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Abstract 

Longitudinal models of individual growth typically emphasize between-person predictors of 

change but ignore how growth may vary within persons because each person contributes only one 

point at each time to the model. In contrast, modeling growth with multi-item assessments allows 

evaluation of how relative item performance may shift over time. While traditionally viewed as a 

nuisance under the label of “item parameter drift” (IPD) in the Item Response Theory literature, 

we argue that IPD may be of substantive interest if it reflects how learning manifests on different 

items at different rates. In this study, we present a novel application of the Explanatory Item 

Response Model (EIRM) to assess IPD in a causal inference context. Simulation results show that 

when IPD is not accounted for, both parameter estimates and their standard errors can be affected. 

We illustrate with an empirical application to the persistence of transfer effects from a content 

literacy intervention on vocabulary knowledge, revealing how researchers can leverage IPD to 

achieve a more fine-grained understanding of how vocabulary learning develops over time. 

 

Keywords: Latent Growth Curve, Explanatory Item Response Model, Causal Inference, 

Simulation, Psychometrics 
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Leveraging Item Parameter Drift to Assess Transfer Effects in Vocabulary Learning 

Longitudinal models of individual growth provide critical insight into the developmental 

patterns of learning in educational research. The multilevel modeling literature in particular 

highlights the flexibility and power of longitudinal models to assess average growth trends across 

a population, heterogeneity in individual trajectories, and systematic predictors of variation in 

individual growth (Singer & Willett, 2003). Modeling individual growth heterogeneity is 

particularly important because it enables researchers to both quantify how much heterogeneity in 

growth exists in a population and simultaneously model the systematic sources of that 

heterogeneity. Paraphrasing Raudenbush and Bloom (2015), assessing individual growth 

heterogeneity through random slope models allows researchers to learn about individual growth 

heterogeneity, whereas subject characteristic by time interactions allow researchers to learn from 

individual growth heterogeneity. 

 In longitudinal studies that examine repeated measures on a single outcome measure over 

time, only between-subject predictors (or predictors at higher levels of clustering such as schools) 

of individual growth heterogeneity can be evaluated because each subject provides only one data 

point per measurement occasion, and the model is therefore unable to assess potential within-

subject heterogeneity in growth profiles among different facets of an outcome measure. This 

limitation can be overcome, however, by extending the longitudinal model to incorporate item-

level data from an assessment, rather than a single summary score representing that assessment, 

because each subject contributes multiple data points per measurement occasion (Luo, et al., 2022; 

Marvelde, et al., 2006). Just as persons may vary randomly in their growth trajectories and person 

characteristic by time interactions can explain average between-person differences in growth rates, 

proficiency on items may vary randomly in their growth trajectories and item characteristic by 
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time interactions can explain between-item differences in growth rates. For example, a longitudinal 

model of vocabulary items could reveal whether proficiency on nouns developed differently than 

proficiency on verbs. 

Longitudinal models of item-level data are also known as latent growth curve models 

(LGCM) or longitudinal item response theory (LIRT) models because the item responses can be 

interpreted as indicators of a latent construct that develops over time, such as vocabulary or reading 

comprehension ability. There is a rich body of literature on the utility and application of LIRT and 

associated models. These models have been used to simultaneously assess average change in a 

latent trait, between-person heterogeneity in that change, and psychometric properties such as 

longitudinal measurement invariance (Pasto & Beretvas, 2006), and can be extended to higher-

order latent variable structures (Wang & Nydick, 2019), polynomial growth trajectories, 

differential item functioning (DIF), serial dependence or autocorrelation (Jeon & Rabe-Hesketh, 

2016), and multidimensionality (Wilson, et al., 2012; Cho et al., 2013). Prior simulation studies 

have demonstrated that Generalized Linear Mixed Model (GLMM) or Explanatory Item Response 

Model (EIRM) estimation procedures were generally superior to other methods such as two-step 

approaches, structural equation modeling (SEM), and Bayesian Markov Chain Monte Carlo 

(MCMC) methods (Ye, 2016). Empirical causal inference applications are rare but include 

Stevenson and colleagues (2013), who applied a longitudinal EIRM in a pre-post design measuring 

students’ change on a test of analogical reasoning, in which differential student growth rates were 

modeled as a function of the randomly assigned treatment. 

