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Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding
the impacts of educational interventions. A standard practice for HTE analysis is to
examine interactions between treatment status and pre-intervention participant charac-
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1 Introduction

Heterogeneous Treatment Effects (HTE) are a topic of growing importance and interest as

understanding HTE is crucial for determining the policy relevance of interventions. HTE

analysis allows researchers to identify the target population for which interventions are most

effective. Further, identifying subgroups for whom there might be much larger or smaller

treatment effects can lead to efficiency gains if policies are targeted to groups that are most

responsive to interventions (Abenavoli, 2019; Blundell et al., 2005; Brand et al., 2014; Bryan

et al., 2021; Schochet et al., 2014; Torche et al., 2024).

One challenge with estimating HTE is the risk that researchers may engage in questionable

research practices such as selectively reporting subgroups with large effects or p-hacking, thus

providing misleading conclusions about the generalizability and replicability of HTE analyses

(Schuetze & von Hippel, 2023). Many methods have been proposed to address these problems,

such as pre-registration (Olken, 2015) and machine learning approaches (Chernozhukov et al.,

2022; Wager & Athey, 2018; Wallace et al., 2023; Yeager et al., 2019). These approaches

address spurious HTE as a problem of inference. However, even when a researcher takes

a principled approach to estimating HTE or employs novel machine learning methods, we

show that they may still detect spurious HTE if the relevant outcome is a psychological

construct or other form of latent outcome measured using psychometric techniques. This

spurious HTE can occur when the items used to construct outcome measures, such as a test

of reading comprehension based on a set of test items, themselves exhibit HTE. The present

study thus complements the broader HTE literature by reconsidering spurious HTE as a

problem of identification instead of a problem of inference. In particular, we show that two

qualitatively different data-generating processes (DGPs) can yield identical patterns of HTE

when psychometric outcomes such as educational test scores are used to estimate treatment

effects.
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To illustrate this problem, consider a common approach to estimating treatment effects.

Education researchers often collect item-level assessment data, generate test scores for each

individual from the item responses, and use these scores as outcomes in a standard regression

framework to estimate treatment effects. The regression model can then be extended to

include interactions between person characteristics and treatment status to probe potential

sources of HTE. However, recent scholarship has proposed models where the treatment might

differentially impact the assessment items (Ahmed et al., 2023; Gilbert et al., 2023b; Sales

et al., 2021). Thus, by not modeling individual item-level responses directly, researchers are

potentially ignoring the HTE in the items that constitute the outcome measure.

We offer two examples that could give rise to treatment effects that vary at the item level.

First, in education, a treatment effect may reflect “teaching to the test” or “score inflation”

rather than an improvement in the latent ability giving rise to the item responses (Koretz,

2005). For example, instruction in test-taking strategies such as “process of elimination”

could have the effect of making multiple choice items uniformly easier without improving

latent student ability. Second, in psychology, spousal loss induces a systematic change in the

reporting of depressive symptoms such that people with otherwise similar levels of depression

are much more likely to report the specific symptoms of loneliness and sadness, as opposed

to other symptoms such as a loss of motivation (see Figure S7 in B. W. Domingue et al.,

2021). Interpretation of this change for the purposes of diagnosis has been a long-standing

challenge (e.g., Olivera-Aguilar and Rikoon, 2024; Zisook et al., 2007). These illustrations

are not meant to be exhaustive but rather suggestive of the possibilities that we have in mind

when we discuss item-dependent HTE.

In this study, we show that correlations between item-specific treatment effects and item

easiness parameters can generate observed HTE patterns indistinguishable from those gener-

ated by HTE arising from treatment interacting with person characteristics. We demonstrate

this resulting confounding both analytically and through Monte Carlo simulation. To resolve

this issue, we propose a novel approach that leverages item-level data to simultaneously
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estimate treatment by person characteristic interactions as well as the correlation between

item-specific treatment effects and item easiness parameters. We show that our approach

identifies the relevant DGP using Monte Carlo simulation. Finally, we apply our approach to

a randomized evaluation of a second grade content literacy intervention and show that the

observed HTE by pretest scores is driven by the correlation between item-specific treatment

effects and the item easiness parameters.

Our study contributes to the burgeoning literature on the estimation of HTE (Athey &

Imbens, 2016; Bryan et al., 2021; Chernozhukov et al., 2022; Künzel et al., 2019; Schuetze

& von Hippel, 2023; Wager & Athey, 2018; Wendling et al., 2018). In particular, our study

extends a literature on the identification and estimation of a latent heterogeneity—that

is, the variation in treatment effects that is not driven by baseline variables (Jeon et al.,

2021; Lyu et al., 2023; Pearl, 2022; VanderWeele & Batty, 2023; Winship & Morgan, 1999;

Xie et al., 2012). We build on recent work describing how item-level assessment data,

typically only used to construct outcome measures, can provide additional insights into the

nature of treatment effects (Ahmed et al., 2023; Gilbert et al., 2023b; Sales et al., 2021),

and more generally, how estimates of treatment impact may be sensitive to measurement

properties such as the alignment between interventions and outcomes (Francis et al., 2022), the

comparability of effect sizes across studies (Wolf & Harbatkin, 2023), effect moderation and

mediation (Montoya & Jeon, 2020; VanderWeele & Vansteelandt, 2022), and the consequences

of scoring decisions and outcome metric properties for inference (B. W. Domingue et al.,

2020, 2022; Gilbert, 2023a; McNeish & Wolf, 2020; Skrondal & Laake, 2001; Soland et al.,

2022; Widaman & Revelle, 2023). Our study leverages a measurement model (Briggs, 2008;

De Boeck, 2004) within a potential outcomes framework (Holland, 1986; Rubin, 1974) to

identify and estimate HTE, effectively integrating the three foundational elements of empirical

research—measurement, identification, and inference—into a cohesive framework.

