
VERSION: May 2024

EdWorkingPaper No. 23-868

Leveraging Item Parameter Drift to Assess 

Transfer Effects in Vocabulary Learning

Longitudinal models of individual growth typically emphasize between-person predictors of change but ignore 

how growth may vary within persons because each person contributes only one point at each time to the model. 

In contrast, modeling growth with multi-item assessments allows evaluation of how relative item performance 

may shift over time. While traditionally viewed as a nuisance under the label of “item parameter drift” (IPD) in 

the Item Response Theory literature, we argue that IPD may be of substantive interest if it reflects how learning 

manifests on different items or subscales at different rates. In this study, we present a novel application of the 

Explanatory Item Response Model (EIRM) to assess IPD in a causal inference context. Simulation results show 

that when IPD is not accounted for, both parameter estimates and their standard errors can be affected. We 

illustrate with an empirical application to the persistence of transfer effects from a content literacy intervention 

on vocabulary knowledge, revealing how researchers can leverage IPD to achieve a more fine-grained 

understanding of how vocabulary learning develops over time.

Suggested citation: Gilbert, Joshua B., James S. Kim, and Luke W. Miratrix. (2024). Leveraging Item Parameter Drift to Assess 

Transfer Effects in Vocabulary Learning. (EdWorkingPaper: 23-868). Retrieved from Annenberg Institute at Brown University: 

https://doi.org/10.26300/hpzb-2f41

Joshua B. Gilbert

Harvard University

James S. Kim

Harvard University

Luke W. Miratrix

Harvard University



RUNNING HEAD: TRANSFER EFFECTS IN VOCABULARY 1 

Leveraging Item Parameter Drift to Assess Transfer Effects in Vocabulary Learning 

 

Joshua B. Gilbert, James S. Kim, Luke W. Miratrix 

Harvard University Graduate School of Education 

Corresponding Author: joshua_gilbert@g.harvard.edu 

 

Forthcoming in Applied Measurement in Education  



RUNNING HEAD: TRANSFER EFFECTS IN VOCABULARY 2 

Abstract 

Longitudinal models of individual growth typically emphasize between-person predictors of 

change but ignore how growth may vary within persons because each person contributes only one 

point at each time to the model. In contrast, modeling growth with multi-item assessments allows 

evaluation of how relative item performance may shift over time. While traditionally viewed as a 

nuisance under the label of “item parameter drift” (IPD) in the Item Response Theory literature, 

we argue that IPD may be of substantive interest if it reflects how learning manifests on different 

items or subscales at different rates. In this study, we present a novel application of the Explanatory 

Item Response Model (EIRM) to assess IPD in a causal inference context. Simulation results show 

that when IPD is not accounted for, both parameter estimates and their standard errors can be 

affected. We illustrate with an empirical application to the persistence of transfer effects from a 

content literacy intervention on vocabulary knowledge, revealing how researchers can leverage 

IPD to achieve a more fine-grained understanding of how vocabulary learning develops over time. 

 

Keywords: Latent Growth Curve, Explanatory Item Response Model, Causal Inference, 

Simulation, Psychometrics 
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Leveraging Item Parameter Drift to Assess Transfer Effects in Vocabulary Learning 

Longitudinal models of individual growth provide critical insight into the developmental 

patterns of learning in educational research. The multilevel modeling literature in particular 

highlights the flexibility and power of longitudinal models to assess average growth trends across 

a population, heterogeneity in individual trajectories, and systematic predictors of variation in 

individual growth (Singer & Willett, 2003). Modeling individual growth heterogeneity is 

particularly important because it enables researchers to both quantify how much heterogeneity in 

growth exists in a population and simultaneously model the systematic sources of that 

heterogeneity. Paraphrasing Raudenbush and Bloom (2015), assessing individual growth 

heterogeneity through random slope models allows researchers to learn about individual growth 

heterogeneity, whereas subject characteristic by time interactions allow researchers to learn from 

individual growth heterogeneity. 

 In longitudinal studies that examine repeated measures on a single outcome measure over 

time, only between-subject predictors (or predictors at higher levels of clustering such as schools) 

of individual growth heterogeneity can be evaluated because each subject provides only one data 

point per measurement occasion, and the model is therefore unable to assess potential within-

subject heterogeneity in growth profiles among different items or subscales of an outcome 

measure. This limitation can be overcome, however, by extending the longitudinal model to 

incorporate item-level data from an assessment, rather than a single summary score representing 

that assessment, because each subject contributes multiple data points per measurement occasion 

(Luo, et al., 2022; Marvelde, et al., 2006). Just as persons may vary randomly in their growth 

trajectories and person characteristic (e.g., age, gender, demographic group) by time interactions 

can explain average between-person differences in growth rates, proficiency on items may vary 
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randomly in their growth trajectories and item characteristic (e.g., subscale, modality, content area) 

by time interactions can explain between-item differences in growth rates. For example, a 

longitudinal model of vocabulary items could reveal whether treatment effects on growth rates are 

greater on explicitly taught vocabulary words compared to untaught vocabulary words, a 

possibility we examine in our empirical application. 

Longitudinal models of item-level data are also known as latent growth curve models 

(LGCM) or longitudinal item response theory (LIRT) models because the item responses can be 

interpreted as indicators of a latent construct that develops over time, such as vocabulary or reading 

comprehension ability. There is a rich body of literature on the utility and application of LIRT and 

associated models. These models have been used to simultaneously assess average change in a 

latent trait, between-person heterogeneity in that change, and psychometric properties such as 

longitudinal measurement invariance (Pastor & Beretvas, 2006), and can be extended to higher-

order latent variable structures (Wang & Nydick, 2019), polynomial growth trajectories, 

differential item functioning (DIF), serial dependence or autocorrelation (Jeon & Rabe-Hesketh, 

2016), and multidimensionality (Wilson, et al., 2012; Cho et al., 2013). Prior simulation studies 

have demonstrated that Generalized Linear Mixed Model (GLMM) or Explanatory Item Response 

Model (EIRM) estimation procedures were generally superior to other methods such as two-step 

approaches, structural equation modeling (SEM), and Bayesian Markov Chain Monte Carlo 