One challenge of LIRT and associated models is the possibility of failures of longitudinal 

measurement invariance (LMI), also called item parameter drift (IPD; Rupp & Zumbo, 2006). That 

is, item discriminations (i.e., factor loadings), item difficulties (i.e., factor intercepts), and factor 
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variances may shift over time. LMI/IPD exists in three forms: (a) “weak” invariance, in which the 

item discriminations are equal over time, (b) “strict” invariance, in which the discriminations and 

difficulties are equal, and (c) “strong” invariance, in which discrimination, difficulties, and factor 

variances are equal (Liu, et al., 2017). Luo and colleagues (2020) argued that “LMI is a desirable 

quality in a measurement because it indicates that the same construct can be tested across occasions 

… providing a solid and necessary basis for mean comparisons in longitudinal studies. Any 

inference about developmental changes over time may be misleading and inaccurate unless the 

premise of LMI is met” (pp. 2-3). Various methods exist for detecting violations of LMI, such as 

Lord’s 𝜒! (Donoghue & Isham, 1998), and when it is ignored, parameter bias, inaccurate 

confidence intervals, and scoring inaccuracy may result (Lee & Cho, 2017; Lee & Geisinger, 

2019). 

A commonality in the LIRT literature is that LMI or IPD is treated as a nuisance to be 

evaluated and addressed rather than as an object of substantive interest. That is, changes in item 

parameters over time may cast doubt on the validity of the construct being longitudinally 

measured, and items exhibiting drift may need to be removed from the data to better meet the 

assumptions of the model. In contrast, Sukin (2010) argued that IPD may reflect a substantively 

meaningful pattern of differential learning across different types of items, noting that “if the 

performance of the item has changed due to improvements in instruction, then removing the anchor 

item [i.e., the item exhibiting IPD] may not be appropriate and might produce misleading 

conclusions about the proficiency of the examinees” (p. vii, emphasis added). Similarly, 

VanderWeele and Vansteelant (2022) argued that the indicators of a latent factor (i.e., the items) 

may themselves be of causal interest beyond their role in measurement of the latent factor, even 
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when assumptions of unidimensionality are met, because of the unique information provided by 

each indicator (see also MIMIC models, e.g., Montoya & Jeon, 2020). 

In this study, we argue that explicit modeling of IPD, and interpreting it as a substantively 

interesting feature of longitudinal data capable of revealing more fine-grained profiles of student 

development can provide opportunities to better understand individual growth. By modeling IPD, 

researchers can go beyond average between-person trends and better understand how, within 

students, proficiency on different items or subscales develops. When modeled appropriately, IPD 

may provide new insights into longitudinal growth in both descriptive and causal inference 

contexts. Accordingly, we propose a novel application of the Explanatory Item Response Model 

(EIRM) to quantify and leverage IPD for deeper understanding of individual growth. We first use 

simulation to test the performance of the EIRM with and without IPD in a causal inference context. 

We then apply the EIRM to empirical three-year longitudinal vocabulary assessment data from the 

Model of Reading Engagement (MORE) content literacy intervention for early elementary grades 

(see Kim, et al., 2021, 2022, 2023, for prior studies of MORE). 

The Explanatory Item Response Model (EIRM) 

In its simplest form, and without a longitudinal structure, the Explanatory Item Response 

Model (EIRM; De Boeck, et al., 2016) is a cross-classified logistic regression model, in which 

responses are nested within the cross-classification of items and persons. Consider the model 

below, 

𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦"# = 1-. = 𝛽$ + 𝜃# + 𝜁" 

𝜃#~𝑁(0, 𝜎%!) 

𝜁"~𝑁(0, 𝜎&!) 
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in which the log-odds of a correct response of person j to dichotomous item i is a function of a 

constant term (𝛽$), person ability (𝜃#), and item easiness (𝜁"). Persons and items can be modeled 

as either fixed or random effects, or a combination of the two, but persons are almost always 

modeled as random (De Boeck, 2008). When persons are random, items are fixed, and there are 

no predictors in the model, the EIRM is mathematically equivalent to a Rasch or 1PL IRT model. 

Building on prior studies employing the EIRM (Gilbert, Kim, & Miratrix, 2023), here, we consider 

the random effect specification for the items because (a) it treats items as a source of variability, 

an approach that is conceptually appropriate when inference to the population of items are of 

interest (such as when items are drawn from a pool of potential items), (b) the standard errors for 

the fixed effects in the model reflect the sampling error of which items were selected for test 

administration (i.e., in contrast to the finite sample, test-specific estimand; see ibid; Miratrix, et 

al., 2021, for a discussion), and (c) it provides the ability to model random slopes for time at the 

item level to evaluate IPD. 