The study is structured as follows. Section 2 sets up a potential outcomes framework for

the causal inference model and reviews person-dependent HTE and item-dependent HTE
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DGPs. Section 3 examines how the two DGPs can yield identical observed patterns of

heterogeneity, and our proposed solution to this problem. Section 4 presents a Monte Carlo

simulation study, demonstrating the identification challenge and its resolution. Section 5

presents an empirical application to a randomized evaluation of a content literacy intervention.

Section 6 discusses the implications of applying measurement principles in impact evaluation

in education and other fields.

2 A Model of Treatment Effects

We begin with a model of treatment effects for item response data. We consider the following

DGP for dichotomous item responses on a test used to evaluate the efficacy of a given

treatment. The probability of a correct response to item i by person j is

Pr(yij = 1) = f(ηij) = f(θ1j + bij), (1)

where f is a monotonically increasing function bounded within (0, 1). Common choices for f

include the inverse logit (logit−1) and inverse probit (Φ−1) functions, following a standard

Rasch item response model (Baker, 2001; Embretson & Reise, 2013), or more flexible non-

parametric approaches (Sijtsma, 2005). θ1j denotes person j’s post-intervention ability—we

denote pre-intervention ability as θ0j—and bij is a parameter that indexes item easiness and

that may vary across people. Our use of b as item easiness is the negative of an item’s

“difficulty” in the IRT literature. A basic version of Equation 1 where θ1j and bij are constants

and f(x) = logit−1(x) is shown in Panels A1 and A2 of Figure 1.

Both θ1j and bij (and therefore ηij) may be functions of treatment status and other relevant

parameters such as pre-intervention ability (θ0j ). Using the potential outcomes framework

(Holland, 1986; Rubin, 1974), we define the causal effect of treatment τij as the difference in
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Figure 1: Item response functions (IRFs) and treatment effects.
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Notes: The plots in the top row present the linear predictor and the plots in the bottom row present the
probability of correct response. A1 and A2 depict a standard IRF that describes the probability of a correct
response as a function of the sum θ1j + bi. In all plots, the dashed black line shows the probability of a correct
response under the control counterfactual, or ηij(0). In B1 and B2, the solid black line shows a uniform
treatment effect on the standard IRF. In C1 and C2, solid lines depict the HTE. The IRF curves represent
potential difference in functioning across items after exposure to treatment, with the blue IRF more impacted
by treatment than the red IRF.
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ηij under the counterfactual treatment and control conditions:

τij = ηij(1)− ηij(0). (2)

Suppose that an individual is randomly assigned to treatment or control conditions; we

write treatj = 1 if person j is assigned to treatment. Consider a uniform treatment effect of

magnitude β1 so that the intervention leads to an increase in ability for treated individuals,

θ1j = θ0j + β1treatj (3)

bij = bi, (4)

which implies ηij(1) = θ0j +β1+ bi, ηij(0) = θ0j + bi, and τij = β1. The implications of this kind

of treatment effect are shown in Panel B of Figure 1; the vertical shift in panel B1 and the

horizontal shift in the IRF in B2 would be β1 in this example. Note that the shift uniformly

affects all items and treated students, though the vertical distances between the curves differ

because of the non-linear transformation to the probability space; the treatment effect is

uniform in the latent linear predictor ηij space (Breen et al., 2018; Colnet et al., 2023; Mood,

2010).

As an alternative, if we suppose that the treatment effect is entirely related to change in

the functioning of the items,

θ1j = θ0j (5)

bij = bi + β1treatj (6)

we similarly produce τij = β1. The fact that item response models are not identified under

such scale translations in single-timepoint, single-population analyses (San Mart́ın, 2016) is a

key component of our argument.
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We now introduce HTE into the model. At the person level, we can allow the treatment

effect to depend on person characteristic Xj (e.g., pretest scores, gender, SES) by introducing

an interaction between treatj and Xj:

θ1j = θ0j + β1treatj + β2Xj + β3treatj ×Xj (7)

bij = bi. (8)

At the item level, we can similarly allow the treatment effect size to depend on item

characteristic Xi (e.g., item content, item type, position of item in the test):

θ1j = θ0j (9)

bij = bi + β1treatj + β2Xi + β3treatj ×Xi. (10)

We consider HTE in Panel C of Figure 1. The red and blue lines represent different increases

in ηij or Pr(yij = 1) for different values of ηij(0). One possible interpretation is that the

treatment effect depends on student characteristics. For example, if Xj represents baseline

ability, a lower-ability student represented by the red line shows some increase in their

probability of a correct response but this was less of an increase than the one observed by

the higher ability student represented by the blue line. An alternative—and mathematically

equivalent given that they lead to equivalent changes in ηij—model would be to assume

that items are differentially sensitive to treatment. The red IRF would then capture the

post-treatment functioning of an item that showed a relatively smaller effect as compared to

the blue IRF. We now formalize these ideas, which we describe as person-dependent HTE or

item-dependent HTE respectively and discuss their relevance for empirical investigations of