(MCMC) methods (Ye, 2016). Empirical causal inference applications are rare but include 

Stevenson and colleagues (2013), who applied a longitudinal EIRM in a pre-post design measuring 

students’ change on a test of analogical reasoning, in which differential student growth rates were 

modeled as a function of the randomly assigned treatment. 
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One challenge of LIRT and associated models is the possibility of failures of longitudinal 

measurement invariance (LMI), also called item parameter drift (IPD; Rupp & Zumbo, 2006). That 

is, item discriminations (i.e., factor loadings), item difficulties (i.e., item intercepts), and factor 

variances may shift over time. LMI/IPD exists in three forms: (a) “weak” invariance, in which the 

item discriminations are equal over time, (b) “strict” invariance, in which the discriminations and 

difficulties are equal, and (c) “strong” invariance, in which discrimination, difficulties, and factor 

variances are equal (Liu, et al., 2017). Luo and colleagues (2020) argued that “LMI is a desirable 

quality in a measurement because it indicates that the same construct can be tested across occasions 

… providing a solid and necessary basis for mean comparisons in longitudinal studies. Any 

inference about developmental changes over time may be misleading and inaccurate unless the 

premise of LMI is met” (pp. 2-3). Various methods exist for detecting violations of LMI, such as 

Lord’s 𝜒! (Donoghue & Isham, 1998), and when it is ignored, parameter bias, inaccurate 

confidence intervals, and scoring inaccuracy may result (Lee & Cho, 2017; Lee & Geisinger, 

2019). 

A commonality in the LIRT literature is that LMI or IPD is treated as a nuisance to be 

evaluated and addressed rather than as an object of substantive interest. That is, changes in item 

parameters over time may cast doubt on the validity of the construct being longitudinally 

measured, and items exhibiting drift may need to be removed from the data to better meet the 

assumptions of the model. In contrast, Sukin (2010) argued that IPD may reflect a substantively 

meaningful pattern of differential learning across different types of items, noting that “if the 

performance of the item has changed due to improvements in instruction, then removing the anchor 

item [i.e., the item exhibiting IPD] may not be appropriate and might produce misleading 

conclusions about the proficiency of the examinees” (p. vii, emphasis added). Similarly, 
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VanderWeele and Vansteelant (2022) argued that the indicators of a latent factor (i.e., the items) 

may themselves be of causal interest beyond their role in measurement of the latent factor, even 

when assumptions of unidimensionality are met, because of the unique information provided by 

each indicator (see also MIMIC models, e.g., Montoya & Jeon, 2020). 

In this study, we argue that explicit modeling of IPD using random slopes models that 

allow for variation of item growth rates around the average growth rate and interpreting it as a 

substantively interesting feature of longitudinal data capable of revealing more fine-grained 

profiles of student development can provide opportunities to better understand individual growth. 

By modeling IPD, researchers can go beyond average between-person trends and better understand 

how, within students, proficiency on different individual items or subscales develops. When 

modeled appropriately, IPD may provide new insights into longitudinal growth in both descriptive 

and causal inference contexts. Accordingly, we propose a novel application of the Explanatory 

Item Response Model (EIRM) to quantify and leverage IPD for deeper understanding of individual 

growth. We first use simulation to test the performance of the EIRM with and without IPD in a 

causal inference context. We then apply the EIRM to empirical three-year longitudinal vocabulary 

assessment data from the Model of Reading Engagement (MORE) content literacy intervention 

for early elementary grades (see Kim, et al., 2021, 2023, 2024 for prior studies of MORE). 

The Explanatory Item Response Model (EIRM) 

In its simplest form, and without a longitudinal structure, the Explanatory Item Response 

Model (EIRM; De Boeck, et al., 2016) is a cross-classified logistic regression model, in which 

responses are nested within the cross-classification of items and persons. Consider the following 

model, 

 𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦"# = 1-. = 𝛽$ + 𝜃$# + 𝜁$" 1 
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𝜃$#~𝑁(0, 𝜎%!
! ) 

𝜁$"~𝑁(0, 𝜎&!
! ) 

in which the log-odds of a correct response of person j to dichotomous item i is a function of a 

constant term (𝛽$), person ability (𝜃$#), and item easiness (𝜁$"). Person ability and item easiness 

are assumed to be normally distributed with mean 0 and some variance (𝜎%!
!  and 𝜎&!

!  respectively) 

for model identification. Persons and items can be modeled as either fixed or random effects, or a 

combination of the two, but persons are almost always modeled as random (De Boeck, 2008). 

When persons are random, items are fixed, and there are no predictors in the model, the EIRM is 

mathematically equivalent to a Rasch or 1PL IRT model. Building on prior studies employing the 

EIRM (Gilbert, Kim, & Miratrix, 2023), here, we consider the random effect specification for the 

items because (a) it treats items as a source of variability, an approach that is conceptually 

appropriate when inference to the population of items are of interest (such as when items are drawn 

from a pool of potential items), (b) the standard errors for the fixed effects in the model reflect the 

sampling error of which items were selected for test administration (i.e., in contrast to the finite 

sample, test-specific estimand; see ibid; Miratrix, et al., 2021, for a discussion), and (c) it provides 

the ability to model random slopes for time at the item level to evaluate IPD, a possibility we now 

explore adding a longitudinal dimension to the model. 

We can extend the cross-sectional EIRM to longitudinal contexts (Cho, et al., 2013; 

Wilson, et al., 2012) with a linear growth EIRM by adding the subscript t to indicate measurement 

occasions across time, a fixed effect for time to capture the average growth rate, and a random 

slope for time at the person level: 

 Random Slopes for Persons, Random Intercepts for Items  2 
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𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-. = 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝜃$# + 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

𝜁$"~𝑁(0, 𝜎&!
! ) 

Here, 𝛽$ is the log-odds of a correct response at baseline (time = 0), and 𝛽( is the linear growth 

rate in the log-odds of a correct response over time, averaged across students and items. 

