive distributions capture how
heterogeneity across settings impedes or enables our ability to extrapolate evidence to the future
targeted instruction intervention. This is natural metric of generalizability, linking the present
evidence base to future settings and is presented in Figure A3.

5 Evidence Aggregation Results

5.1 Frequentist Random-Effects Results

We start with a Frequentist random effects aggregation, contextualizing the Bayesian aggregation
results by providing results without any formal incorporation of theory or priors. First, we
aggregate the evidence on the Intention to Treat (ITT) effects, shown in Figure 1. We find
that intention to treat effects for interventions delivered by teachers have an average effect of
0.07 standard deviations. These effects are consistent with an I-squared of zero, suggesting any
variation between estimates is sampling variation rather than true heterogeneity. This implies
the teacher delivery of targeted instruction is extremely generalizable across the programs in
our data set. Second, we observe that volunteer delivery is on average three times as effective as
teacher delivery with a 0.24 standard deviation effect. However, the volunteer results are highly
heterogeneous with an I-squared of 95.6 percent.

Second, we aggregate the evidence on the Treatment on Treated (TOT) Effects that we con-
structed from the microdata. Results are shown in Figure 2. We observe two trends. First both
teachers and volunteers are three times as effective conditional on implementation with 0.21
and 0.76 standard deviation average effects, respectively. Both effects are large and precisely
estimated. Moreover, we now observe convergence among volunteer effects, with an I-squared of
zero. This reveals that much of the heterogeneity in the original volunteer estimates was due to
variation in implementation. These results indicate the initial degree of generalizability of tar-
geted instruction. Effects are large and highly generalizable, conditional on two implementation
factors, implementation delivery model (teachers or volunteers) and the degree of implementa-
tion (ITT or TOT). The high generalizability after conditioning on these factors leaves little
room for a role for other features, which we later explore formally via metaregression.20

20It is also worth noting that the patterns in this analysis show few diminishing returns to program scale,
suggesting that effects might persist as the program is scaled up: some of the largest effects, such as those in the
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Figure 1: Frequentist Random Effects Meta-Analysis of Intention-to-Treat Effects.

Uttar Pradesh 10 and 20-day camps, have the largest sample size (with up to 17,000 students).
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Figure 2: Frequentist Random Effects Meta-analysis of Treatment-on-Treated effects

5.2 Bayesian Aggregation Results

We now present the results of the Bayesian evidence synthesis. These models correspond con-
ceptually to the Frequentist random-effects model but with joint estimation of the variance in
effects and the mean over all the studies rather than sequentially (e.g., partial pooling), and
with the potential to incorporate various choices of priors.

5.2.1 Basic Hierarchical Model Results

We fit the basic Rubin (1981) model to the ITT and TOT estimates from the targeted instruction
studies. We incorporate wide priors centered at zero to regularize the estimation given the
limited number of studies available in such aggregation exercises. We compare results using
partial pooling in our Bayesian aggregation directly to the no pooling case to understand the
extent of information pooling across contexts. In the Appendix we present posterior treatment
effects for expected results in future settings, as shown in Figure A3.

Figure 3 displays the results of fitting the basic hierarchical model to the ITT effects of all
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studies, and Figure 4 shows the results for all available TOT effects. The broad patterns found
in the frequentist analysis are confirmed in these two figures: the ITT is much smaller than the
TOT on average, and also more heterogeneous. However, there are several interesting differences
to note. ITT estimates are relatively unchanged when pooled using Bayesian aggregation; there
is slightly more pooling but it remains negligible overall. This is due both to the relative
precision of the ITT estimates and their heterogeneity across settings. Further confirming this,
in an Appendix tables A3 and A4, we report Bayesian pooling factors which are the reciprocal of
the I-squared metric. The ITT sees very little pooling, so most of the variation is true treatment
effect variation.

However, the Bayesian model pools the TOT estimates to a substantial degree (Appendix
tables A3 and A4). Correspondingly, the precision of each study’s TOT estimate is enhanced
significantly. For example, “First UP camps” effects which is positive but not significant in the
no-pooling case is now statistically significant under partial pooling. This is likely due to low
implementation in this setting (only 8 percent of students attended sessions) so TOT effects are
hard to estimate and inherently noisy without pooling. Pooling studies with high implementation
more precisely captures information about the latent effect under full implementation. When
average TOT effects are relatively homogeneous across studies, as is true in our case, Bayesian
aggregation pools TOT estimates where implementation is low with TOT estimates with high
implementation studies, enhancing precision substantially.

A central takeaway is that both the average intention-to-treat effects and the treatment-on-
the-treated effects are large and positive. A secondary takeaway is that TOT effects are three
times as large as the ITT effects. Even accounting for the joint uncertainty and using priors that
somewhat regularize results towards zero under higher uncertainty, both of these findings hold.
Moreover, Bayesian aggregation confers the advantage of enhancing precision for each individual
study, in particular for individual TOT estimates.
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Figure 3: Bayesian Aggregation of all ITT results
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We next investigate the role of implementation delivery model (volunteer or teacher) fitting
the Rubin (1981) model to each subset – teachers versus volunteers – separately. We present
ITT results split by delivery model in Figure 5 and TOT results split by delivery model in Figure
6. The findings show the importance of the delivery model, especially for the TOT results where
we see even greater pooling due to the substantial similarity in effects. The visual clustering
suggests that when we account for implementation (TOT vs ITT effects) and implementation
delivery model (teachers vs. volunteers) the treatment effects are highly generalizable. We
formalize this analysis in the following section via metaregression.
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Figure 5: Bayesian aggregation of ITT by implementation delivery model
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5.2.2 Bayesian Meta-regression Results

To systematically analyze which factors mediate treatment effects of targeted instruction, we
turn to meta-regression. We consider various factors, with a focus on baseline learning levels
and implementation delivery model, two of the most probable mediators of large effects. In
Figure 7, we show the results of fitting these models for both the ITT and TOT effects alongside
the original results of the basic aggregation, as well as the results of meta-regression models.
We present the inference for each study as well as the pooled estimate (the bottom row of the
graphic), which is the average effect of targeted instruction across all settings.

As Figure 7 shows, for the ITT, running meta-regression models conditioning on either or
both covariates of interest has little impact on the inference. The basic model’s findings are
confirmed by the more advanced models: the ITT effects are positive yet substantially hetero-
geneous across settings. By contrast, the TOT effects are now less heterogeneous, and what
heterogeneity is present is substantially explained by these covariates. The TOT model condi-
tioning on implementation delivery model has both the largest average effect of 0.53 standard
deviation, as well as the most precise inference (the pink bar on the bottom line of the figure).
Examining each study in turn, we can see visual evidence that the teacher camps, Balshaki
camps and first UP camps have their estimated TOT effects somewhat revised upwards. We
check robustness and confirm that the results are not contingent on any single study in the
Appendix using a leave-one-out robustness check in Section F.2.