HTE.
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Person-Dependent HTE

We first consider a DGP in which HTE arises due to variation in the treatment effect as a

function of pre-treatment ability (θ0j ):

θ1j = β0 + β1treatj + β2θ
0
j + β3treatj × θ0j (11)

bi ∼ N(0, σ0). (12)

τij is a function of both β1 and β3:

τij = ηij(1)− ηij(0) (13)

=
(
θ1j (1) + bi

)
−

(
θ1j (0) + bi

)
(14)

=
(
β0 + β1treatj + (β2 + β3)θ

0
j + bi

)
−
(
β0 + (β2)θ

0
j + bi

)
(15)

= β1 + β3θ
0
j . (16)

Here, β3 is the person-dependent HTE parameter. Suppose β3 is 0. In this case, the treatment

effect is constant and independent of baseline ability. Further, the average treatment effect

(ATE = τij) is simply β1. In contrast, if β3 < 0 then there are larger treatment effects

when θ0j < 0 (and reversed if β3 > 0). We emphasize the fact that the heterogeneity in this

model is person-dependent; specifically it is due to pre-intervention variation in ability. For

identification purposes, we assume here that bi are normally distributed with mean 0 and

some standard deviation σ0.
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Item-Dependent HTE

We now contrast the person-dependent HTE model with an alternative DGP:

θ1j = γ0 + γ1treatj + γ2θ
0
j (17)

bij = bi + ζitreatj (18)bi
ζi

 ∼ N

0,

σ0 ρ

ρ σ1


 . (19)

Again consider the treatment effect τij . In contrast to the person-dependent DGP, here, τij is

constant as a function of j and, in particular, invariant as a function of θ0j . However, items

are differentially affected by treatment, represented by ζi:

τij = ηij(1)− ηij(0) (20)

= (γ0 + γ1 + γ2θ
0
j + bi + ζi)− (γ0 + γ2θ

0
j + bi) (21)

= γ1 + ζi. (22)

The ζi parameter has been previously described as “item-level” HTE (IL-HTE), “treatment by

item interactions”, or “item-specific effects” (Ahmed et al., 2023; Gilbert et al., 2023b; Sales

et al., 2021). For example, if ζi > 0, then responses to item i are more likely to be correct

if treatj = 1, above and beyond the ATE γ1 (assumed here to be impacting θ1j directly),

independent of θ1j . The ζi offsets are equivalent to uniform differential item functioning (DIF)

effects caused by the treatment (Camilli, 2006; Gilbert et al., 2023b; Montoya & Jeon, 2020;

Santelices & Wilson, 2010). In this model, we assume that bi and ζi come from a multivariate

normal distribution with mean 0 and standard deviations σ0 and σ1, and correlation ρ. ρ

captures potential associations between item easiness and item-specific treatment effect size.

For example, if ρ > 0, then easier items are more likely to be positively affected by treatment.

The parameter ρ will play a key role in appropriate identification of HTE.
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A Directed Acyclic Graph (DAG) representation of the two DGPs is presented in Figure

2. Concretely, the person-dependent HTE model may be theoretically justifiable when an

intervention targets students by ability level. For example, an intervention that provides more

resources and supports to lower ability students would presumably have a larger effect on low

ability students and this effect would be constant across all items (i.e., β3 < 0, σ1 = 0). In

contrast, the item-dependent HTE model may be theoretically justifiable when an intervention

targets skills by complexity level. For example, an intervention that provides foundational

skills training to all students would potentially help students at all levels of θ0j equally but

show the largest impact on the easiest test items (i.e., ρ > 0, β3 = 0). A treatment that

leads to greater gains for low-scoring students will have different policy implications than a

treatment that leads to greater learning of easier content for all students.

3 Appropriate Identification of HTE

The Problem of Identification

We now describe a scenario under which conventional analysis of HTE would leave the

DGP unidentified. By this we mean that the person- or item-HTE processes produce data

with equivalent patterns of treatment effects on an estimated post-treatment sum score Sj

conditional on θ0j . Our argument hinges on the ρ parameter from Equation 19 which indexes

the correlation between item easiness bi and residual item-specific treatment effect size ζi.

We use sum scores for clarity of exposition and because—despite active debate among

psychometric researchers concerning their properties (McNeish & Wolf, 2020; Soland et al.,

2022; Widaman & Revelle, 2023)—they are commonly used as outcomes in empirical research

(Flake et al., 2017). However, our argument is not dependent on the use of sum scores. When

items are equally discriminating, the sum score is a sufficient statistic for an IRT-based

score. In fact, sum scores will be an injective (i.e., one-to-one) function of the true abilities

(Birnbaum, 1968; Borsboom, 2005), but monotonic transformations can induce HTE, or
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Figure 2: Directed acyclic graphs for person-dependent HTE (top) and item-dependent HTE
(bottom) DGPs

Notes: Squares indicate observed variables, hollow circles indicate latent variables, and solid circles represent
cross product interaction terms. In are item responses and Tj is the treatment indicator. β3 represents the
treatment by baseline ability interaction. ρ represents the correlation between item easiness and item-specific
treatment effect size. Path coefficients are fixed at 1 unless otherwise indicated.
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remove it (Ding et al., 2019; B. W. Domingue et al., 2022). Further, our simulations will show

that our argument applies equally to latent variable models that estimate the measurement

and regression models simultaneously (Lockwood & McCaffrey, 2020).