We can extend the cross-sectional EIRM to longitudinal contexts (Cho, et al., 2013; 

Wilson, et al., 2012) with a linear growth EIRM by adding the subscript t to indicate measurement 

occasions across time, a fixed effect for time to capture the average growth rate, and a random 

slope for time at the person level: 

EIRM 1: Random Slopes for Persons, Random Intercepts for Items  

𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-. = 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝜃$# + 𝜁" + 𝜃(#𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

𝜁"~𝑁(0, 𝜎&) 
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Here, 𝛽$ is the log-odds of a correct response at baseline (time = 0), and 𝛽( is the linear growth 

rate in the log-odds of a correct response over time, averaged across students and items. 

Conceptually, 𝛽( represents increasing proficiency or ability over time. The linear functional form 

of the growth rate can easily be extended to polynomial or piecewise specifications if desired. The 

random slope term 𝜃(# represents the deviation of each person’s growth rate from the average 

growth rate 𝛽(, averaged across items. 

The contribution of this study is to explore the consequences of extending the random slope 

specification simultaneously to the item side of the EIRM to represent IPD, in which 𝜁(" represents 

the deviation of each item’s growth rate from the average growth rate 𝛽(, averaged across persons: 

EIRM 2: Random Slopes for Persons and Items  

𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-. = 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝜃$# + 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# + 𝜁("𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

<
𝜁$#
𝜁(#
= ~𝑁(0, >

𝜎&!
! 𝜏($

𝜏$( 𝜎&"
! @) 

Substantively, the random slope for time at the item level would indicate that, averaged across 

persons, proficiency on individual items grows at a unique rate. IPD, represented by the parameter 

𝜁(", implies that the relative item easiness parameters are not necessarily fixed over time as they 

were in the item random intercept models, but rather “drift” at a unique rate for each item. As 

discussed earlier, this pattern is typically either ignored or interpreted as a nuisance, under the label 

of IPD, uniform differential item functioning (De Boeck, et al., 2011, pp. 18-19; Randall, Cheong, 

& Engelhard, 2011), or violations of assumptions of longitudinal measurement invariance, and 

various strategies have been proposed to detect and adjust for it, including IRT and SEM-based 
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approaches (Lee & Cho, 2017; Proust-Lima et al., 2021). However, we argue that rather than a 

nuisance parameter, modeling random and systematic IPD using the EIRM may provide 

substantive insight into student learning processes in both descriptive and causal contexts, as 

students’ performance on different items or subscales may truly develop at different rates, rather 

than representing an unreliable or defective assessment instrument. Under this parameterization, 

therefore, each person-item combination has a unique growth trajectory, and heterogeneous growth 

can occur both between persons (within items) and within persons (between items). As such, 

modeling IPD with the EIRM allows a more fine-grained insight into the nature of longitudinal 

growth than the comparable model with item random intercepts alone. 

In addition to allowing quantification of IPD with a random slope for time at the item level, 

the EIRM can be extended with additional fixed effects at the person- or item-level to answer 

substantive research questions. For example, in a causal inference context, it is possible to include 

a person-level treatment variable and its interaction with time to determine if treatment causes an 

increase in average growth rates. Furthermore, item-level predictors interacted with time could 

provide substantive insight into systematic variation in item growth rates, and three-way 

interactions between treatment, item-type, and time would reveal the extent to which types of items 

are most benefited by treatment over time, or what has been referred to as “instructional 

sensitivity” in descriptive contexts (Naumann, Hochweber, & Hartig, 2014), and “item-level 

heterogeneous treatment effects” (Gilbert, Kim, & Miratrix, 2023) or “item-treatment interactions” 

(Ahmed, et al., 2023) in causal contexts, as indicated in the following model: 

EIRM 3: Random Slopes for Persons and Items with Treatment Effects on Two Subscales 

(Varying Person and Item Growth) 
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𝑙𝑜𝑔𝑖𝑡 '𝑃)𝑦'"# = 1-.