Conditioning on baseline educational performance surprisingly does little to improve pre-
cision. One might expect either a negative correlation due to ceiling effects (high-performing
students or schools already perform well, so benefit less from remedial classes) or a positive
correlation due to selection (students in high-performing schools know how to learn, so benefit
more from remedial classes). Yet we see little evidence of any substantial correlation in the
data, with this covariate exerting little influence. It is possible that in this data set, all students
are so far behind the curriculum that all benefit from targeted instruction, and any additional
variation has only a marginal effect. It is also possible that implementation delivery model and
the degree of implementation simply play such a large role such that other factors are minor in
comparison.
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6 A Model for Generalizability: The Role of Implementation

Our evidence synthesis reveals the central role of implementation in generalizing effects of tar-
geted instruction. Motivated by these results, we develop a new evidence aggregation model. We
first formalize the essential role of implementation information, which we refer to as m-factors,
in identification of treatment effects and for generalizability. Moreover, the model accounts for
uncertainty in implementation across studies and contexts.

Our model incorporating implementation information into evidence aggregation introduces
a new framework for external validity and generalizability analysis. We show that this model
yields more credible results both formally and empirically, enabling substantial generalization
of treatment effects across contexts when accounting for implementation. Results are not only
more generalizable, they also predict the largest effects in the literature. The results show that
targeted instruction can deliver 0.42 SD learning gains on average when taken up, and 0.85 SD
gains when implemented with high fidelity, consistent with the upper range of effects found in
prior studies.

6.1 Defining implementation

Consider a set of contexts j = 1, 2, 3...J . In each setting, there is a latent treatment effect of the
program achievable if it is fully implemented denoted θj ∈ R. We do not intend this to capture
perfect implementation in every detail; rather, we conceive of “full” implementation when the
theoretically core components of the program are delivered to intended program recipients on
time. We define a notion of implementation that is a proportion rather than strictly binary,
since social programs often have multiple core components and may reach some fraction of their
program goals even if they do not meet all of them. This is analogous to a notion already
embedded in the economics literature: the proportion of recipients who receive the program and
defines the wedge between Intention-to-Treat effects and Treatment-on-Treated effects.

We consider two core components of implementation: fidelity to program quality as well as
pure take-up (i.e. attendance). In the case of targeted instruction, fidelity means that teachers
assess the children’s learning level, group the children by their level, and then instruct them at
their level. When these three things do not occur then “targeted instruction” did not happen.
Hence, we need a notion of implementation that is broader than takeup, and also captures the
proportion of instances in which the core components of a program were executed with fidelity.

We define the degree to which a program is implemented in context j as a proportion mj ∈
[0, 1], which we call the “implementation factor” or m-factor. This factor mj is 0 when no
component of the program is delivered to recipients, and m = 1 when the program is delivered
as intended to all recipients. When implementation is only partially achieved, we expect to only
receive a corresponding fraction of the total potential impact. For example, consider defining
implementation as the percentage of time instructors grouped students by ability. Then this
percentage is the implementation level mj , and the latent θj is the latent treatment effect of
receiving instruction which is targeted the whole time.

Formally, we consider a set of program contexts indexed by j = 1, 2, 3...J and define three
relevant objects.
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Definition 1: Implementation Factor The implementation factor (m-factor), denoted
mj ∈ [0, 1] for a setting j, is the extent or proportion to which the program was effectively
implemented in setting j.

Definition 2: Latent Treatment Effect The Latent Treatment Effect LTEj, denoted θj ∈ R
for a setting j, is the impact achievable when the program is fully implemented.

Definition 3: Realized Treatment Effect The Realized Treatment Effect RTEj is the
observed impact of the program in setting j, defined as:

RTEj ≡ mjθj

Randomized trials recover observed treatment effects, which we define as the Realized Treat-
ment Effect RTEj which equals the Latent Treatment Effect θj multiplied by the implementation
factor mj . This structure is analogous to the definition of the Intention to Treat (ITT) effect,
which is the Treatment on Treated (TOT) scaled by takeup proportion, and invokes similar
assumptions to those in the LATE framework (Imbens and Angrist 1994).21

This is a multiplicative implementation model: if the implementation factor mj is less than
1, one should not expect to obtain the same effect as if the program had been fully implemented.
Instead, one should expect to have an impact that is only a fraction of the latent potential effect:
mjθj < θj . Our model intentionally allows the implementation factors to vary across studies,
since they are just as likely to be influenced by contextual factors as the underlying LTEs are.

6.2 Identification

In this section we establish that Latent Treatment Effects are unidentifiable from Realized
Treatment Effects if m-factors are unknown. For intuition, consider the case of null effects. Null
effects could be due to an ineffective program or an effective program which was never imple-
mented. Without information on implementation, we could misattribute a null to a treatment
effect when in fact it is null implementation. More formally, a program that has no treatment
effect (RTEj = 0), could be driven by a situation in which θj = 0 but, equally possibly, mj = 0.
Without explicit information on mj , a realized effect of zero can not be logically used to infer a
null Latent Treatment Effect θj . In other words, the underlying effect θj is not identified from
the data. While this lack of identification is to some extent intuitively evident, we lay out the
formal result to confirm intuition and formalize how relevant parameters can be estimated.

Following Lewbel (2019), we define (point) identification of any parameter as the case in
which different parameter values produce observably different distributions of data. We show
that the latent effect of a program, θj , is not identified from the program treatment effect RTEj

when implementation is not known.
21Our notation encodes the assumption that there is a single Latent effect; if this is not the case then our

framework can be extended using a set of assumptions similar to those required to extrapolate TOT effects to the
broader population, such as the sample receiving the program should be statistically equivalent to the broader
sample on covariates (i.e. not selected). In the targeted instruction case, this appears likely with implementation
occurring in many cases with the majority of the sample.
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Definition 4: Identification A parameter θ is point identified from some observable statistic
ϕ(θ) or distribution of data F (θ) if for any θ′ ̸= θ, ϕ(θ′) ̸= ϕ(θ) and F (θ′) ̸= F (θ).

Proposition 1 If implementation mj is not observed, the latent treatment effect of any pro-
gram, θj, is not identified even if the realized treatment effect RTEj is observed.

Proof From definition 3, the realized treatment effect identified in a randomized trial is
TEj = mjθj . In the absence of information about mj it is possible that TE′

j = TEj even when
θ′

j ̸= θj . Suppose that θ′
j = aθj . If m′

j = 1
amj then θ′

jm′
j = aθj ∗ 1

amj = θjmj . Thus, by
definition 4, θj is not identified. ■

While the identification result above is general, the most concerning possibility it presents
is that of false negatives in treatment effect attribution. If we do not have data on program
implementation, an observed null effect could be misattributed to an intervention not being
effective, when in fact it was never actually implemented. Even if we have data on program
implementation, if implementation is extremely poor such that mj = 0 then RTEj = 0 for
any θj ; in this case the latent treatment effect of the program is not identified even when
implementation is observed. In summary, lack of implementation information or extremely poor
implementation prevents the ability to attribute effects to the treatment, and is a major threat
to the internal validity of a study.

We now show that a similar identification challenge affects external validity or generalizability
when comparing evidence across settings. Recall that we have study settings j = 1, 2, 3...J each
with their own tuple (mj , θj , TEj) and variance is therefore defined across settings.

Proposition 2 When {mj}J
j=1 is not recorded, the heterogeneity in the set of realized treatment

effects {RTEj}J
j=1 does not identify the heterogeneity in the set of latent treatment effects {θj}J

j=1
even when implementation is homogeneous.