Let E(Sj) be the sum of the IRFs. That is, E(Sj) is the test response function, or

TRF, which can also be interpreted as the Classical Test Theory true score (Borsboom,

2005). We define the TRF for the person-dependent process as EP (Sj) and the TRF for the

item-dependent process as EI(Sj):

EP (Sj) =
I∑

i=1

f(ηij) =
I∑

i=1

f(β0 + β1treatj + β2θ
0
j + β3treatj × θ0j + bi) (23)

EI(Sj) =
I∑

i=1

f(ηij) =
I∑

i=1

f(γ0 + γ1treatj + γ2θ
0
j + treatj × ζi + bi). (24)

We define the causal estimand at the test score level as τ , where Sj(·) is the potential value

of the sum score under the treatment or control counterfactuals:

τ = E [Sj(1)− Sj(0)] = E(Sj(1))− E(Sj(0)). (25)

We emphasize that τ is distinct from τij described earlier in Section 2, in which treatment

effects were defined in terms of ηij. Here, τ is averaged across items and persons.

We first illustrate the identification problem with a toy example, setting β0 = 0, β1 = 0,

β2 = 1, γ0 = 0, γ1 = 0, and γ2 = 1. In the person-dependent HTE model, we set β3 = −0.28

and in the item-dependent HTE model we set ρ = 1 so that ζi = bi. Thus, the treatment

is most effective for students with lower θ0j under the person DGP (for all items), and the

treatment is most effective for the easiest items under the item DGP (for all persons). Further

assuming f() = logit−1 (i.e., a Rasch or 1PL IRT model), the equations simplify to:
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EP (Sj) =
I∑

i=1

logit−1(θ0j − 0.28treatj × θ0j + bi) (26)

EI(Sj) =
I∑

i=1

logit−1(θ0j + treatj × bi + bi). (27)

In Table 1, we calculate E(Sj) for three items with bi = −1, 0, 1 and three individuals

with θ0j = −1, 0, 1 under both treatment and control counterfactuals. We see that E(Sj) are

identical under both DGPs which implies that τ is identical. We also see that τ is a linear

function of θ0j under both DGPs, with the largest τ emerging for the lowest values of θ0j

even though there is no treatment by θ0j interaction in the item-HTE DGP. As we will show,

without item-level outcome data supplementing pre-intervention data, there is no way to

distinguish between these two competing causes of HTE.

Table 1: Toy example illustrating the identification problem on a three-item test

j θ0j EP (Sj(0)) EP (Sj(1)) EI(Sj(0)) EI(Sj(1)) τP τI

1 -1 0.88 1.04 0.88 1.04 0.16 0.16
2 0 1.50 1.50 1.50 1.50 0.00 0.00
3 1 2.11 1.95 2.11 1.95 -0.16 -0.16

Notes: Toy example shows how both the person-dependent and item-dependent
DGPs produce treatment effects on sum scores that depend on θ0j . f is a

logit−1 function. E(Sj) is calculated for three items with bi = −1, 0, 1 and three
individuals with θ0j = −1, 0, 1 under both treatment and control conditions. We
set β0 = 0, β1 = 0, β2 = 1, γ0 = 0, γ1 = 0, and γ2 = 1. In the person HTE model,
we set β3 = −0.28 and in the item HTE model we set ρ = 1 so that ζi = bi.
We calculate τ by subtracting the expected scores under control condition from
expected scores under treatment condition.

This phenomenon holds in more general settings. For example, Figure 3 shows a more

realistic case with 16 items, where the top row depicts a person-dependent HTE scenario

where β3 < 0 and the bottom row depicts an item-dependent HTE scenario where ρ = 1.

The first column shows E(Sj) as a function of θ0j by summing the IRFs for all 16 items, and

we can see that the pattern is essentially identical in both DGPs, similar to the result in
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Table 1. That is, given just E(Sj), the two DGPs are empirically indistinguishable (Spoto

& Stefanutti, 2023), which provides a serious interpretational problem given the common

usage of psychometric outcomes in RCTs and the typical analysis focusing on test-level

aggregates. Using the items, however, may help resolve this problem. The second and third

columns show the individual IRFs on the probability scale and linear predictor ηij scale,

respectively. When examining the item-level data, we can clearly distinguish the DGPs. In

the person-HTE model, the IRFs cross for each item, and summing the IRFs creates the

overall crossing pattern in E(Sj). In the item-HTE model, the IRFs are parallel for each

item, but the relative vertical distance between the groups varies across items, creating the

identical crossing pattern in E(Sj). The stark distinction between IRFs for each DGP suggest

that these two processes can potentially be distinguished when the appropriate model is

applied to item-level data.