Conceptually, 𝛽( represents changing proficiency or ability over time. The linear functional form 

of the growth rate can easily be extended to polynomial or piecewise specifications if desired. The 

random intercept term 𝜃$# represents the deviation of person ability from the average ability at 

baseline 𝛽$ and the random slope term 𝜃(# represents the deviation of each person’s growth rate 

from the average growth rate 𝛽(, averaged across items, with mean 0 and variances 𝜎%!
!  and 𝜎%"

! , 

respectively. 𝜁$" represents item easiness and is assumed to be constant across time with mean 0 

and variance 𝜎&!
! .  𝜌$( represents the correlation between random intercepts and random slopes, 

and would reveal whether, for example, initially high-achieving students demonstrated lower or 

higher growth rates than initially low-achieving students, on average. 

The contribution of this study is to explore the consequences of extending the random slope 

specification simultaneously to the item side of the EIRM to represent IPD, in which 𝜁(" represents 

the deviation of each item’s growth rate from the average growth rate 𝛽(, averaged across persons, 

and 𝜁$" now represents item easiness at baseline: 

 Random Slopes for Persons and Items  

𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-. = 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝜃$# + 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# + 𝜁("𝑡𝑖𝑚𝑒'"# 
3 
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<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

<
𝜁$#
𝜁(#
= ~𝑁(0, >

𝜎&!
! 𝜏($

𝜏$( 𝜎&"
! @) 

Substantively, the random slope for time at the item level would indicate that, averaged across 

persons, proficiency on individual items grows at a unique rate. The variance of item specific 

growth rates, represented by the parameter 𝜎&"
! , implies that the relative item easiness parameters 

are not necessarily fixed over time as they were in the item random intercept models, but rather 

“drift” at a unique rate for each item. That is, a non-zero estimate of 𝜎&"
!  indicates the presence of 

IPD in the data, such that item 𝑖 has a growth rate of 𝛽( + 𝜁(", and the variance of item-specific 

growth rates around the average growth rate 𝛽( is captured by 𝜎&"
! .  

In other words, 𝜎&"
!  provides the total amount of IPD in the data and the residual IPD for 

any specific item 𝜁(" can be calculated after the model is fit, for example using empirical Bayes 

estimation procedures (Ten Have & Localio, 1999; Waclawiw & Liang, 1994; Liu, Kuppens & 

Bringmann, 2021). The mean of 𝜁(" is constrained to 0 for model identification because a non-zero 

mean for 𝜁(" would be confounded with an equivalent change to the average growth rate 𝛽(. The 

parameterization of IPD as a random effects variance is analogous to random effects differential 

item functioning (DIF) approaches in cross-sectional contexts that assume the overall measure is 

free of DIF but allow each item parameter to deviate randomly about the average (Van den 

Noortgate & De Boeck, 2005; Frederickx, et al., 2010; Binici, 2007; Gamerman, Goncalves, & 

Soares, 2017; Gilbert, Kim, & Miratrix, 2023). 𝜏$( captures potential associations between item 

easiness at baseline and item growth rate. For example, a positive value of 𝜏$( would suggest that 
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items that were easier at baseline demonstrated higher growth rates, on average, analogous to the 

parameter 𝜌$( for the person random effects1. 

As discussed earlier, differential growth by item is typically either ignored or interpreted 

as a nuisance, under the label of IPD, uniform DIF (De Boeck, et al., 2011, pp. 18-19; Randall, 

Cheong, & Engelhard, 2011), or violations of assumptions of longitudinal measurement 

invariance, and various strategies have been proposed to detect and adjust for it, including IRT and 

SEM-based approaches (Lee & Cho, 2017; Proust-Lima et al., 2021). However, we argue that 

rather than a nuisance, IPD, represented either by the random variation of item growth rates (i.e., 

𝜎&"
! ), growth trajectories for individual items (i.e., 𝛽( + 𝜁("), or systematic variation that interacts 

time with item features that we explore next (e.g., time by subscale interactions) estimated with 

the EIRM may provide substantive insight into student learning processes in both descriptive and 

causal contexts, as students’ performance on different items or subscales may truly develop at 

different rates, rather than representing an unreliable or defective assessment instrument. Under 

this parameterization, therefore, each person-item combination has a unique growth trajectory, and 

heterogeneous growth can occur both between persons (within items, i.e., 𝛽( + 𝜃(#) and within 

persons (between items, i.e., 𝛽( + 𝜁("). As such, modeling IPD with the EIRM can allow a more 

fine-grained insight into the nature of longitudinal growth than the comparable model with item 

random intercepts alone, or longitudinal models of total test scores. 

In addition to allowing quantification of IPD with a random slope for time at the item level, 

the EIRM can be extended with additional fixed effects at the person- or item-level to answer 

substantive research questions. For example, in a causal inference context, it is possible to include 

 
1 While outside the scope of this study, prior research has demonstrated that misspecification of the correlation 
between random effects can create bias in estimated interactions among the fixed effects. See Gilbert, Miratrix, et al. 
(2024) for a full treatment of this issue. 
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a person-level treatment variable and its interaction with time to determine if treatment causes an 

increase in average growth rates. Similarly, item-level predictors such as subscale (e.g., taught vs. 

untaught vocabulary words) interacted with time could provide substantive insight into systematic 

variation in item growth rates, and three-way interactions between treatment, subscale, and time 

would reveal the extent to which types of items are most benefited by treatment over time, or what 

has been referred to as “instructional sensitivity” in descriptive contexts (Naumann, Hochweber, 

& Hartig, 2014), and “item-level heterogeneous treatment effects” (Gilbert, Kim, & Miratrix, 

2023) or “item-treatment interactions” (Ahmed, et al., 2023) in causal contexts. For example, 

consider the following model, where 𝑡𝑟𝑒𝑎𝑡# is an indicator for treatment status and 𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒" is 

an indicator for which subscale an item belongs to (e.g., taught vs. untaught vocabulary words): 

 Random Slopes for Persons and Items with Treatment Effects on Two Subscales 

(Varying Person and Item Growth) 

𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-.