Proof From definition 3, RTEj = mjθj , so

var(RTEj) = var(mjθj)

= E[(mjθj) − E[mjθj ]]2

= E[m2
jθ2

j ] − E[mjθj ]2

= Cov(m2
j , θ2

j ) + E[m2
j ]E[θ2

j ] − E[(mjθj)2]

Since all mj are not known, this does not identify var(θj). To see this more easily consider
mj = m ∀ j, the case of perfectly homogeneous but still unknown implementation across settings.
Then,

var(RTEj) = m2var(θj)

But since m is not observed, it is possible to have the same var(RTEj) reflect different var(θj).
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Specifically if θ′
j =

√
aθj ∀ j, and m′ = 1√

a
m, then:

var(θ′
jm′) = ( 1√

a
m)2var(

√
aθj)

= 1
a

(m)2 ∗ a ∗ var(θj)

= m2var(θj)

= var(θjm).■

The problem arises because anything that scales a random variable’s magnitude also scales its
variance, and this is true even if the scaling factor is a fixed number with no variation in itself.
Naturally, the problem is worse when implementation is heterogeneous. Even if the variation
in implementation is independent of variation in potential effects, the presence of this extra
variation makes the program appear less generalizable than it is. If variation in implementation
is positively correlated with potential effects, the distortion is even greater; if the correlation is
negative, the distortion can be reversed. Thus, failure to report implementation, or very poor
implementation, means that the heterogeneity in the potential effects is not identified.

Since we always observe the realized treatment effects, it may be tempting to wonder how
serious this identification problem on latent treatments effects really is. Perhaps it is only realized
treatment effects, and not latent treatment effects, that really matter in practice or for policy
decisions. Certainly, for those who received the program in the past, the realized treatment effect
is all that matters. But for potential future recipients in other contexts, where implementation
may be different, the realized effect in previous studies may not be relevant at all. Even for
future recipients in the very same context, the realized treatment effect only captures all relevant
information if we assume the implementation cannot be influenced or changed. But this is not
true: implementation is itself a random variable that researchers and policymakers can affect.
We see substantial variation in m-factors in our data, ranging from 8 percent to 90 percent, and
in Section 7 we show it is possible to improve implementation in the context of a scaling program
with large impacts on realized treatment effects. Thus, it is important to quantify m-factors
and estimate latent treatment effects – which capture the full potential for impact – alongside
realized treatment effects. Moreover, these parameters should ideally be jointly studied through
a model that can disentangle multiple sources of variation, to which we now turn.

6.3 Incorporating m-factors into Bayesian Evidence Aggregation

We now embed the notion of program implementation developed above into the Bayesian hier-
archical aggregation framework, so that the implementation factors {mj}J

j=1 can formally enter
the analysis. This is desirable for two reasons: first, the level of implementation can be cor-
related with the potential treatment effect and joint analysis of potentially correlated random
variables is always preferable, and second, implementation levels often lie near the boundary of
the parameter space and require extra care to infer. We show in simulations in Appendix Table
A1 and A2 that as long as implementation is not exactly zero and we have information about
the degree of implementation then it is possible to identify the latent treatment effect θj as well
as the variation in this effect across settings, even when J is small.

27



We build our hierarchical implementation factor model from an adapted Rubin (1981) model.
We incorporate our model of the realized treatment effect as the product of the latent potential
effect θj and the associated implementation factor mj . Because the implementation factor and
latent effects are multiplied together, we perform a statistical deconvolution to identify their
distributions separately. We observe the estimated realized effect R̂TEj with some noise ŝej .
We also observe an estimate of the implementation level, m̂j with standard error ŝemj . We now
infer the true mj and θj from the data jointly and do so using the model below:

R̂TEj ∼ N(mjθj , ŝe2
j )

m̂j ∼ N(mj , ŝe2
mj

)

θj ∼ N(θ, σ2
θ)

(6.1)

To be concrete, consider the definition and measurement of the implementation factor for
targeted educational instruction programs. A researcher could define the implementation level
purely as student take-up; in this case the recorded attendance rate of the classes would form the
estimate m̂j , and the latent treatment effect θj would be analogous to “treatment on treated”
effects. If we instead define implementation level as the percentage of instructors who grouped
students by ability, then this percentage would form the estimate m̂j , and the latent θj would
be the effect of receiving instruction which is targeted to the right level.

A natural next question is how to define implementation when we have data on multiple
aspects of program execution. The answer is to apply the m-factor logic recursively: let us
say attendance of students in program j is captured by a variable m1j ∈ [0, 1] and fidelity of
instruction is captured by another variable m2j ∈ [0, 1]. Logically, if only half the students show
up, this dilutes the effect that the program can have in half – and if only half the instructors
actually deliver targeted instruction, this dilutes the program effect in half again. To perform
joint inference on all these factors, the following model may be used:

R̂TEj ∼ N(m1jm2jθj , ŝe2
j )

m̂1j ∼ N(m1j , ŝe2
m1j

)

m̂2j ∼ N(m2j , ŝe2
m2j

)

θj ∼ N(θ, σ2
θ).

(6.2)

This “2-factor” form of the model allows us to make progress not just on understanding
whether implementation matters but which aspects of implementation matter. Conceptually,
though not practically, the model above may be expanded ad infinitum. A drawback of our
current approach is that we do not explicitly consider correlations between implementation levels
mj and latent effects θj – this amounts to assuming that mj carries no additional information
about θj after they have been deconvolved, such that places with higher mj are not systematically
different in terms of their θj . This assumption simplifies the models enough to make them
tractable on our small data set. With larger data sets, a richer model with a joint hierarchical
structure placed on (mj , θj) could be preferable. Simulations in the Appendix in Table A1 and
Table A2, show that 95% posterior interval coverage from our models is generally better than
nominal, even when the number of studies is small.
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6.4 Implementation Model Results

We estimate Latent Treatment Effects (LTE), first fitting the single-factor implementation model
(equation 6.1) to our data. We consider takeup of the program as the level of implementation,
as this variable is observed in most studies. Table 2 shows the results for all studies in panel A,
teacher-delivery method studies in panel B, and volunteer-delivery method in panel C. We show
the posterior mean along with 5 posterior quantiles to give the full sense of the distribution,
and report the Rhat criterion as a convergence diagnostic. As the results show, the latent
treatment effects for all studies are both much larger than the average realized effects and more
generalizable, but the difference is much more marked for volunteer studies. The average latent
treatment effect for volunteer-delivered programs is 0.49 standard deviations, compared to 0.24
SDs for teacher-delivered programs. Per simulations in the Appendix in Table A1 and Table A2,
we use the posterior median of the hyperSD as our preferred estimator for this parameter, and
we find an approximate hyperSD of 0.23 SD units for each of the delivery models. This implies
that latent treatment effects for teachers are likely to be positive in most settings, whereas for
volunteers they are always large and positive.