We can formalize the intuition provided by Table 1 and Figure 3 analytically. We begin

with an arbitrary set of β for the person-HTE model and find a set of γ from the item-HTE

model that will yield identical τ . While there is no simple formulation of EP (Sj(·)) in general

(Baker, 2001, pp. 69-70), we have assumed that items are equally discriminating and their

easiness parameters are normally distributed, which enables a tractable solution. Under these

assumptions, EP (Sj(·)) can be approximated by a logistic curve scaled by the number of

items I, as the sum of logistic curves can be approximated by a logistic curve when the slopes

are equal and the curves have considerable overlap (Reed & Pearl, 1927, p. 733). In fact, our

simulations show that the logistic approximation of E(Sj) is incredibly accurate, with an R2

of greater than 99.9%.1 We can therefore approximate the EP (Sj(·)) follows:
1Summing logisitic curves is conceptually similar to constructing population average logistic curves using

Generalized Estimating Equations from cluster-specific logistic curves derived from multilevel models. Thus,
the slope of the TRF will be attenuated compared the slopes of the IRFs by a known quantity. When σ0 = 1,
this quantity is about 1.16. This attenuation does not affect our argument because we could simply set the
item discrimination to 1.16 to achieve the desired result. See Austin and Merlo, 2017, p. 3263, Rabe-Hesketh
and Skrondal, 2022, pp. 586-590, and Neuhaus et al., 1991, p. 28 for a discussion.
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Figure 3: Different DGPs can produce the same pattern of sum score responses
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Notes: This figure illustrates how different DGPs can produce the same pattern of sum score responses. The
top row depicts person-dependent HTE and the bottom row depicts item-dependent HTE. We first generated
the item-level data from the item-dependent HTE model where we set ρ = 1, implying that the treatment
effect is largest on the easiest items. We then fit the misspecified person-dependent HTE model to the data
generated by the item-dependent HTE model, and used the parameter estimates from this model to generate
the data for the top row of the figure.

EP (Sj(·)) =
I∑

i=1

logit−1(θ1j (·) + bi) ≈ logit−1(θ1j (·))I. (28)

Applying the above equation to each potential outcome yields the following logistic functions,

each of which can in turn be approximated by a linear equation because logistic curves

are approximately linear between about 20% to 80% of the upper asymptote (Long, 1997;

Von Hippel, 2015), where I
2
represents the midpoint of the scale and I

4
represents the linear

approximation of the slope at the midpoint in a Taylor expansion:
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EP (Sj(1)) =
I∑

i=1

logit−1(β0 + β1 + β2θ
0
j + β3θ

0
j + bi) (29)

≈ logit−1(β0 + β1 + β2θ
0
j + β3θ

0
j )I (30)

≈ I

2
+

I

4
(β0 + β1 + β2θ

0
j + β3θ

0
j ) (31)

EP (Sj(0)) =
I∑

i=1

logit−1(β0 + β2θ
0
j + bi) (32)

≈ logit−1(β0 + β2θ
0
j )I (33)

≈ I

2
+

I

4
(β0 + β2θ

0
j ). (34)

The treatment effect, τ , is the difference in these quantities:

τP ≈ I

4
(β1 + β3θ

0
j ). (35)

For the item-HTE model, we assume ρ = 1 so that ζi = bi, yielding the following approx-

imations for EI(Sj(·)). The division by 2 in EI(Sj(1)) comes from the presence of two bi

terms.
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EI(Sj(1)) =
I∑

i=1

logit−1(γ0 + γ1 + γ2θ
0
j + bi + bi) (36)

≈ logit−1(
γ0 + γ1 + γ2θ

0
j

2
)I (37)

≈ I

2
+

I

8
(γ0 + γ1 + γ2θ

0
j ) (38)

EI(Sj(0)) =
I∑

i=1

logit−1(γ0 + γ2θ
0
j + bi) (39)

≈ logit−1(γ0 + γ2θ
0
j )I (40)

≈ I

2
+

I

4
(γ0 + γ2θ

0
j ). (41)

We again compute τ :

τI ≈
I

8
(γ1 − γ0 − γ2θ

0
j ). (42)

Clearly, τ is a linear function of θ0j in both DGPs, analogous to the visualization shown in

Figure 3.2

We now have two expressions for τ , one for each DGP, both of which can be approximated

by a linear function of θ0j . Thus, there will be no way of differentiating between the two

DGPs if we can identify values of these functions that lead to equivalent expressions for τ in

the above equations. By setting τP = τI , we see that the DGPs provide equivalent τ when

2An intriguing implication of these results is that an identical pattern would emerge if the treatment
changed the discrimination parameter of the items. For example, we get the division by 2 from the addition of
the second bi term in the equation for EI(Sj(1)), but the same result would manifest if the treatment reduced
the discrimination of the items by a factor of 2. However, such a treatment is hard to imagine empirically, so
we do not pursue the possibility further.
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γ1 − γ0 = 2β1 (43)

γ2 = −2β3 (44)

as the γ are fixed but unknown constants. Thus, models for E(Sj) alone cannot distinguish

between the two DGPs.

The Solution

We can identify the relevant DGP with item-level data by including both the baseline ability

by treatment interaction β3 and the correlation between item easiness and item-specific

treatment effect size ρ in a single model, such as an Explanatory Item Response Model

(EIRM). The EIRM is a special case of the generalized linear mixed model (GLMM) that

allows for the simultaneous estimation of an IRT measurement model and an explanatory

regression model with person- or item-level predictors in a single procedure (Briggs, 2008;

De Boeck, 2004; De Boeck et al., 2011; Gilbert, 2023b, 2024; Gilbert et al., 2023b; Petscher

et al., 2020).