= 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝛽!𝑡𝑟𝑒𝑎𝑡# + 𝛽)𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒'"#

+ 𝛽*𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒" +	𝛽+𝑡𝑟𝑒𝑎𝑡 × 𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒"#

+ 𝛽,𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒 × 𝑡𝑖𝑚𝑒'" + 𝛽-𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒 × 𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒'"#

+ 𝜃$# + 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# + 𝜁("𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

<
𝜁$#
𝜁(#
= ~𝑁(0, >

𝜎&!
! 𝜏($

𝜏$( 𝜎&"
! @). 

4 

To aid in the interpretation of the many model parameters above, as a concrete example, 

consider an intervention measured longitudinally with a vocabulary test that includes both words 
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explicitly taught through the intervention and untaught words, with untaught words as the 

reference category (i.e., 𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒" = 1 for the taught words subscale), as is the case in our 

empirical application. In this case, the model allows for a treatment-control difference at baseline 

for untaught words (𝛽!), a two-way treatment × time interaction (𝛽)) to determine whether 

treatment students improved more over time than control students for untaught words (averaged 

across items), a main effect for differences in easiness between taught and untaught words for 

control students at baseline (𝛽*), a treatment-control difference at baseline for taught words (𝛽+, 

above any difference on untaught words), a two-way item-type ×	time interaction to determine 

whether students demonstrated more growth in taught or untaught words (averaged across persons) 

(𝛽,), and a three-way interaction treatment ×	item-type × time to determine whether treatment 

effects on growth rates differ by whether the word was taught or untaught, thus revealing within-

outcome heterogeneous treatment effects (𝛽-). A random slope term could also be added for the 

treatment × time interaction at the item level to represent residual item-level heterogeneous 

treatment effects if desired (see Gilbert, Kim, & Miratrix, 2023, for a detailed review of modeling 

item-level heterogeneous treatment effects with the EIRM in cross-sectional contexts and Gilbert, 

2023 for a tutorial on fitting such models in R).  

By including interaction effects in Equation 4 (i.e., 𝛽+, 𝛽,, 𝛽-), 𝜎&"
!  now represents the 

residual IPD variance, or the IPD that is not accounted for by any systematic item-type by time 

interactions. While estimates of item-specific growth rates from models without interactions (i.e., 

𝛽( + 𝜁" derived from Equation 3) may be meaningful and useful in exploratory analyses (Sales, et 

al., 2021), we view the most informative applications of our proposed approach to be the estimation 

of interactions between item features and time, treatment status, or both, because such interactions 
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can reveal on what types of items growth rates may systematically differ, above and beyond any 

idiosyncratic growth rate for an individual item.  

As an analogy, consider a traditional longitudinal growth model of persons. While 

examining person-specific trajectories can be useful in, say, assessing model fit or potential 

outliers, person-characteristic by time interactions are typically more meaningful to the researcher 

because they allow for specific hypothesis tests such as whether growth rates differ systematically 

by, for example, age, demographic group, gender, socio-economic status, or other person 

characteristics. We can apply similar reasoning to the item case through interaction effects 

including item characteristics. For example, prior EIRM applications examine differential 

treatment by subscale effects in cross-sectional contexts, such as treatment by reading passage 

interactions in literacy interventions (Kim, et al., 2023; Gilbert, Kim, & Miratrix, 2023; Gilbert, 

2023) and treatment by subscale interactions in clinical trials of patient reported depression surveys 

(Gilbert, Hieronymus, et al., 2024), findings with important policy implications that would not be 

readily apparent from a model of random item effects alone and no treatment by item characteristic 

interactions. In other words, the total amount of IPD given by 𝜎&"
!  in an unconditional model tells 

us that items vary in their growth rates, but not why items vary; understanding why items vary in 

their growth rates is an insight that only item-type by time interactions (e.g., 𝛽,) can provide 

(Raudenbush & Bloom, 2015). Conversely, if 𝜎&"
!  is 0, there is no need to test for interaction effects 

because there is no IPD variance to explain. Finally, we can compare unconditional models to 

interaction models and examine the change in 	𝜎&"
!  to estimate the proportion of IPD variance 

explained by the interaction effects as a metric for how well our model has explained the observed 

IPD variance with systematic item features (Hox, et al, 2017). 

Monte Carlo Simulation 
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We use Monte Carlo simulations conducted in R (R Core Team, 2022) to test the 

performance of the EIRM with and without IPD. Following previous simulation studies on 

longitudinal item response models (e.g., Lee & Cho, 2017), and to maintain focus on the effects 

of IPD, we use Equation 4 as our data-generating model and we fix the number of subjects at 500, 

the number of items at 20 (representing two subscales of 10 items each, e.g., taught vs. untaught 

words in our hypothetical example above and our empirical application), the number of repeated 

measurements at 5, the average growth rate for control students (𝛽() at 0.20 logits, the average 

treatment effect on the reference subscale (𝛽), e.g., untaught words) at 0.20 logits, the standard 

deviation of item easiness (𝜎&!) and person ability (𝜎%!) at baseline at 1, and the standard deviation 

of person growth rates (𝜎%") at 0.10 logits. We explore the combination of two varying factors, the 

average treatment effect on the focal subscale (𝛽-, e.g., taught words) at 0 and 0.20 logits and the 

standard deviation of item level growth rates (𝜎&") at 0, 0.10, and 0.20 logits. Thus, we employ a 

2×3 factorial design with null and positive subscale interaction effects at no, moderate, and high 

IPD. When IPD is positive, we have violated “strict” longitudinal measurement invariance, as the 

item discriminations are constant across time (i.e., our data generating process is a 1PL or Rasch 

model), but the difficulties are not. The IPD random slopes (𝜎&", and the person random slopes, 

𝜎%") also imply a violation of “strong” longitudinal measurement invariance because of the 

heteroskedasticity induced by the random slopes. While our simulations and empirical application 

employ the same items at each time point, the model could also be applied to data in which only a 

subset of linking items were administered at each time point. 

We generate 500 data sets for each parameterization with an initial single (i.e., 

unidimensional) normally distributed latent trait and equal and time-invariant item discriminations 

and fit two EIRMs to each, one with random intercepts for items (i.e., Equation 4 with 𝜎&"
!  fixed 
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to 0) and another with random intercepts and slopes for items (i.e., Equation 4), resulting in 3,000 

datasets and 6,000 models in total, and collect the model output for further analysis. We use the 

glmer function from the lme4 R package to fit each EIRM as a generalized linear mixed model 

with a logit link function and cross-classified random effects for persons and items (Bates, et al., 

2015; Gilbert, 2023). We use Wald tests to assess the statistical significance of the fixed effects 

and likelihood ratio tests to assess the significance of random effects or groups of fixed effects. 