Table 2: Model with Takeup as Implementation factor: Posterior Distribution on Effects

mean 2.5% 25% 50% 75% 97.5% Rhat

Panel A: Latent Treatment Effects (All)
Hypermean 0.418 0.231 0.361 0.414 0.473 0.616 1.002
HyperSD 0.207 0.068 0.136 0.188 0.256 0.464 1.002

Panel B: Latent Treatment Effects (Teacher)
Hypermean 0.239 -0.104 0.154 0.223 0.305 0.697 1.031
HyperSD 0.235 0.005 0.060 0.142 0.312 0.922 1.021

Panel C: Latent Treatment Effects (Volunteer)
Hypermean 0.486 0.166 0.420 0.474 0.554 0.809 1.012
HyperSD 0.233 0.017 0.087 0.164 0.296 0.930 1.006
Note: This inference is generated by J = 7 studies. Rhat is a diagnostic criterion for MCMC
convergence with multiple chains in which a value close to 1 indicates good mixing. We use the
posterior median as our preferred point estimate per the simulations in our appendix.

We note that the inferred latent treatments effects are somewhat smaller than the direct
TOT analysis results from previous sections. This is likely because this model accounts for
uncertainty on implementation during the aggregation process. This introduces more uncertainty
and allows the priors to regularize the estimation towards zero to a somewhat greater extent, as
is appropriate in small samples. We also note that the level of takeup in our data ranged from 8
percent to 90 percent; given this substantial range, the linear probability model that underpins
the Wald Estimation of the TOT effects is likely to be stressed by the data, and perhaps unduly
influenced by extreme results. Our model places bounds on the implementation factors’ values
without imposing a linear probability model, which may be another reason why we see more
uncertainty in these results.

We now consider the data on program fidelity as another important aspect of the implemen-
tation of targeted instruction. Although we only have this data for 3 study-arms and we view
the results below as suggestive, the single-factor implementation model still performed well in
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simulations at J = 3 with reasonable coverage of the 95% posterior interval on the 2-factor
model (see table A2). We consider it appropriate to proceed with caution.

Table 3 shows the results of fitting the single-factor implementation model (equation 6.1) to
the TOT estimates with fidelity as the implementation level in Panel A, and Panel B shows the
results of fitting the 2-factor implementation model (equation 6.2) to takeup and fidelity jointly.
In both cases, we see large latent treatment effects. The results in Panel A show the median
latent treatment effect is now around 0.85 SDs, with a hyperSD around 0.39. The inference
in Panel B aligns with Panel A and shows even larger latent treatment effects once fidelity is
accounted for. Comparing the results in Panel A considering fidelity of Table 3 to the results
considering only takeup (Panel A of Table 2), we find an additional 0.4 SD improvement in the
latent treatment effects; this is double what we find when we only consider takeup, revealing
the importance of considering multiple types of m-factors.

Table 3: Model with Fidelity and Takeup as Implementation Factors: Posterior Distributions of
Effects

mean 2.5% 25% 50% 75% 97.5% Rhat

Panel A: Fidelity on TOT
Hypermean 0.846 0.379 0.734 0.834 0.935 1.410 1.011
HyperSD 0.392 0.008 0.091 0.220 0.512 1.673 1.013

Panel B: Fidelity and Takeup Jointly
Hypermean 1.200 0.126 0.998 1.140 1.356 2.324 1.009
HyperSD 0.782 0.012 0.133 0.368 0.949 4.304 1.014
Note: This inference is generated by J =3. Rhat is a diagnostic criterion for MCMC convergence with
multiple chains in which a value close to 1 indicates good mixing. We use the posterior median as our
preferred point estimate per the simulations in section 6.3. Panel B should be treated as suggestive
because model performance measured by RMSE is not reliable for J = 3, although the 95% interval
coverage is above nominal.
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7 Optimizing Implementation: New Evidence from Botswana

The results of our evidence aggregation establish the importance of implementation in determin-
ing program results and generalizability across settings. This offers suggestive evidence that if
implementation can be changed in practice, the gains in children’s learning may be substantial.
We next empirically test whether there are concrete ways to increase take-up and fidelity of tar-
geted instruction in the context of a scaling program. We investigate approaches to increase the
fidelity of targeted instruction in the case of Teaching at the Right Level (TaRL) in Botswana,
where the government is actively scaling and testing the program in partnership with Youth
Impact, one of the largest NGOs in the country. As of 2022, 20 percent of schools in the country
had been reached, with all primary schools expected to be reached by 2026.

7.1 Intervention and Study Design

In Botswana, Teaching at the Right Level for numeracy lessons is implemented primarily by
grouping students by operation level; that is, whether they can add, subtract, multiply, or
divide, or do no operations at all (referred to as “beginner”). At baseline in our sample there is
a lot of variation and low performance along this dimension. Table 4 below shows the highest
operation a child can do at baseline in term 1 of the school year in 2020. The plurality of
grade 3-5 students, 30 percent, can do no operations (“beginner” level), 28 percent can do up
to addition, 20 percent can do up to subtraction, 15 percent can do up to multiplication and
only 6 percent can do up to division. As table 4 shows, however, in this sample of students
there is variation along other relevant proficiencies as well, such as the ability to recognise and
interpret larger-digit numbers. While 23 percent of students can recognize up to 4 digits, most
children cannot, with 45 percent recognizing only up to 3 digits, and 29 percent of students able
to recognize up to 2 digits.

Table 4: Botswana Sample: Learning Levels at Baseline

Operations Proportion of Students

Beginner 0.30
Addition 0.28
Subtraction 0.20
Multiplication 0.15
Division 0.06

Number Recognition

0 digits 0.00
1 digit 0.03
2 digits 0.29
3 digits 0.45
4 digits 0.23
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The selected lever to increase fidelity of the intervention was to increase the likelihood that
children receive instruction that is optimally targeted to their learning level. To test the vi-
ability and benefits of such optimizations of targeting instruction, Youth Impact conducted a
randomized controlled trial comparing two options to subgroup students. Youth Impact inter-
nally refers to this as “A/B testing”, conducting regular randomized optimizations every school
term. The standard implementation of TaRL in schools in Botswana (“Option A” in this trial)
involves testing and grouping students according to their understanding of operations and then
running operation-specific classrooms (e.g., addition class in one room, mulitiplication in the
next). This means that the operation-level classes occur with student groups who have mixed
number recognition abilities. For example, addition-level students who recognize 3 digits would
be in the same small group as addition-level 1-digit students. The new treatment being trialed
randomly (“Option B”) involves additionally subgrouping students within an operations-level
class according to their digit recognition level. For example, addition-level students who recog-
nize 3 digits would be separated from addition-level students who recognise only 1 digit, with
instruction further targeted to digit-recognition level.

The trial took place with over 1,069 students across 52 classes in 4 regions in Botswana, ran-
domized at the class level. While the results of our evidence aggregation predict that improved
targeting may improve learning beyond standard implementation, it is not obvious learning will
improve ex-ante. First, the relationship observed between implementation and effect size across
studies in the evidence aggregation could be driven by omitted variables rather than be causal.
For example, certain environments might be both easy to implement in and also very suitable
for targeted instruction. Second, standard implementation was reasonably high in Botswana
and in this context it is not certain whether similar level subgroups will improve learning out-
comes beyond the standard classroom level operation groupings. It is entirely possible there are
diminishing returns to targeting instruction – once instruction is targeted enough, there might
be little need to target instruction further, with few gains to improved fidelity above a certain
threshold.