We propose the following flexible EIRM to disentangle the causes of HTE:

logit(yij = 1) = ηij = θ1j + bij (45)

θ1j = β0 + β1treatj + β2θ
0
j + β3treatj × θ0j (46)

bij = bi + ζitreatj (47)bi
ζi

 ∼ N

0,

σ0 ρ

ρ σ1


 . (48)

Because this model allows for both person and item-dependent HTE and models the item-level

data directly, we can determine the extent to which person or item HTE is better fit to the
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underlying item-level data and identify the appropriate causes of HTE. We turn now to a

simulation study demonstrating this result.

4 Monte Carlo Simulation

A key implication of the empirical indistinguishability of the person-dependent and item-

dependent HTE processes is that we will estimate a non-zero value of β3 if ρ is the true

data-generating parameter, and vice-versa. To demonstrate that person-dependent and

item-dependent HTE can become confounded, we perform a Monte Carlo study across a

range of β3 and ρ values to demonstrate the effects of model misspecification across a range of

more realistic testing conditions. To maintain focus on our two parameters of interest, we fix

the following parameters across all trials: 500 subjects, 40 items with constant discrimination

of 1, β1 = 0.20, β2 = 1, σ0 = 3, σ1 = 0.5, SD(θ0j ) = 1. We vary β3 and ρ independently from

-1 to 1 in increments of 0.25. We fit three EIRMs to each simulated data set, one with a

treatment by baseline ability interaction β3, the other with a ρ term, and the third with

both β3 and ρ, using the glmer function from the lme4 package in R (i.e., a Rasch model)

(De Boeck et al., 2011; Gilbert, 2023b), collect the output of the models for further analysis,

and repeat the process 100 times for each combination of parameters.

The simulation results are shown in Figure 4. The plots in the first row show that each

model appropriately recovers the target parameter with minimal bias. That is, whether the

DGP includes treatment by baseline ability interaction β3 or treatment by item easiness

correlation ρ, β̂3 and ρ̂ estimates from the appropriately specified model are unbiased, as are

estimates from the flexible model that allows for both β3 and ρ. The plots in the second row

show the consequences of model misspecification. We observe that a non-zero data-generating

value of ρ causes bias in β̂3 and vice versa. In contrast, when we fit the flexible model that

allows for both β3 and ρ, we can see that the bias is removed. Therefore, when we observe an

apparent treatment by pretest interaction a test score outcome, we cannot determine whether
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Figure 4: Simulation results showing bias in parameter estimates
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Notes: Figures depict bias in parameter estimates. The top row presents properly specified models and the
bottom row presents misspecified models. The following parameters are fixed across all trials: 500 subjects, 40
items with constant discrimination of 1, β1 = 0.20, β2 = 1, σ0 = 3, σ1 = 0.5. β3 and ρ are varied independently
from -1 to 1 in increments of 0.25.

this is due to true person heterogeneity or a correlation between item treatment effect size

and item easiness, unless we model the item-level data directly.

5 Empirical Application

For our empirical application, we analyze a public use data set from Kim et al., 2022, which

examined the impact of the Model of Reading Engagement (MORE) literacy intervention

on the reading comprehension test scores of 2174 grade 2 students. The researcher-designed

reading comprehension test contained 20 dichotomous items. Figure 5 shows the standardized
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Figure 5: Scatter plot of standardized sum-score outcome on pre-intervention scores
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Notes: The figure presents a scatter plot of standardized reading comprehension sum scores on pre-intervention
Measure of Academic Progress (MAP) reading scores by treatment status. The left panel depicts the direct
effects of the treatment and the right panel also includes the interaction effect. Hollow circles indicate the
conditional means of the outcome at each decile of the baseline score.

outcome sum score on the pretest score, where the right panel appears to show that the

treatment effect is larger for students with higher pre-intervention Measure of Academic

Progress (MAP) scores.

However, it would be premature to assert that the treatment is more effective for students

with higher pre-intervention achievement (i.e., β3 > 0) without conducting an item-level

analysis; the data are equally consistent with a treatment that produces the largest impacts

on the most difficult items (i.e., ρ < 0). As such, we replicate the middle panel of Figure 3

using our empirical item-level data in Figure 6. Visually, it appears that the treatment effects
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Figure 6: Fitted Logistic Curves by Treatment Group for each Item
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Notes: The figure presents fitted logistic curves of the probability of a correct response on pre-intervention
Measure of Academic Progress (MAP) reading scores by treatment status. The items are arranged by
difficulty, with percent correct values listed in the headings. The logistic curves are derived from a fixed
effects model of the correct response as a function of treatment, pretest, and item indicator, with two-way
interactions between treatment and pretest and treatment and the item indicators.

are largest on the most difficult items, rather than the treatment showing the strongest effect

on high achieving students across all items.

To formally test this hypothesis and determine the source of HTE, we fit four EIRMs

to the item-level data. Our baseline specification is a constant treatment effect model as

described in Equation 3. We then fit a person-dependent HTE model that incorporates an

interaction between treatment and pretest scores, β3, as described in Equation 11 and an

item-dependent HTE model that includes a correlation between item easiness and treatment
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effect size, ρ, as described in Equation 18. Our final specification fits the flexible model,

integrating both β3 and ρ, as specified in Equation 45. The results are displayed in Table 2.