We examine parameter bias and the calibration of the model standard errors. A detailed replication 

toolkit is available for researchers interested in extending the simulation or analysis of empirical 

data.  

Bias 

Figure 1 presents the bias for the time main effect (𝛽(), the treatment by time interaction 

effect (𝛽)), and the three-way interaction between treatment, time, and subscale (𝛽-). We see that 

for the two- and three-way interaction terms the item random intercepts specification (labelled RI 

in the figure) results in an increasing downward bias as IPD increases. When IPD is high (𝜎&" = 

0.20 logits), we see that the downward bias is most severe, but still relatively small in magnitude. 

This downward bias is consistent with known properties of logistic regression that result in 

downwardly biased point estimates due to unobserved heterogeneity (e.g., omitted variables or a 

mis-specified model), even when the unobserved heterogeneity is independent of the variables in 

question, a property not shared by linear regression with continuous outcomes (Mood, 2010; 

Gilbert & Miratrix, 2023). The downward bias is not present when the true effect is precisely 0 

because the downward bias is proportional to the true value (Mood, 2010, pp. 68-69). We 

emphasize that the observed bias is not due to shrinkage induced by empirical Bayes estimation of 

random effects that we would see in a two-step analysis that first fits a measurement model and 
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then analyzes the resultant scores in a separate step (Soland, et al., 2022; Gilbert, 2024a, 2024b; 

Hedges, 1981). As a latent variable model where the measurement and regression models are 

simultaneously estimated, the EIRM does not suffer from such attenuation bias in general. Rather, 

the bias emerges from the misspecification of the model by omitting the relevant random effect 

term (Hox, et al., 2017).  

[Insert Figure 1 Here] 

Standard Error Calibration 

 Figure 2 displays the mean model-based SEs of the same three fixed effects as a percentage 

of the true SEs (i.e., the standard deviation of the point estimates). If the model-based SEs are well 

calibrated, we would expect them to fall on the horizontal line at 100%. While the SEs for the two- 

and three-way interaction terms are generally well calibrated across all models, falling within 10 

percentage points of their true value, the SEs for the main effect of time become severely 

underestimated when IPD is high in the random intercepts model that constrains 𝜎&"
!  to 0. This 

occurs for the main effect of time only because when IPD is present, each finite draw of items will 

have a mean residual growth rate different from 0 due to sampling error, and when IPD is not 

modeled, the sample mean growth rate of the items is incorporated into the estimation of the 

average person growth rate 𝛽(, creating greater variability across different samples of items. In 

other words, the SE for growth rate in the random intercepts model does not adjust for the 

additional uncertainty due to the selection of items onto the test. We can estimate the inflation of 

the SE due to IPD using the techniques of Generalizability Theory (Brennan, 1992) with the 

following formula: 

 
𝑆𝐸I(𝛽()./0 = J𝑉𝑎𝑟I (𝛽()1. +

𝜎&"
!

𝐼  
5 
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where 𝐼 is the number of items and 𝑉𝑎𝑟I (𝛽()1. is the variance of the time slope from the random 

intercepts model. Clearly, when 𝜎&"
!  is high and 𝐼 is low, the inflation of the SE can be substantial. 

We do not find the same pattern in the interaction effects because, so long as IPD affects treatment 

and control groups equally and all students answer the same items (as is the case in the simulation), 

this additional variability is subtracted out in the interaction effects.  

[Insert Figure 2 Here] 

Empirical Application 

For our empirical application, we examine immediate and delayed treatment effects of the 

Model of Reading Engagement (MORE) randomized controlled trial (RCT) intervention. The 

MORE content literacy intervention is designed to improve first to third-grade grade students’ 

domain and content background and vocabulary knowledge in science and social studies that are 

critical to reading comprehension. The MORE curriculum emphasizes thematic lessons that focus 

on a single topic over consecutive weeks in a semester and provides an intellectual structure for 

helping young children connect new content learning and vocabulary to a general schema 

(Anderson & Pearson, 1984; Kintsch, 2009; Perfetti, 2007). In a recent longitudinal investigation 

of MORE (Kim, et al., 2024), 30 elementary schools were randomly assigned to either a treatment 

or control condition. In the treatment condition, students participated in MORE content literacy 

lessons from Grades 1 to 3 during the school year and wide reading of thematically related 

informational texts in the summer following Grades 1 and 2. In the control condition, students 

participated in MORE lessons in only Grade 3. At the end of Grade 3, there were positive impacts 

on both researcher-designed domain specific reading comprehension tests in science (ES = 0.14) 

and state standardized end-of-grade domain general reading comprehension tests (ES = 0.11). An 

open question, however, is whether the full Grade 1 to 3 intervention fosters growth in 
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vocabulary—a key malleable and potentially causal mechanism—compared to the partial Grade 3 

intervention. This study provides an ideal context to address this question because students 

completed researcher-designed assessments in Grade 2 spring. Then, at the end of Grade 3, 

students completed another researcher-designed vocabulary test which included a repeated 

administration of the same vocabulary words tested at the end of Grade 2. Thus, we can estimate 

the immediate impact of MORE on the subset of students (n = 1225) who completed both second- 

and third-grade vocabulary tests and whether any treatment effect on vocabulary achievement 

persists, grows, or declines over a 12-month follow-up period2. 

The researcher-designed assessment of vocabulary knowledge depth includes 12 items. 