7.2 Results

Table 5 reports results of the trial, with the data analyzed using a standard linear regression
model estimated via ordinary least squares. Results show that additional sub-learning-level
grouping improves number recognition by 0.21 standard deviations on average (column 1), with
enhanced precision and an effect of 0.22 standard deviations (p-value <0.05) when controlling
for multiple characteristics such as region and baseline learning levels (columns 2 and 3 show
different controls). These effects are considered large in the education literature where successful
programs have effect sizes typically around 0.10 standard deviations (Evans and Yuan 2020).
Moreover, this effect size is nearly the same size as the gap between ITT and TOT effects in
the literature, as well as the difference between the basic Bayesian aggregation model and Im-
plementation Model, revealing consistent estimates in this randomized trial with those observed
in the meta-analysis evidence aggregation. These results reinforce the value of increasing imple-
mentation take-up and fidelity, and that implementation is not a black-box; rather improving
implementation can be rigorously studied, concrete, tractable, and high-return.
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Table 5: Results of a Randomized Increase in Implementation Fidelity

Outcome: Number Recognition

(1) (2) (3)

Treatment: Sub-Level grouping 0.205 0.225 0.223
(0.160) (0.099) (0.097)
[0.205] [0.027] [0.026]

Baseline Number Recognition 0.611 0.616
(0.053) (0.054)
[0.000] [0.000]

Observations 1069 1069 1069
Baseline Level Controls No Yes Yes
Region Fixed Effects No No Yes

Note: All standard errors are robust and clustered at the class level. P-values are reported in brackets. Learning
gains are expressed in terms of standard deviations using the control group standard deviation.

The marginal cost of the targeted instruction optimization in this trial is small, estimated
at just a few cents. As a result, the cost-effectiveness of optimizing targeted instruction ranks
among the most cost-effective educational interventions based on a review of over 150 impact
evaluations in education (Angrist et al. 2020). Enhancing implementation fidelity may be a
particularly efficient use of resources for governments and for educational approaches that are
designed for delivery at scale.

8 Conclusion

Our analysis demonstrates the importance of quantifying program implementation with as much
care as we typically quantify program effects. We find that implementation factors explain
most of the variation in the effects of targeted instruction programs across settings. In this
case, external validity can be enhanced by simply reporting treatment-on-the-treated effects
in addition to the more typically reported intention-to-treat effects. Further insight can be
gained by using our new evidence aggregation model that formally accounts for uncertainty in
implementation and also incorporates different notions of implementation. We build on insights
from our synthesis to guide a new trial optimizing implementation in the context of a scaling
program, with substantial increases in treatment effects.

Overall, our results show that research on implementation offers meaningful insights about
not just average effects but also, crucially, on the generalizability of effects. Our results also
demonstrate that implementation can be changed in practice, identifying concrete mechanisms
to achieve the largest frontier effects in the literature. Similar analyses can be conducted across
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additional programs in the education sector beyond targeted instruction and might also prove
relevant in additional sectors beyond education.22 Further study of program implementation
seems promising, motivating the collection of data on takeup and fidelity at a much more ex-
tensive level than is currently practiced.

Our results suggest several avenues for future research on targeted educational instruction.
Most importantly, it appears targeted instruction has large and generalizable effects across sev-
eral low- and middle-income settings, suggesting the approach could make a substantial dent
in the learning crisis as it scales. In terms of future research, our results suggest the vanguard
of research should focus not on entirely new approaches in education, but rather on optimizing
implementation of known approaches, such as targeted instruction, at scale. Implementation
should be conceived of broadly, including delivery models, such as teacher or volunteer instruc-
tion, and degrees of implementation, such as takeup and fidelity. Developing new theory and
practice grounded in richer notions of program implementation may be an important avenue for
future work. Another question is why volunteer-led programs appear to be so effective relative to
teacher-led programs even, and especially, when accounting for implementation. While teacher
delivery is still highly effective with 0.23 standard deviation gains when taken up, volunteers de-
liver 0.75 standard deviations when taken up. Additional research on how to best ensure teacher
take-up and fidelity when adopting targeting instruction as well as research on volunteer-led gov-
ernment models, such as national service programs, to deliver targeted instruction at scale seems
promising given such large effects.

An open question is why targeted instruction approaches have been so consistently effective
in low- and middle-income (LMIC) contexts yet have more mixed evidence in high-income set-
tings. This could be relevant to the literature on “differentiated instruction” (Tomlinson 2014),
a term used to describe approaches similar to targeted instruction in high-income settings and
which have found mixed effects. Program implementation seems likely to play a role: a recent
systematic review highlighted that in many high-income settings “differentiated instruction has
been operationalized in many different ways” (Smale-Jacobse et al. 2019). For example, tar-
geted instruction approaches tested in LMICs typically involve dynamic regrouping of students
every few weeks, ensuring instruction is always targeted to children’s learning levels. In con-
trast, in many high-income countries, differentiation involves once-off or more sporadic learning
assessment and regrouping of students, likely leading to instruction which is not as well targeted
to children’s learning level. Quantifying the degree of fidelity in targeting approaches in future
experimental studies might shed light on this and bridge the gap between results across settings.

22A recent study finds similar results in the context of cancer screening trials (Angrist and Hull 2023)
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A Appendix Figures

Figure A1: Active targeted instruction scale-up efforts are ongoing in Botswana, Cote D’Ivoire, Ghana,
India, Kenya, Madagascar, Mexico, Mozambique, Niger, Nigeria, Pakistan, Uganda, and Zambia. For
more information see https://www.teachingattherightlevel.org/)

39



Figure A2: ASER assessment examples used across 14 countries
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B Posterior Predicted Treatment Effects

To understand how our statistical aggregation results translate into extrapolation to future policy
settings, we now examine the posterior predicted distributions of the next comparable study’s
ITT and TOT effects respectively. Figure A3 shows the uncertainty interval of the predicted
effect of targeted instruction in the next setting, labelled “predicted draws”, and for comparison
also shows the uncertainty interval on the average effect of targeted instruction across settings.

all studies

meta−regression

teachers

volunteers

−0.5 0.0 0.5 1.0 1.5

ITT

all studies

meta−regression

teachers

volunteers

−0.5 0.0 0.5 1.0 1.5

TOT

model hypermean predictive draws

Figure A3: Posterior Predictive Distributions of Future Effects

To interpret figure A3, recall that if the effect of targeted instruction were homogeneous in
all settings, the red and green distributions would be the same because the average effect would
then be the predicted effect everywhere. Classical fixed-effects meta-analysis does not distinguish
between these two quantities; in that context, the posterior uncertainty on the hypermean is
the posterior uncertainty on the predicted effect. But in the presence of heterogeneity of effects
across settings, there is a fundamental extrapolation error when attempting to use the mean
to predict the specific effect in any setting, which ought to be reflected in greater prediction
uncertainty; this can be captured in the hierarchical model. Our results show that there is
heterogeneity in both the raw ITT and TOT effects of targeted instruction, but the gap is
much smaller for the meta-regression model on the TOT effects, confirming that accounting for
contextual factors eliminates much of the heterogeneity across settings. The figure further shows
that accounting for differential delivery mechanism seems to capture some of the variation in
effects in the TOT, as the uncertainty is lower on the split models than on the average of all
studies, even though the average is estimated from more data.