= 𝛽$ + 𝛽(𝑡𝑖𝑚𝑒'"# + 𝛽!𝑡𝑟𝑒𝑎𝑡# + 𝛽)𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒'"# + 𝛽*𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒"

+	𝛽+𝑡𝑟𝑒𝑎𝑡 × 𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒"# + 𝛽,𝑖𝑡𝑒𝑚𝑡𝑦𝑝𝑒 × 𝑡𝑖𝑚𝑒'"
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As a concrete example, consider an intervention measured longitudinally with a vocabulary 

test that includes both nouns and verbs, with verbs as the reference category. In this case, a two-

way treatment × time interaction (𝛽)) would reveal whether treatment students improved more 

over time than control students for verbs (averaged across items), a two-way item-type ×	time 

interaction would reveal whether students demonstrated more growth in nouns or verbs (averaged 

across persons) (𝛽+), and the three-way interaction treatment ×	item-type × time would reveal 

whether treatment effects on growth rates differ by whether the word was a noun or a verb, thus 

revealing within-outcome heterogeneous treatment effects (𝛽-). A random slope term could also 

be added for the treatment × time interaction at the item level to represent residual item-level 

heterogeneous treatment effects if desired (see Gilbert, Kim, & Miratrix, 2023, for a detailed 

review of modeling item-level heterogeneous treatment effects with the EIRM in cross-sectional 

contexts). 

Monte Carlo Simulation 

We use Monte Carlo simulations conducted in R (R Core Team, 2022) to test the 

performance of the EIRM with and without IPD. Following previous simulation studies on 
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longitudinal item response models (e.g., Lee & Cho, 2017), and to maintain focus on the effects 

of IPD, we fixed the number of subjects at 500, the number of items at 20 (representing two 

subscales), the number of repeated measurements at 5, the average growth rate at 0.20 logits, the 

average treatment effect on the reference subscale at 0.20 logits, and the standard deviation of 

person growth rates at 0.10 logits. We explored the combination of two varying factors, the average 

treatment effect on the focal subscale at the 0 and 0.20 logits and the standard deviation of item 

level growth rates at 0, 0.10, and 0.20 logits. Thus, we employed a 2×3 factorial design with null 

and positive subscale treatment effects at no, moderate, and high IPD. When IPD is positive, we 

have violated “strict” longitudinal measurement invariance, as the item discriminations are 

constant across time, but the difficulties are not. IPD (and the person random slopes) also implies 

a violation of “strong” longitudinal measurement invariance because of the heteroskedasticity 

induced by the random slopes. While our simulations and empirical application employ the same 

items at each time point, the model could also be applied to data in which only a subset of linking 

items were administered at each time point. 

We generated 500 data sets for each parameterization with an initial single (i.e., 

unidimensional) normally distributed latent trait and equal and time-invariant item discriminations 

and fit two EIRMs to each, one with random intercepts for items and another with random 

intercepts and slopes for items, resulting in 3,000 datasets and 6,000 models in total, and collected 

the model output for further analysis. We used the glmer function from the lme4 R package 

(Bates, et al., 2014) to fit each EIRM as a generalized linear mixed model with a logit link function 

and cross-classified random effects for persons and items. We used Wald tests to assess the 

statistical significance of the fixed effects and likelihood ratio tests to assess the significance of 

random effects or groups of fixed effects. We examined parameter bias and the calibration of the 
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model standard errors. A detailed replication toolkit is available for researchers interested in 

extending the simulation or analysis of empirical data.  

Bias 

Figure 1 presents the bias for the time main effect (𝛽(), the treatment by time interaction 

effect (𝛽)), and the three-way interaction (𝛽-). We see that for the two- and three-way interaction 

terms the item random intercepts specification (labelled RI in the figure) results in an increasing 

downward bias as IPD increases. When IPD is high (SD = 0.20 logits), we see that the downward 

bias is most severe, but still relatively small in magnitude. This downward bias is consistent with 

known properties of logistic regression that result in downwardly biased point estimates due to 

unobserved heterogeneity (e.g., omitted variables or a mis-specified model), even when the 

unobserved heterogeneity is independent of the variables in question, a property not shared by 

linear regression with continuous outcomes (Mood, 2010; Gilbert & Miratrix, 2023). The 

downward bias is not present when the true effect is precisely 0 because the downward bias is 

proportional to the true value (ibid, pp. 68-69). 