Table 2: Empirical Application of Explanatory Item Response Models

(1) (2) (3) (4)

Constant 0.12 (0.15) 0.12 (0.15) 0.11 (0.16) 0.12 (0.16)
Treat 0.19 (0.04)∗∗∗ 0.18 (0.04)∗∗∗ 0.18 (0.05)∗∗∗ 0.18 (0.05)∗∗∗

Pretest 0.65 (0.02)∗∗∗ 0.61 (0.03)∗∗∗ 0.65 (0.02)∗∗∗ 0.62 (0.03)∗∗∗

Treat x Pretest 0.08 (0.04)∗ 0.06 (0.04)

AIC 52345.52 52343.10 52310.11 52309.33
BIC 52388.92 52395.18 52370.87 52378.77
Log Likelihood −26167.76 −26165.55 −26148.05 −26146.66
N observations 43480 43480 43480 43480
N students 2174 2174 2174 2174
N items 20 20 20 20
Var: Person 0.46 0.46 0.46 0.46
Var: Item 0.41 0.41 0.51 0.50
Var: Treatment 0.03 0.03
Cor: Item-Treatment −0.74 −0.74

Notes: We apply the EIRM to data from Kim, et al. (2022), which examined the impact of a content
literacy intervention. Column (1) presents a baseline constant effects model, column (2) presents
the person-dependent HTE model, column (3) presents the item-dependent HTE model, and column
(4) presents the flexible model allowing for both person- and item-HTE. The unit of observation is
item-person for all the models. Standard errors are in parentheses. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Column 1 shows a clear positive ATE in log-odds units. That is, the treatment is estimated

to cause a 0.19 logit increase in the probability of a correct response across all students and

items, holding constant pretest scores. Adding the treatment by pretest interaction term

in column 2 shows a small but significant positive interaction β̂3 = 0.08, suggesting that

the treatment is more effective for previously high achieving students, in line with Figure

5. When we add ρ in column 3, we see that ρ̂ = −.74, indicating that treatment effects are

most pronounced on the most difficult assessment items, as depicted in Figure 7. Finally, in

the last column, we allow for both β3 and ρ and see that the interaction term is rendered

non-significant but ρ̂ is unchanged. Likelihood ratio tests indicate that the specification in

column 3 is preferred. Therefore, the observed HTE appears to be not due to the treatment
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Figure 7: Correlation between item easiness and item treatment effect size

5

2

4
14

12

10

13

3

9

11

19

18

17

6

7

16
20

8

15

1

0.0

0.2

0.4

0.6

−1 0 1
Item Easiness

Ite
m

−
S

pe
ci

fic
 T

re
at

m
en

t E
ffe

ct

Notes: The points represent Empirical Bayes estimates of item easiness (bi) and item-specific treatment effect
size (β1 + ζi) derived from the item-dependent HTE model. The horizontal dashed lines represent the ATE
and a null effect.

helping the highest achieving students most, but rather, impacting the hardest test items

that better distinguish among previously high achieving students.

6 Discussion

Our study shows that using summary measures of student performance as outcome variables

can lead to scenarios where two distinct data-generating processes produce virtually identical

observed results. A treatment may appear more beneficial for students with high or low
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baseline ability levels when effectiveness of the treatment genuinely varies based on students’

baseline abilities (person-dependent HTE) or when the treatment impacts easier items more

(or less) than hard ones (item-dependent HTE). These DGPs have distinct interpretations, and

without item-level data, they cannot be distinguished. A treatment that disproportionately

benefits low-scoring students across all items has different policy implications compared to one

that uniformly enhances learning of easier content across all student groups. Consequently,

standard analytic practices to estimate HTE may lead to misleading conclusions and poor

policy decisions when incorrectly applied.

We show that this identification problem can be resolved by using an Explanatory Item

Response Model (EIRM) that accounts for both variation in treatment effect along a pre-

intervention participant characteristic and a correlation between item easiness and treatment

effect size that can correctly determine the relevant DGP and draw correct conclusions. The

EIRM is flexible and can be extended beyond the relatively simple application explored

here to a wide array of data analytic settings, such as the inclusion of additional covariates

at the person or item level, treatment by item cluster interactions, randomization blocks,

multiple treatments, additional levels of hierarchy such as the nesting of students within

schools, polytomous item responses, 2PL or 3PL models, or Bayesian approaches (Bulut

et al., 2021; Bürkner, 2021; De Boeck et al., 2011; Gilbert, 2023b, 2024; Gilbert et al., 2023b;

Stanke & Bulut, 2019), underscoring the applicability of our approach to diverse contexts.

For researchers interested in applying our model to their own data sets, our references

provide tutorials in the R programming language: the general EIRM for dichotomous items

(De Boeck et al., 2011), extending the EIRM to polytomous items (Bulut et al., 2021), the

item-dependent HTE model for dichotomous items (Gilbert, 2023b), and a Bayesian approach

that allows for extensions including 2PL or 3PL models (Bürkner, 2021; Gilbert, 2023b).

Furthermore, we provide both a detailed replication toolkit in online supplemental materials

(OSM), and a brief appendix showing the basic R syntax to fit our model.
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The problem of identification here hinges on item easiness varying in a systematic way

such that ρ ̸= 0. How realistic a problem is this likely to be in applied settings? This is a

question that will merit more attention in future studies. One study of a 29-item reading

comprehension assessment showed ρ = .20 (Gilbert et al., 2023b, p. 902). Similarly, an

analysis of item-level data from 15 RCTs offers some evidence that ρ ̸= 0 in that data (Ahmed

et al., 2023, p. 8). Conceptually, the presence of DIF-by-easiness correlations in other settings

(Duflo et al., 2011; Santelices & Wilson, 2010) is related and also suggestive of the possibility

for such systematic variation. We largely leave this as an open question; whatever the value

of ρ observed in any given setting, future research on HTE will be more sound if its value is

scrutinized because it clearly plays an important role in subsequent inferences.