We observe a few patterns. First, average effects and effects for teachers do not consistently
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have positive effects in all posterior distributions; only volunteer TOT estimates do. This is
likely due to volunteer TOT effects being both larger on average and, crucially, more homoge-
neous across studies. In short, our analysis finds strong evidence that volunteer-lead targeted
instruction interventions have a generalizably large and positive impact. By contrast, though
the average TOT and ITTs effect for all targeted instruction programs is positive in each sub-
case and in each model, there is too much heterogeneity across study contexts to rule out the
potential for negative effects in a model that allows for effect distributions to be symmetric (as
all classical meta-analytic models do).

Figure A3 also shows that for TOT effects, meta-regression substantially improves the pre-
cision of the inference on the hypermean and the posterior predictive draws. As the right
panel shows, the posterior predicted TOT effect from the meta-regression model is even smaller
than the posterior hypermean of the basic Rubin (1981) model – that is, these covariates more
than compensate for the original extrapolation error that one would have attained in the basic
Bayesian or indeed Frequentist aggregation exercise. Moreover, the variation within the delivery
groups (teachers and volunteers) is larger than the variation remaining once one conditions on
this type of study (meta-regression). These results formally confirm our earlier finding that
implementation (TOT vs ITT) and delivery mechanism (volunteer vs teachers) substantially
explains variation in TOT results, and has a key role to play in predicting the relative success
of targeted instruction interventions across settings.

B.1 Full Posterior Predicted Distribution Graphics

Figure A4 shows the basic model in red. Meta-regression models conditioning on baseline are
shown in green, on implementation delivery model in purple, and on both in blue. As the
figure shows, the predicted effect is virtually identical in each case. We examine the same
graph for the TOT, and here find that the posterior distribution of predicted effect in the
next setting is substantially more precise for the model conditioning only on delivery (shown in
purple). This result confirms that the remaining heterogeneity in effects is largely predicted by
two implementation factors: implementation degree (e.g. TOT) and implementation delivery
model.
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C Results with Theory-Informed Priors

In this section, we combine the findings of the Bayesian statistical analysis in the previous
sections with qualitative expert insight and economic theory. This approach to understanding
generalizability bridges economics and epidemiological practice in a manner consistent with the
advice for researchers in Deaton and Cartwright (2018) and Vigneri et al. (2018). First, we
discuss theory. Second, we present evidence from the literature. Third, we present results using
both types of information - theory and expertise based on the literature - captured formally in
the model via priors.

Theory-informed priors We start by formalizing components of the theory of change. Ac-
cording to an extensive literature as well as qualitative expertise, targeted instruction is designed
to bridge learning gaps when student learning levels are far behind grade level. In this envi-
ronment the curriculum is mismatched to students’ zone of proximal development. Moreover,
targeted instruction works by creating homogeneous groups which enables more efficient instruc-
tion by minimizing the likelihood of mismatch in a given group of receivers of information. This
approach is most needed in schooling systems which in the status quo student learning is far
behind grade level and where there is significant heterogeneity and thus high mismatch between
curricula and any given student learning level.

The theoretical framework outlined above predicts that students in lower learning levels
are most likely to gain from the intervention. This is consistent with a broader economic
notion of diminishing marginal returns. On the other hand, there is related economic theory
on the notion of complementarities, whereby adding one activity increase the returns of the
other; this is behind much of the “big push” development literature that underpins many highly
influential development programs including the Millennium Villages Project and the BRAC
Graduation program, sometimes called “Targeting the Ultra Poor” (Banerjee at al. 2015). This
intuition applies to the targeted instruction intervention: for example, once a child can recognize
numbers, they can more easily learn to do addition, consistent with the prominent notion of
dynamic complementarities in skill formation (Cunha and Heckman 2007). This suggests that
the students who start at higher baseline levels will progress faster.

Since these theories have qualitative predictions that go in opposite directions, the overall
implication for the quantitative estimation model is that one should regularize the correlation
between control level (or baseline level) and treatment effects across settings. The translation
of qualitative understanding into a quantitative input via the prior proceeds under the following
logic: first, we observe that the two countervailing mechanisms are likely to both be operating
in each setting, or at least we do not have any strong reason to believe that one of these
mechanisms typically dominates the other. Next, we observe that if the two mechanisms were of
exactly equal strength, the correlation observed in the data between the baseline level of ability
and the treatment effect of Teaching at the Right Level would be exactly zero. While there is no
basis for believing that the two effects would exactly counterbalance each other, in the absence
of evidence that one of these mechanisms overwhelms or dominates the other, one should not
expect to see a large correlation of either sign in the data. This corresponds to a prior that
places equal weight on positive and negative correlations but higher likelihood on moderately
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sized correlations of either sign than on extreme correlations of either sign; this offers a smooth,
classical regularization in the style of the Ridge penalty.

Literature-informed Priors We now use the theory above to inform a set of stronger priors
on our Bayesian evidence synthesis. We augment the above discussion with additional infor-
mation based on the literature on educational interventions in developing countries. To ensure
that this information is generated prior to any of the evidence on targeted instruction models
contained in our present data set, we limit ourselves to literature published before 1995 (be-
fore Pratham was even founded). At that time, the state-of-the-art understanding of experts
in primary education interventions in developing countries was overall quite pessimistic about
the potential for any single intervention to improve outcomes (Lockheed and Vespoor, 1991).
An exception to this general pessimism was surrounding the possibility of providing incentives
to teachers, although deeper discussions in the academic literature noted that there seemed
to be a potential role for pedagogical improvement, and that the incentives might primarily
work to improve pedagogy, but this potential was largely speculative (Hanushek 1995, Vespoor
1989). Overall, the development economics literature was pessimistic about the potential for
non-incentive-based reforms to have major impact on children’s learning outcomes.

Thus, the state of the field’s understanding prior to targeted instruction models further
motivates a reasonably tight prior around a zero effect size. Such a prior encapsulates the
qualitative notion that targeted instruction would have to overcome priors against it to prove
itself in that intellectual climate. To investigate the results of using strong theory-driven priors,
we now present results from the Rubin (1981) models under a variety of much stronger priors.
Using a range of strong priors allows us to understand exactly how strong the patterns in
this papers’ data and statistical analysis are, and also captures insights from a broader set of
information beyond the present studies.

Results with theory- and expertise-informed priors Figure A5 shows the results of the
basic aggregation model for the ITT results under a variety of priors on the average effect
(hypermean) parameter, and figure A6 shows the same analysis for the TOT effects. All priors
we consider are Gaussian as discussed in section 4.2 and centred at a zero effect, yet their
strength varies substantially by varying the standard deviation of the Gaussian prior around
zero. For both ITT and TOT estimates, we show the results of a reasonably strong negative
prior on the effect, represented by a prior variance on the hypermean of 0.5 outcome units, an
even stronger negative prior represented by a smaller variance of 0.25, and the strongest negative
prior with a variance of 0.1. This is extremely tight relative to earlier default priors uses, and
which are commonly used in the literature, where the prior variance is typically 7.8.