[Insert Figure 1 Here] 

Standard Error Calibration 

 Figure 2 displays the mean model-based SEs of the same three fixed effects as a proportion 

of the true SEs (i.e., the standard deviation of the point estimates). If the model-based SEs are well 

calibrated, we would expect them to fall on the horizontal line at 100%. While the SEs for the two- 

and three-way interaction terms are generally well calibrated across all models, falling within 10 

percentage points of their true value, the SEs for the main effect of time become severely 

underestimated when IPD is high in the random intercepts model. This occurs in for the main effect 

of time only because when IPD is present, each finite draw of items will have a mean residual 
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growth rate different from 0 due to sampling error, and when IPD is not modeled, the sample mean 

growth rate of the items is incorporated into the estimation of the average person growth rate, 

creating greater variability. In other words, the SE for growth rate in the random intercepts model 

does not adjust for the additional uncertainty due to the selection of items onto the test. We do not 

find the same pattern in the interaction effects because, so long as IPD affects treatment and control 

groups equally (as is the case in the simulation), this additional variability is subtracted out in the 

interaction effects. 

[Insert Figure 2 Here] 

Empirical Application 

For our empirical application, we examine immediate and delayed treatment effects of the 

Model of Reading Engagement (MORE) randomized controlled trial (RCT) intervention. The 

MORE content literacy intervention is designed to improve first to third-grade grade students’ 

domain and content background and vocabulary knowledge in science and social studies that are 

critical to reading comprehension. The MORE curriculum emphasizes thematic lessons that focus 

on a single topic over consecutive weeks in a semester and provides an intellectual structure for 

helping young children connect new content learning and vocabulary to a general schema 

(Anderson & Pearson, 1984; Kintsch, 2009; Perfetti, 2007). In the most recent longitudinal 

investigation of MORE (Kim, et al., 2023), 30 elementary schools were randomly assigned to 

either a treatment or control condition. In the treatment condition, students participated in MORE 

content literacy lessons from Grades 1 to 3 during the school year and wide reading of thematically 

related informational texts in the summer following Grades 1 and 2. In the control condition, 

students participated in MORE lessons in only Grade 3. At the end of Grade 3, there were positive 

impacts on both researcher-designed domain specific reading comprehension tests in science (ES 
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= 0.14) and state standardized end-of-grade domain general reading comprehension tests (ES = 

0.11). An open question, however, is whether the full Grade 1 to 3 intervention fosters growth in 

vocabulary—a key malleable and potentially causal mechanism—compared to the partial Grade 3 

intervention. This study provides an ideal context to address this question because students 

completed researcher-designed assessments in Grade 2 spring. Then, at the end of Grade 3, 

students completed another researcher-designed vocabulary test which included a repeated 

administration of the same vocabulary words tested at the end of Grade 2. Thus, we can estimate 

the immediate impact of MORE on the subset of students (n = 1225) who completed both second- 

and third-grade vocabulary tests and whether any treatment effect on vocabulary achievement 

persists, grows, or declines over a 12-month follow-up period1. 

The researcher-designed assessment of vocabulary knowledge depth includes 12 items. 

Each item lists a target word and prompts students to select the two words out of four choices that 

best go with the target word. For example, one item prompted students to “choose the two words 

that best go with the word carnivore” and the options were “fruit”, “care”, “meat”, and “prey”, of 

which the last two are the correct responses. Each item was scored dichotomously as correct (1) if 

students selected the two correct words, or incorrect (0) for any other response pattern. The 12 

vocabulary items included seven vocabulary words explicitly taught through the MORE 

intervention lessons (“taught words”) and five conceptually related words that were not explicitly 

taught but were included in the lesson materials and activities such as read-alouds (“untaught 

words”) and thus represented a farther degree of transfer from the MORE curriculum (Barnett & 

 
1The technically oriented reader might notice that typically, random slopes longitudinal models are not identified 
with only two time points because each subject’s individual trajectory can be “perfectly” fit by the model. This is 
not the case here because the cross-classified structure of the data is additive, not multiplicative. That is, there is no 
interaction between the person and item random effects because such an interaction would be confounded with the 
error term, whereas the additive case allows for imperfect fit. Thus, such models may provide additional utility in 
empirical applications when only two time points are available. See O’Connell, et al. (2022, pp. 170-171), for a 
discussion and additional references. 
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Ceci, 2002). Here, we restrict our analysis to the subset of students (n = 1225) who completed the 

assessment in both Grades 2 and 3, and the subset of items that were included on both assessments 

(n = 12). The vocabulary assessment instrument and psychometric analyses at each time point are 

included in the Online Supplemental Materials (OSM), which show that the assessment had 

internal consistencies of 0.81 (G2) and 0.80 (G3), moderately to highly positive item 

discrimination parameters, and CFA revealed adequate fit of a unidimensional model at both 

pretest (CFI = 0.96, RMSEA = 0.04, SRMR = 0.030) and posttest (CFI = 0.98, RMSEA = 0.027, 

SRMR = 0.024)2. 