Each item lists a target word and prompts students to select the two words out of four choices that 

best go with the target word. For example, one item prompts students to “choose the two words 

that best go with the word carnivore” and the options were “fruit”, “care”, “meat”, and “prey”, of 

which the last two are the correct responses. Each item was scored dichotomously as correct (1) if 

students selected the two correct words, or incorrect (0) for any other response pattern. We apply 

the dichotomous scoring procedure rather than a partial credit or ordinal scoring system to match 

the approach of the original authors. The 12 vocabulary items included seven vocabulary words 

explicitly taught through the MORE intervention lessons (“taught words”) and five conceptually 

related words that were not explicitly taught but were included in the lesson materials and activities 

such as read-alouds (“untaught words”) and thus represented a farther degree of transfer from the 

 
2The technically oriented reader might notice that typically, random slopes longitudinal models are not identified 
with only two time points because each subject’s individual trajectory can be “perfectly” fit by the model (Muthen, 
2000). The issue of non-identifiability does not apply here because the cross-classified structure of the data is 
additive, not multiplicative. That is, there is no interaction between the person and item random effects because such 
an interaction would be confounded with the error term, whereas the additive case allows for imperfect fit. Thus, 
such models may provide additional utility in empirical applications when only two time points are available. See 
O’Connell, et al. (2022, pp. 170-171), Hox, et al. (2017), and Shi, et al. (2010) for a discussion and additional 
references. 
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MORE curriculum (Barnett & Ceci, 2002). Here, we restrict our analysis to the subset of students 

(n = 1225) who completed the assessment in both Grades 2 and 3, and the subset of items that were 

included on both assessments (n = 12). The vocabulary assessment instrument and psychometric 

analyses at each time point are included in the Online Supplemental Materials (OSM), which show 

that the assessment had internal consistencies of 0.81 (G2) and 0.80 (G3), moderately to highly 

positive item discrimination parameters, and CFA revealed adequate fit of a unidimensional model 

at both pretest (CFI = 0.96, RMSEA = 0.04, SRMR = 0.030) and posttest (CFI = 0.98, RMSEA = 

0.027, SRMR = 0.024)3. 

To explore immediate and delayed impacts of MORE on vocabulary knowledge depth, we 

fit four models, all including time, treatment, and their two-way interaction: (1) random intercepts 

for persons and items (analogous to Equation 2 with 𝜎%"
!  constrained to 0) as a baseline, (2) random 

slopes for persons, random intercepts for items (analogous to Equation 2), (3) random slopes for 

persons and items (Equation 3), and (4) random slopes for persons and items with two- and three-

way interaction effects (Equation 4). Because MORE was a cluster-randomized trial, we include 

school random effects in all models, but for clarity we omit them from the equation below. We 

only display the equation for Model 4 as all prior models are nested within it. 

 
3 We estimated the CFA model using the lavaan program in R (Rosseel, 2012) using the default estimation 
options, allowing for variable factor loadings by item. We treated the items as continuous because lavaan does not 
allow for logistic link functions and to obtain the standard fit statistics available in CFA models of continuous 
indicators. Furthermore, the assessment also included vocabulary words that were taught in Grade 1 MORE lessons 
and were tested in both Grade 1, halfway through the intervention, and in Grade 3, one year after the conclusion of 
the intervention. An analogous analysis of these words is included in the OSM and shows a similar pattern of results 
to the Grade 2 words analyzed here. 



RUNNING HEAD: TRANSFER EFFECTS IN VOCABULARY 20 

 𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-.

= 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝛽!𝑡𝑟𝑒𝑎𝑡# + 𝛽)𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒'"#

+ 𝛽*𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒"# + 𝛽+𝑡𝑎𝑢𝑔ℎ𝑡" +	𝛽,𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑎𝑢𝑔ℎ𝑡"#

+	𝛽-𝑡𝑖𝑚𝑒 × 𝑡𝑎𝑢𝑔ℎ𝑡'"# +	𝛽2𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒 × 𝑡𝑎𝑢𝑔ℎ𝑡'"# +	𝜃$#

+ 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# + 𝜁("𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

<
𝜁$#
𝜁(#
= ~𝑁(0, >

𝜎&!
! 𝜏($

𝜏$( 𝜎&"
! @) 

 

6 

 

Compared to Model 4, Model 3 omits 𝛽+, 𝛽,, 𝛽- and 𝛽2, Model 2 omits 𝜎&"
! , and Model 1 omits 

𝜎%"
! .  

 In Model 4, the parameters of interest are 𝜎&"
! , quantifying IPD in the residual variance of 

item growth rates, 𝛽!, the immediate treatment effect on untaught words in Grade 2, and 𝛽), the 

difference in the treatment effect on untaught words from Grade 2 to Grade 3 (i.e., potential fadeout 

for untaught words). 𝛽! + 𝛽) provides the delayed treatment effect on untaught words. We include 

baseline state test scores (standardized to mean 0 and unit variance), collected in Grade 1 winter 

as a covariate to improve the precision of the estimates (𝛽*). The baseline measure employed in 

this study is the NWEA Measure of Academic Progress (MAP) reading assessment, a state-

mandated test administered at the beginning of the school year. We also include a main effect for 

taught words capturing differences in item easiness between taught and untaught words for control 

students in Grade 2 (𝛽+), an interaction between treatment and taught words capturing the 

difference in treatment effects for taught and untaught words in Grade 2 (𝛽,), an interaction 
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between time and taught words capturing the difference in easiness between taught and untaught 

words between Grades 2 and 3 for control students (𝛽-), and a three-way interaction between 

treatment, time, and taught words capturing the difference in the two-way interaction for time and 

taught words for treatment students (𝛽2). Analogous to prior models, 𝛽$ provides the control group 

mean in Grade 2 on untaught words, 𝛽( provides the average growth rate for control students on 

untaught words, and the random effects variances 𝜎%!
! , 𝜎%"

! , and 𝜎&!
!  provide the variability of 

student intercepts in Grade 2, the variability of student growth rates, and the variability in item 

easiness in Grade 2, respectively. 