Figures A5 and A6 show that the evidence on the positive ITT of targeted instruction is
extremely strong across all priors, while the TOT results are somewhat more influenced by
the priors. This is because the TOT effects are estimated with greater uncertainty within each
study and therefore less able to overcome pessimistic priors. Yet all but the most pessmistic prior
reports an almost certain positive TOT effect on average, and even with the most pessimistic
priors, the Bayesian models report more than 75% chance of a positive TOT effect of targeted
instruction. In Section F.1, we also show results using a model that implements regularization
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of the correlation between baseline levels and treatment effects. We find similar patterns: the
strength of the TOT evidence on a positive average (hypermean) is shown in the compensating
pattern in the hyperSD; if the hypermean is forced down closer to zero, the hyperSD is forced
upwards to compensate for evidence of large and positive effects in some studies.

Overall, the evidence on the positive impact of targeted instruction is strong even when we
impose strong priors, suggesting the patterns in the data are robust and informative. This
result aligns with the progression of expert opinion. While in the 1990s there was a pessimism
in the potential effectiveness of non-incentive-based education reforms, after decades of rigorous
evidence, an emerging view is that pedagogy reforms, rather than resource or incentive reforms,
are most promising (Global Education Evidence Advisory Panel 2020). This shift in opinion had
to overcome strong priors, and our analysis shows that evidence on approaches such as targeted
instruction is indeed strong enough to do so.
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D Bayesian Model Estimation Performance

We now show via simulation that reliable estimation and inference is possible using both the one
factor model and the two-dimensional m-factor model even when J is quite small. We consider
data sets of size J = {3, 5, 8, 15}, and for each case we run 250 simulations from the model
above, where the true hypermean is 10 and the true hyperSD is 7. We draw the J standard
errors on the realized treatment effects from a uniform distribution from 10 to 20. We draw the
J true implementation factors from a uniform distribution on [0.1, 0.9] which is the range in our
data set and we draw their standard errors from a uniform distribution on [0.005, 0.05] because
this is roughly their magnitude in our data set. In each case we record the root mean squared
error of the posterior mean and posterior median of each of the hyperparameters (θ, σθ), as well
as the true frequentist coverage of the 50% and 95% posterior credible intervals across the 250
simulations for each case.

The results for the single implementation factor model (equation 6.1) are shown below in
Table A1, and in Table A2 for the 2-factor implementation model (equation 6.2). As the results
show, the 95% Bayesian credible interval typically has greater than nominal frequentist coverage
at all values of J . However, in the 2-factor model, the 50% credible interval’s coverage is degraded
for the HyperSD when J < 15. The results ahow that using the posterior median offers large root
mean squared error (RMSE) gains for the hyperSD relative to the posterior mean, and roughly
comparable RMSE for the hypermean. The improved performance of the posterior median is
likely due to the inherent skewness of the posterior distribution of the hyperSD. Overall, the
reasonably low RMSE for J > 3 offers assurance that the greater-than-nominal coverage of the
credible intervals is not due to these intervals being unduly wide, though we certainly see gains
from collecting more studies.

Table A1: 1-Factor Implementation Model Performance in Simulations

Studies Parameter RMSE (Mean) RMSE (Median) 50% CI Coverage 95% CI Coverage

J= 3 Hypermean 7 5 0.996 1
HyperSD 66 30 0.016 1

J= 5 Hypermean 3 3 1 1
HyperSD 16 8 0.632 1

J = 8 Hypermean 2 2 0.980 1
HyperSD 6 3 0.984 1

J = 15 Hypermean 2 2 0.968 1
HyperSD 1 1 0.996 1

The 2-factor implementation model is conceptually preferable, but the single factor model
performs better when J is small. Hence, in our results, we rely on the single factor model. Even
if we conceive of implementation as takeup, using the single implementation factor model is
preferable to first computing the treatment on treated using an IV strategy or Wald estimator
and then aggregating the result. This is primarily because joint analysis allows us to deconvolve
the whole distribution not just the expected value of the treatment, and thus we can account
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Table A2: 2-Factor Implementation Model Performance in Simulations

Studies Parameter RMSE (Mean) RMSE (Median) 50% CI Coverage 95% CI Coverage

J = 3 Hypermean 15 5 1 1
HyperSD 167 85 0 0.936

J = 5 Hypermean 4 3 1 1
HyperSD 44 27 0.016 1

J = 8 Hypermean 3 3 1 1
HyperSD 19 12 0.196 1

J = 15 Hypermean 2 2 1 1
HyperSD 7 4 0.944 1

for uncertainty in implementation, rather than conditioning on it via an inputted standard error
on a TOT estimate. In addition, we prefer this approach since takeup in our data ranges from
0.08 to 0.90, and the LATE is underpinned by a linear probability model which is unlikely to
perform well over extreme values.
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E Additional Bayesian Models and Results

E.1 Joint Aggregation Model

Since we have access to baseline information about each of the TaRL studies, we can go further
than the basic Rubin (1981) model and employ a joint aggregation exercise that leverages this
baseline information in order to improve precision and inference. We specify a joint hierarchy
on the control group means and treatment effects in each TaRL study, as follows:

µ̂k ∼ N(µk, σ2
µk

)

τ̂k ∼ N(τk, σ2
τk

)(
µk

τk

)
∼ N

((
µ

τ

)
, V

)
where V =

[
σ2

µ στµ

στµ σ2
τ

]
∀ k.

(E.1)

This joint model incorporates a correlation parameter between the baseline or control group
mean and the treatment effects, which can improve precision and estimation overall if such a
correlation is present. In other respects it is identical to the classical Rubin (1981) model. This
model, developed by Meager (2019), is sometimes referred to as the “mu and tau” model, as in
previous literature the effect of the program was labelled with the Greek letter τ rather than θ

(see for example Gelman et al 2004). This model was shown to substantially improve precision
and inference in the microcredit aggregation setting, and is thus worth incorporating into our
main analysis in the hope of similar gains to estimation performance (see Meager 2019 for more
details).

The results of this model are shown below in figure A7. They broadly confirm the Rubin
(1981) results shown for comparison.
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E.2 Bayesian Pooling Factors

We now display the pooling factor for each study in the simple Bayesian hierarchical model.
Table A3 and table A4 show the mean estimated pooling factor along with the lower and
upper bounds of the 95% posterior interval. The intervals are moderately tight and while
both the Intention to Treat results and the Treatment on Treated results are heterogeneous
across settings, the ITT is much more heterogeneous (i.e. with smaller pooling factors). The
hierarchical models therefore perform much less partial pooling on the ITTs, even accounting
for posterior uncertainty about these pooling factors themselves.