To explore immediate and delayed impacts of MORE on vocabulary knowledge depth, we 

fit four models, all including time, treatment, and their two-way interaction: (1) random intercepts 

for persons and items, (2) random slopes for persons, random intercepts for items, (3) random 

slopes for persons and items, and (4) random slopes for persons and items with two- and three-

way interaction effects. Because MORE was a cluster-randomized trial, we include school random 

effects in all models, but for clarity we omit them from the equation below. We only display the 

equation for Model 4 as all prior models are nested within it. 

 

MORE EIRM 4: Random Slopes for Persons and Items with Two- and Three-Way Interactions 

 
2 The assessment also included vocabulary words that were taught in Grade 1 MORE lessons and were tested in both 
Grade 1, halfway through the intervention, and in Grade 3, one year after the conclusion of the intervention. An 
analogous analysis of these words is included in the OSM and shows a similar pattern of results to the Grade 2 
words analyzed here. 
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+	𝛽,𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑎𝑢𝑔ℎ𝑡"# +	𝛽-𝑡𝑖𝑚𝑒 × 𝑡𝑎𝑢𝑔ℎ𝑡'"#

+	𝛽.𝑡𝑟𝑒𝑎𝑡 × 𝑡𝑖𝑚𝑒 × 𝑡𝑎𝑢𝑔ℎ𝑡'"# +	𝜃$# + 𝜁$" + 𝜃(#𝑡𝑖𝑚𝑒'"# + 𝜁("𝑡𝑖𝑚𝑒'"# 

<
𝜃$#
𝜃(#

= ~𝑁(0, >
𝜎%!
! 𝜌($

𝜌$( 𝜎%"
! @) 

<
𝜁$#
𝜁(#
= ~𝑁(0, >

𝜎&!
! 𝜏($

𝜏$( 𝜎&"
! @) 

Compared to Model 4, Model 3 omits 𝛽+, 𝛽,, 𝛽- and 𝛽., Model 2 omits 𝜁(, and Model 1 omits 𝜃(.  

 In Model 4, the parameters of interest are 𝜎&"
! , quantifying IPD, 𝛽!, the immediate treatment 

effect on untaught words in Grade 2, and 𝛽), the difference in the treatment effect on untaught 

words from Grade 2 to Grade 3 (i.e., potential fadeout for untaught words). 𝛽! + 𝛽) provides the 

delayed treatment effect on untaught words. We include baseline state test scores (standardized), 

collected in Grade 1 winter as a covariate to improve the precision of the estimates (𝛽*). The pretest 

employed in this study is the NWEA Measure of Academic Progress reading assessment, a state-

mandated test administered at the beginning of the school year. We also include a main effect for 

taught words capturing differences in item easiness between taught and untaught words for control 

students in Grade 2 (𝛽+), an interaction between treatment and taught words capturing the 

difference in treatment effects for taught and untaught words in Grade 2 (𝛽,), an interaction 

between time and taught words capturing the difference in easiness between taught and untaught 

words between Grades 2 and 3 for control students (𝛽-), and a three-way interaction between 

treatment, time, and taught words capturing the difference in the two-way interaction for time and 

taught words for treatment students (𝛽.). 
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Results 

The fitted models are presented in Table 1. Model 1 shows a positive but not significant 

treatment effect at immediate posttest at the end of Grade 2 (𝛽 = 0.12 logits, p > 0.05), and that 

the magnitude of the average treatment effect grows over time through the end of Grade 3 (𝛽 = 

0.13, p < 0.05), showing the persistence of the MORE treatment effect in contrast to many studies 

that demonstrate fadeout of effects over time (see Bailey, et al., 2017; Wan, et al., 2021). The 

coefficients for time and baseline scores are strong and statistically significant, indicating that 

control student proficiency increased from Grade 2 to Grade 3 (𝛽 = 0.51, p < 0.001) and that 

students with higher baseline scores had higher proficiency (𝛽 = 0.98, p < 0.001). Model 2 adds 

the random slope for persons, and we observe that individual trajectories are highly heterogeneous 