Results 

The fitted models are presented in Table 1. Model 1 shows a positive but not significant 

treatment effect at immediate posttest at the end of Grade 2 (𝛽! = 0.12 logits, p > 0.05), and that 

the magnitude of the average treatment effect grows over time through the end of Grade 3 (𝛽) = 

0.13, p < 0.05), showing the persistence of the MORE treatment effect in contrast to many studies 

that demonstrate fadeout of effects over time (see Bailey, et al., 2017; Wan, et al., 2021). The 

coefficients for time and baseline scores are strong and statistically significant, indicating that 

control student proficiency increased from Grade 2 to Grade 3 (𝛽( = 0.51, p < 0.001) and that 

students with higher baseline scores had higher proficiency (𝛽* = 0.98, p < 0.001). Model 2 adds 

the random slope for persons, and we observe that individual trajectories are highly heterogeneous 

(𝜎%"
! = 0.92), the treatment by time interaction term is no longer statistically significant, and the SE 

for the time coefficient has increased substantially. Model 3 adds the random slopes for items, 

representing IPD, and we see that there is substantial IPD (𝜎&"
! = 0.25). A likelihood ratio test 

reveals that Model 3 is a significantly better fit to the data than Model 2, suggesting that the IPD 

in the dataset is significant (𝜒!= 217.3, p < 0.001). The variation in item level growth trajectories 
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is depicted in Figure 3, showing the model implied trajectories for each vocabulary word (i.e.,  

𝛽( + 𝜁("), for the average student. Following the simulation results, we see that the SE for the main 

effect of time drastically increases, as the SE for Model 3 incorporates the additional uncertainty 

of which items were selected for test administration. To attempt to explain the moderate level of 

IPD, Model 4 adds two- and three-way interactions between treatment, time, and whether the item 

tested an explicitly taught vocabulary word. We observe that the treatment by taught word 

interaction is significant, indicating that at the immediate posttest, the treatment effect was smaller 

on taught words than untaught words (𝛽, = -0.20, p < 0.05), a finding that matches prior separate 

analyses of Grade 2 vocabulary scores (Kim, et al., 2023, 2024). The main effect for treatment 

indicates that the treatment effect at immediate posttest is statistically significant for untaught 

words (𝛽! = 0.23, p < .05). The three-way interaction between treatment, time, and taught word is 

non-significant. However, the variance of the IPD term remains unchanged, suggesting that the 

interaction effects have not captured substantial systematic variation in item growth, and the great 

majority of IPD remains unexplained, a function of the idiosyncratic characteristics of each item. 

Figure 4 shows predicted probabilities of a correct response for the typical student and item 

for each treatment condition and “taught word” item status. Visually, we see that the immediate 

treatment effect on untaught words persists through the 12 month follow up. These results suggest 

that instead of diminishing over time, the MORE intervention was successfully able to lay a 

foundation for learning that persisted for untaught (far transfer) vocabulary words in the 12 months 

following treatment. Importantly, the larger treatment effects on the untaught vocabulary words 

suggest that the MORE intervention was not “teaching to the test” and thus the results are unlikely 

to be attributable to score inflation (Koretz, 2005). Furthermore, in contrast to a two-step approach 

in which the four outcomes were modeled separately (e.g., G2 taught, G2 untaught, G3 taught, and 
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G3 untaught), the EIRM allows direct tests of differences in treatment effect size across these 

subscales in the parsimony of a single model (Gilbert, 2023). 

[Insert Table 1, Figure 3, and Figure 4 Here] 
 

Discussion 

 Analysis of individual growth in education has typically emphasized between-person 

predictors of growth through person characteristic by time interactions. When item-level data are 

available, another perspective is possible, namely, item characteristic by time interactions to assess 

the extent to which proficiency on different items or subscales may develop at different rates. In 

the educational measurement literature, changing item properties over time has been viewed as a 

nuisance under the rubric of IPD. In this study, we argue that IPD can represent substantively 

meaningful differential learning on different items or subscales, and the EIRM with a random slope 

for time at the item level provides an opportunity to better understand the facets of student growth 

if student learning is not constant across all items over time. 

 Results of the data simulation revealed that when a high degree of IPD is present in the 

data but ignored in the model, point estimates for interaction terms are slightly biased downward, 

and standard errors can be underestimated for main effects, but not interaction effects involving 

time. Therefore, researchers employing the EIRM should consider the possibility of IPD and test 

for its presence with a random slope for time at the item level, even if IPD is not of primary interest, 

to obtain accurate parameter estimates and SEs, particularly when examining interaction effects 

such as the time by treatment by subscale effects examined here. For example, as shown in the 

empirical application, when IPD is included in Model 3, the SE for the main effect of time 

increases dramatically, in line with the simulation results and Equation Error! Reference source 

not found.. The empirical application further showed that the MORE literacy intervention had 
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persistent effects on student vocabulary ability on the far transfer untaught words from the end of 

treatment in Grade 2 through a 12-month follow up in Grade 3. While explicitly taught words were 

easier on average than untaught words, the treatment effect was larger on the more difficult 

untaught words, providing evidence that treatment students were successfully able to transfer their 

learning to new contexts. 

To extend the applicability of the EIRM to more diverse applied contexts, the simple 

example of a unidimensional Rasch model employed in this study could be easily augmented to 

include varying item discriminations (i.e., a 2PL model; Rockwood & Jeon, 2019; Burkner, 2021; 

Gilbert, 2023), missing data (de Boeck et al., 2016), multidimensionality (de Boeck & Wilson, 

2014), and non-dichotomous responses (Bulut, et al., 2021; Gilbert, Hieronymus, et al., 2024). 

While widely applicable, a potential limitation of the EIRM is the interpretation and 

communication of the results. Log-odds may be more difficult to explain and justify to 

practitioners than a more familiar sum or scaled score. Previous studies of the EIRM suggested 

two approaches to increase the communicability of the results (Gilbert, Kim, & Miratrix, 2023). 

First, fitted models can be used to estimate population average probabilities at each time point, as 

depicted in Figure 4, for example by using the R package ggeffects (Lüdecke, 2018). Second, 

treatment effects on the logit scale can be converted into a Cohen’s d type effect size by “y-

standardization” (see Breen, Karlson, & Holm, 2018 for the single-level case; see Hox, Moerbeek, 

& Van de Schoot, 2017, Chapter 6 for the multilevel case), whereby the logit-scale coefficient 

𝛽345"' is divided by the estimated total standard deviation of a latent continuous variable Y* that 

gives rise to the observed dichotomous response Y, using the following formula 

𝛽67'8 =
𝛽345"'
𝑆𝐷(𝑌∗) =

𝛽345"'

V𝜋
!