Table A3: ITT Effects: Estimated Pooling Factors

2.5% mean 97.5%

Balshaki Camps 0.020 0.092 0.202
First UP Camps 0.008 0.040 0.094

Tracking 0.053 0.207 0.405
Teacher Camps 0.032 0.135 0.285

School Volunteers 0.021 0.095 0.209
In-School Teachers 0.003 0.017 0.040
UP 10-Day Camps 0.006 0.028 0.067
UP 20-Day Camps 0.006 0.031 0.072

Table A4: TOT Effects: Estimated Pooling Factors

2.5% mean 97.5%

Balshaki Camps 0.054 0.251 0.544
First UP Camps 0.233 0.600 0.865

Tracking 0.036 0.186 0.441
Teacher Camps 0.131 0.445 0.759

School Volunteers 0.122 0.428 0.745
In-School Teachers 0.016 0.095 0.257
UP 10-Day Camps 0.013 0.078 0.217
UP 20-Day Camps 0.021 0.119 0.310
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F Further Robustness

F.1 Prior Robustness results

Figure A8 shows that for both the hypermean and hyperSD (heterogeneity in effects across
settings) even very strong priors cannot substantially influence the inference on the ITT results.
The evidence on the positive impact of targeted instruction at the school level is extremely strong.
This contrasts somewhat to the TOT results, which are somewhat more influenced by the priors
– this is because, as discussed earlier, the TOT effects are estimated with greater uncertainty
within each study and therefore less able to overcome pessimistic priors. However, the strength
of the TOT evidence on a positive average (hypermean) is shown in the compensating pattern
in the hyperSD; if the hypermean is forced down closer to zero, the hyperSD is forced upwards
to compensate for evidence of large and positive effects in some studies. Moreover, even with
the most pessimistic prior, the Bayesian models report more than 75% chance of a positive
effect of targeted instruction. Overall, therefore, the evidence on the positive impact of targeted
instruction is strong.

TOT, N(0, .1)

TOT, N(0, .25)

TOT, N(0, .5)

TOT, N(0, 7.8) (default)

ITT, N(0, .1)

ITT, N(0, .25)

ITT, N(0, .5)

ITT, N(0, 4.3) (default)

0.0 0.2 0.4 0.6 0.8
Hypermean

0.25 0.50 0.75 1.00
Hyper−SD

Figure A8: Additional Prior Robustness Checks

We examine the results of imposing a stronger theory-driven regularization of the correla-
tion between baseline educational performance and the treatment effect of targeted instruction
towards zero. The competing theoretical mechanisms suggest we should expect a small corre-
lation; this corresponds to expecting or favoring independence or zero-off-diagonal terms in the
variance-covariance matrix. This is implemented via the use of an LKJ Correlation prior distri-
bution on the variance-covariance matrix V from the joint aggregation model described earlier
in the Appendix. The LKJ distribution is a distribution over the space of correlation matrices,
parameterized by a “concentration parameter” that can take any positive value (see Meager
2019 and Gelman and Hill 2007 for more information). If the concentration parameter is set to
be 1, the distribution is uniform over the space of all correlation matrices; if it is larger than 1,
it favors independence, expressed by zero off-diagonal terms. The larger the parameter is, the
more strongly it favors independence, and thus, the more strongly it regularizes the correlation
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in question.
The graphics in figure A9 below show the results of fitting the joint aggregation model (the

“mu and tau” model) with an LKJ prior with concentration 1 (the default used in the previous
sections), as well as 3 (moderate regularization) and 6 (strong regularization). In this case the
stronger priors have no impact on the posterior hypermeans for TOT or ITT. While this is
initially surprising, it reflects a small empirical correlation between the baseline and treatment
effect.

ITT, LKJ = 6

ITT, LKJ = 3

ITT, LKJ = 1

0.3 0.4 0.5 0.6 0.7
Hypermean

ITT

TOT, LKJ = 6

TOT, LKJ = 3

TOT, LKJ = 1

0.3 0.4 0.5 0.6 0.7
Hypermean

TOT

Figure A9: Mu-tau model with different LKJ priors

These results do not necessarily mean baseline levels of learning do not matter for targeted
instruction to be effective. Rather it is possible that the set of studies included are all cases with
relatively low baseline learning. Thus, if low baseline learning is a critical condition whereby
targeted instruction is needed and effective, for all studies this condition might be met, hence
positive effects across the board.
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F.2 Evidence Aggregation Robustness Checks

In this section we conduct additional robustness checks that help us understand how the inference
on the average effects is constructed from the sample of studies at hand, and assess whether the
analysis in this paper is vulnerable to classical publication bias.

We first conduct Leave-One-Out analysis in order to understand the robustness of our main
results to omitting any of the studies. This is especially a concern when we have a small number
of results in a given literature, as is the case typically for aggregation of RCTs (see for example
Meager 2019, where the same robustness check is presented for the microcredit RCT aggregation
exercise). We take as our main analytical result of interest the average treatment effect, either
in terms of ITT or TOT, across all the studies in the data set. That is, we examine the posterior
distribution of the hypermean from the Bayesian hierarchical models and display its sensitivity
to leaving out each of the studies in turn. These “Leave one out” sensitivity results are shown for
the ITT estimates both in the Rubin (1981) partial pooling model and for the model conditioning
on the implementation delivery model in figure A10, where the study indicated in the row label
is the study omitted for that run of the model.

UP 20−Day Camps

UP 10−Day Camps

School Volunteers

First UP Camps

Balshaki Camps

In−School Teachers

Teacher Camps

0.1 0.2 0.3
Hypermean

ITT: partial pooling

UP 20−Day Camps

UP 10−Day Camps

School Volunteers

First UP Camps

Balshaki Camps

In−School Teachers

Teacher Camps

0.1 0.2 0.3
Hypermean

ITT: model with delivery

Figure A10: ITT Leave One Out analysis

The results above show relatively little variation in the posterior distribution of the hypermean
when any given study is omitted, with the slight possible exception of the three UP camps
estimates. These three studies each seem to exert more influence than the other studies, although
they run in different directions – dropping the first UP camps tends to increase the hypermean,
while dropping the 10- or 20-day camps tends to decrease the hypermean. However, in all cases
there is substantial overlap in the posterior intervals with the general results, and even for the
UP camps study omission the posterior mean of the hypermean is well within the central 50%
credible interval of the other posteriors. This shows relatively strong robustness of the ITT
results overall.

Figure A11 shows the sensitivity results of leaving out studies in turn for the TOT estimates
both in the Rubin (1981) partial pooling model and for the model conditioning on implementa-
tion delivery.

The graphs clearly show little variation in the posterior distribution of the hypermean for
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UP 10−Day Camps

School Volunteers
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TOT: partial pooling
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Figure A11: TOT Leave One Out analysis

either the classical Rubin partial pooling model or the meta-regressive model conditioning on
delivery. The slight exception is the effect of leaving out the In-School Teachers study in the
Rubin model, which has a somewhat more pronounced effect on the hypermean, but this is
not present in our preferred meta-regressive specification conditioning on delivery model. This
shows the strong robustness of the TOT results to omitting any of the studies, and demonstrates
that our insights about the important role of implementation factors are not based on any single
study but rather borne out across the literature as a whole.

Finally, we explore the potential for publication bias in the targeted instruction literature
and the possible impact on our findings. Figure A12 shows the distribution of t-statistics from
estimates. We use a test proposed by Andrews and Kasy (2019) where publication bias is
probable if we observe a jump in t-statistics right above the 1.96 cutoff which is a conventional
threshold for statistical significance. We do not observe such a jump, and rather observe more
studies right under this threshold as well as t-statistics which are much larger. One potential
reason for this distribution is that the sample sizes in this literature are extremely large, limiting
potential for manipulation of significance thresholds. This ameliorates potential concerns about
publication bias being responsible for the overall positive findings on the impact of the targeted
instruction intervention, as we find no evidence of any manipulation of t-statistics in our set of
studies.
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Figure A12: Distribution of t statistics in our sample
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