(𝜎%"
! = 0.92), the treatment by time interaction term is no longer statistically significant, and the SE 

for the time coefficient has increased substantially. Model 3 adds the random slopes for items, 

representing IPD, and we see that there is substantial IPD (𝜎&"
! = 0.25). A likelihood ratio test 

reveals that Model 3 is a significantly better fit to the data than Model 2, suggesting that the IPD 

in the dataset is significant (𝜒!= 217.3, p < 0.001). The variation in item level growth trajectories 

is depicted in Figure 3, showing the model implied trajectories for each vocabulary word, for the 

average student. Following the simulation results, we see that the SE for the main effect of time 

drastically increases, as the SE for Model 3 incorporates the additional uncertainty of which items 

were selected for test administration. To attempt to explain the moderate level of IPD, Model 4 

adds two- and three-way interactions between treatment, time, and whether the item tested an 

explicitly taught vocabulary word. We observe that the treatment by taught word interaction is 

significant, indicating that at the immediate posttest, the treatment effect was smaller on taught 

words than untaught words (𝛽 = -0.20, p < 0.05), a finding that matches prior separate analyses of 
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Grade 2 vocabulary scores (Kim, et al., 2022, 2023). The main effect for treatment indicates that 

the treatment effect at immediate posttest is statistically significant for untaught words (𝛽 = 0.23, 

p < .05). The three-way interaction between treatment, time, and taught word is non-significant. 

However, the variance of the IPD term remains unchanged, suggesting that the interaction effects 

have not captured substantial systematic variation in item growth, and the great majority of IPD 

remains unexplained, a function of the idiosyncratic characteristics of each item. 

Figure 4 shows predicted probabilities of a correct response for the typical student and item 

for each treatment condition and “taught word” item status. Visually, we see that the immediate 

treatment effect on untaught words persists through the 12 month follow up. These results suggest 

that instead of diminishing over time, the MORE intervention was successfully able to lay a 

foundation for learning that persisted for untaught (far transfer) vocabulary words in the 12 months 

following treatment. Furthermore, in contrast to a two-step approach in which the four outcomes 

were modeled separately (e.g., G2 taught, G2 untaught, G3 taught, and G3 untaught), the EIRM 

allows direct tests of differences in treatment effect size across these metrics in the parsimony of 

a single model. 

[Insert Table 1, Figure 3, and Figure 4 Here] 
 

Discussion 

 Analysis of individual growth in education has typically emphasized between-person 

predictors of growth through person characteristic by time interactions. When item-level data are 

available, another perspective is possible, namely, item characteristic by time interactions to assess 

the extent to which proficiency on different items may develop at different rates. In the educational 

measurement literature, changing item properties over time has been viewed as a nuisance under 

the rubric of IPD. In this study, we argue that IPD can represent substantively meaningful 
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differential learning on different items, and the EIRM with a random slope for time at the item 

level provides an opportunity to better understand the facets of student growth if student learning 

is not constant across all items over time. 

 Results of the data simulation revealed that when a high degree of IPD is present in the 

data but ignored in the model, point estimates are slightly biased downward, and standard errors 

can be underestimated for main effects, but not interaction effects involving time. Therefore, 

researchers employing the EIRM should consider the possibility of IPD and test for its presence 

with a random slope for time at the item level, even if IPD is not of primary interest, to obtain 

accurate parameter estimates and SEs. For example, as shown in the empirical application, when 

IPD is included in Model 3, the SE for the main effect of time dramatically increased. The 

empirical application further showed that the MORE literacy intervention had persistent effects on 

student vocabulary ability on the far transfer untaught words from the end of treatment in Grade 2 

through a 12-month follow up in Grade 3. While explicitly taught words were easier on average 

than untaught words, the treatment effect was larger on the more difficult untaught words, 

providing evidence that treatment students were successfully able to transfer their learning to new 

contexts. 

To extend the applicability of the EIRM to more diverse applied contexts, the simple 

example of a unidimensional Rasch model employed in this study could be easily augmented to 

include varying item discriminations (i.e., a 2PL model; Rockwood & Jeon, 2019), missing data 

(de Boeck et al., 2016), multidimensionality (de Boeck & Wilson, 2014), and non-dichotomous 

responses (Bulut, et al., 2021). While widely applicable, a potential limitation of the EIRM is the 

interpretation and communication of the results. Log-odds may be more difficult to explain and 

justify to practitioners than a more familiar sum or scaled score. Previous studies of the EIRM 
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suggested two approaches to increase the communicability of the results (Gilbert, Kim, & Miratrix, 

2023). First, fitted models can be used to estimate population average probabilities at each time 

point, as depicted in Figure 4, for example by using the R package ggeffects (Lüdecke, 2018). 