3 + 𝜎%!
! + 𝜎:!
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in which ;
#

)
= 3.29 is the variance of the logistic distribution, 𝜎%!

!  is the variance of the person 

intercepts at baseline, and 𝜎:! is the variance of the fixed effects (i.e., the variance of the estimated 

linear predictor on the logit scale). The y-standardized coefficients could then be compared to other 

metrics or used in meta-analysis. In the context of this study, for example, the estimated 

standardized effect size on untaught vocabulary words at immediate posttest is equal to 

𝛽67'8 =
𝛽345"'
𝑆𝐷(𝑌∗) =

. 23
√3.29 + .93 + 2.6

= 0.09 

a small but significant positive impact. Such an effect size could then be converted to a percentile 

gain (about 3.3 percentile points, see Hippel, 2023), or an approximate number of additional items 

answered correctly. 

 Another challenge of the longitudinal EIRM approach proposed here is that the many 

parameters of the model require large samples of both items and persons for consistent estimation. 

For example, simulation studies by Soland, et al. (2022) show that IRT-based scoring methods can 

yield substantial bias in estimated treatment effects with short, 4-item scales, though the biases are 

substantially reduced as the number of items increases to 12 or more. Similarly, simulations in 

Gilbert, Kim, and Miratrix (2023) show that achieving 80% statistical power to detect random 

slope treatment effect variation at the item level is reached at 300 subjects, 20 items, and relatively 

large random slope standard deviations of .40. Additional studies have confirmed that EIRM 

approaches successfully recover item parameters and regression coefficients when sample sizes 

are large (Gilbert, Kim, & Miratrix, 2023, p. 896). As such, our approach is best suited for 

relatively large-scale data analysis contexts. 

In conclusion, item parameter drift has traditionally been considered a nuisance in the 

educational measurement literature, but it has the potential to provide substantive insight into the 

learning process as proficiency on different items may develop at different rates. By explicitly 



RUNNING HEAD: TRANSFER EFFECTS IN VOCABULARY 26 

modeling IPD, the EIRM allows for more nuanced and fine-grained insights into the nature of 

student learning over time. In particular, the IPD model may provide a more generalizable 

perspective on student growth by incorporating the uncertainty of item selection into the standard 

errors of the growth estimates. Such generalizability is particularly important in domains such as 

vocabulary, in which the underlying construct can never be fully measured by any finite set of 

items. Researchers can use such insights to provide more actionable information to stakeholders 

and better understand the ways in which individual growth is a multifaceted phenomenon.  
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Figure 1. Parameter Bias by Method 

(RI = Random Intercepts for Items, RS = Random Slopes for Items) 
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Figure 2. Standard Error Calibration by Method 
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Figure 3. Item-Level Growth Trajectories Derived from Model 3  

 

Notes. A table of item-specific growth rates and a graph of empirical Bayes estimates for each 

item’s residual growth rate and a 95% confidence interval is presented in our online 

supplemental materials. 
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Figure 4. Prototypical Probabilities of a Correct Response for Treatment and Control Students on 

Taught and Untaught Vocabulary Words Derived from Model 4 
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Table 1. EIRM Results for the MORE Intervention Data 
 

  M1 M2 M3 M4 

Predictors Log-
Odds SE Log-

Odds SE Log-
Odds SE Log-

Odds SE 

Constant (𝛽$) 0.04 0.28 0.03 0.29 0.05 0.30 -0.18 0.45 

Treatment (𝛽!) 0.12 0.09 0.12 0.10 0.12 0.10 0.23 * 0.11 

Time (𝛽() 0.51 *** 0.04 0.52 *** 0.06 0.50 ** 0.16 0.54 * 0.24 

Baseline MAP (𝛽*) 0.98 *** 0.03 1.00 *** 0.03 1.01 *** 0.03 1.01 *** 0.03 

Treatment X Time (𝛽)) 0.13 * 0.06 0.12 0.08 0.12 0.08 0.07 0.10 

Taught Word (𝛽+) 
      

0.39 0.59 

Treatment X Taught (𝛽,) 
      

-0.20 * 0.08 

Time X Taught (𝛽-) 
      

-0.06 0.31 

Treatment X Time X Taught 
(𝛽2) 

      
0.08 0.12 

Random Effects 

Scale Variance 3.29 3.29 3.29 3.29 

𝜎%!
! (Student) 0.56 0.90 0.93 0.93 

𝜎<! (School) 0.04 0.04 0.04 0.04 

𝜎&!
!  (Item) 0.89 0.97 1.01 0.99 

𝜎%"
!  (Student Growth)   0.92 0.96 0.96  

𝜎&"
!  (IPD)     0.25  0.25 

𝜌$( (Student Corr.)   -0.57 -0.57 -0.57 

𝜏$( (Item Corr.)     -0.19 -0.19 

N Students 1225 1225 1225 1225 

N Items 12 12 12 12 

N Schools 29 29 29 29 

Observations 29327 29327 29327 29327 

Deviance 30566.468 30264.879 30047.539 30039.239 

* p<0.05   ** p<0.01   *** p<0.001 
Notes. MAP = Measure of Academic Progress, our measure of baseline ability.  
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Appendix: Sample R Code to Fit the Longitudinal EIRM 

The code below shows the basic R syntax to fit various longitudinal EIRMs with dichotomous 

outcome correct, treatment indicator treat, time variable time, item type indicator 

itemtype, student identifier s_id, and item identifier item. For clarity, we omit family = 

binomial and data = dataset from each glmer function call. 

# load the relevant library 
library(lme4) 
 
# baseline model: 
# random intercepts with treatment by time interaction 
glmer(correct ~ treat*time + (1|s_id) + (1|item)) 
 
# add random slopes for persons 
glmer(correct ~ treat*time + (time|s_id) + (1|item)) 
 
# add random slopes for items (IPD) 
glmer(correct ~ treat*time + (time|s_id) + (time|item)) 
 
# add interaction between treatment, time, and itemtype 
glmer(correct ~ treat*time*itemtype + (time|s_id) + (time|item)) 
 