Second, treatment effects on the logit scale can be converted into a Cohen’s d type effect size by 

“y-standardization” (see Breen, Karlson, & Holm, 2018 for the single-level case; see Hox, 

Moerbeek, & Van de Schoot, 2017, Chapter 6 for the multilevel case), whereby the logit-scale 

coefficient 𝛽/01"' is divided by the estimated total standard deviation of a latent continuous variable 

Y* that gives rise to the observed dichotomous response Y, using the following formula 

𝛽23'4 =
𝛽/01"'
𝑆𝐷(𝑌∗) =

𝛽/01"'

O𝜋
!

3 + 𝜎%!
! + 𝜎6!

 

in which 7
#

)
= 3.29 is the variance of the logistic distribution, 𝜎%!

!  is the variance of the person 

intercepts at baseline, and 𝜎6! is the variance of the fixed effects (i.e., the variance of the estimated 

linear predictor on the logit scale). The y-standardized coefficients could then be compared to other 

metrics or used in meta-analysis. In the context of this study, for example, the estimated 

standardized effect size on untaught vocabulary words at immediate posttest is equal to 

𝛽23'4 =
𝛽/01"'
𝑆𝐷(𝑌∗) =

. 23
√3.29 + .93 + 2.6

= 0.09 

a small but significant positive impact. Such an effect size could be converted to a percentile gain 

(about 3.3 percentile points, see Hippel, 2023), or an approximate number of additional items 

answered correctly. 

In conclusion, item parameter drift has traditionally been considered a nuisance in the 

educational measurement literature, but it has the potential to provide substantive insight into the 

learning process as proficiency on different items may develop at different rates. By explicitly 
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modeling IPD, the EIRM allows for more nuanced and fine-grained insights into the nature of 

student learning over time. In particular, the IPD model may provide a more generalizable 

perspective on student growth by incorporating the uncertainty of item selection into the standard 

errors of the growth estimates. Such generalizability is particularly important in domains such as 

vocabulary, in which the underlying construct can never be fully measured by any finite set of 

items. Researchers can use such insights to provide more actionable information to stakeholders 

and better understand the ways in which individual growth is a multifaceted phenomenon.  
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Figure 1. Parameter Bias by Method 

(RI = Random Intercepts for Items, RS = Random Slopes for Items) 

 

Figure 2. Standard Error Calibration by Method 
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Figure 3. Item-Level Growth Trajectories Derived from Model 3  

 

Figure 4. Prototypical Probabilities of a Correct Response for Treatment and Control Students on 

Taught and Untaught Vocabulary Words Derived from Model 4 

 

Table 1. EIRM Results for the MORE Intervention Data 
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  M1 M2 M3 M4 

Predictors Log-
Odds SE Log-

Odds SE Log-
Odds SE Log-

Odds SE 

Constant 0.04 0.28 0.03 0.29 0.05 0.30 -0.18 0.45 

Treatment 0.12 0.09 0.12 0.10 0.12 0.10 0.23 * 0.11 

Time 0.51 *** 0.04 0.52 *** 0.06 0.50 ** 0.16 0.54 * 0.24 

Baseline MAP 0.98 *** 0.03 1.00 *** 0.03 1.01 *** 0.03 1.01 *** 0.03 

Treatment X Time 0.13 * 0.06 0.12 0.08 0.12 0.08 0.07 0.10 

Taught Word 
      

0.39 0.59 

Treatment X Taught 
      

-0.20 * 0.08 

Time X Taught 
      

-0.06 0.31 

Treatment X Time X 
Taught 

      
0.08 0.12 

Random Effects 
Scale Variance 3.29 3.29 3.29 3.29 

𝜎%!
! (Student) 0.56 0.90 0.93 0.93 

𝜎8! (School) 0.04 0.04 0.04 0.04 

𝜎&!
!  (Item) 0.89 0.97 1.01 0.99 

𝜎%"
!  (Student Growth)   0.92 0.96 0.96  

𝜎&"
!  (IPD)     0.25  0.25 

𝜌$( (Student Corr.)   -0.57 -0.57 -0.57 

𝜏$( (Item Corr.)     -0.19 -0.19 
N Students 1225 1225 1225 1225 
N Items 12 12 12 12 
N Schools 29 29 29 29 

Observations 29327 29327 29327 29327 
Deviance 30566.468 30264.879 30047.539 30039.239 

* p<0.05   ** p<0.01   *** p<0.001 
 