We used the example of pretest ability to motivate this study but our argument extends

to any pre-treatment characteristic correlated with outcomes, such as age or socioeconomic

status. In our OSM, we provide three additional empirical examples with alternative covariates

(mathematics pretest, race indicator, high SES indicator) and an additional data set with

item-level outcome data (a 36-item vocabulary assessment) to demonstrate this point. In all

cases, ρ is strongly negative, and estimates of treatment by covariate interaction terms are

attenuated when the model allows for ρ, findings fully consistent with our results showing

bias in β3 when ρ ̸= 0. The generalizability of this phenomenon suggests that empirical

researchers examining HTE may wish to adopt latent variable models, such as the EIRM, to

avoid spurious conclusions about HTE. Furthermore, even if HTE is not of primary interest,

ρ ̸= 0 will necessarily create bias in main effects of covariates, because the main effect in a

model without interactions an average of the two subgroup effects, weighted by the sample

size of each subgroup.

While our exposition is primarily drawn from the perspective of education research,

where analyses of student assessment data are ubiquitous, the implications of our study are

relevant across various disciplines where both interest in HTE is high and detailed item-level

data may potentially be available. Our results apply to economists, who collect item-level
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data on consumption, spending, or attitudes (Jackson et al., 2021), psychologists studying

traits such as depression through survey scales (Beevers et al., 2007; Gilbert et al., 2024;

Schmitt et al., 2009), political scientists measuring political knowledge through questionnaires

(Baek & Wojcieszak, 2009), or medical practitioners using surveys to supplement biometric

measurement or clinical evaluation (B. W. Domingue et al., 2021; Hieronymus et al., 2019;

Jessen et al., 2018). By making item-level data available, as advocated by B. Domingue

and Kanopka, 2023, researchers can better analyze and interpret the impact of policies and

interventions in education and other fields.

We acknowledge four limitations of our approach. First, item-level data is not always

available to the researcher, which may preclude item-level analysis in many applications.

Accordingly, it is unknown how prevalent or large item-easiness by treatment effect size

correlations may be in empirical applications, and thus the scope of the problem outlined in

this study is not well understood. Second, the logit coefficients produced by the EIRM are

generally difficult to interpret compared to conventional test score metrics like standardized

sum scores. While there are existing methods available to convert logit coefficients to

standardized effect sizes (Breen et al., 2018; Gilbert et al., 2023b; Hox et al., 2017; Mood,

2010), these methods rest on strong assumptions and may add an extra layer of complexity for

the researcher. For example, we can convert the main effect of the MORE treatment (Table

2, Model 1) to an effect size by the process of “y-standardization”, in which we divide our

coefficient β by the estimated pooled SD of θ1j , estimated as the residual standard deviation of

the person random effect from a model with only the treatment indicator (Gilbert et al., 2023b,

pp. 907-908, Footnote 4) (Briggs, 2008, p. 110). Applying this process to our data yields

an estimated effect size of .20, which is likely to be more interpretable to practitioners than

the logit coefficient. Third, the EIRM makes additional computational demands compared

to alternative methods, due to the numerical integration required for parameter estimation

(Rabe-Hesketh & Skrondal, 2022), particularly when employing Bayesian approaches requiring

Markov chain Monte Carlo (MCMC) estimation (Bürkner, 2021; Gilbert, 2023b), and thus may
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be time-consuming to employ on large data sets. Finally, we examined the relatively simple

case of a randomized trial with two groups and a single time point, and as such it is unknown

to what extent the issues identified here may generalize to alternative experimental and quasi-

experimental contexts such as regression discontinuity, difference-in-differences, multisite

trials, instrumental variables, and longitudinal analyses, though an emerging literature on

the synthesis of latent variable and causal inference methods has begun to shed light on these

areas (Gilbert et al., 2023a; Kuhfeld & Soland, 2022, 2023; Rabbitt, 2018; Soland, 2022, 2023;

Soland et al., 2023).

Despite these limitations, our findings emphasize the critical role of measurement principles

in program evaluation and demonstrate the useful implications of IRT-based causal analyses,

beyond the traditional use of measurement tools solely for test construction. The adaptability

of the EIRM makes it a powerful tool for any field that relies on detailed, item-level data to

uncover patterns of treatment heterogeneity not readily apparent through more traditional

data analysis methods.
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7 Appendix: R Code to fit the Explanatory Item Re-

sponse Models used in this Study

The R code below illustrates how to fit various EIRMs to a data set dat with 0/1 outcome

correct, 0/1 treatment indicator treat, baseline covariate pretest, person identifier pid,

and item identifier itemid. For further resources, see the replication materials in our Online

Supplemental Materials or the various EIRM R tutorials listed in the references.

# constant effects model

glmer(correct ~ treat + pretest + (1|pid) + (1|itemid),

data = dat,

family = binomial)

# person dependent HTE model

glmer(correct ~ treat*pretest + (1|pid) + (1|itemid),

data = dat,

family = binomial)

# item dependent HTE model

glmer(correct ~ treat + pretest + (1|pid) + (treat|itemid),

data = dat,

family = binomial)

# flexible model allowing for both person and item HTE

glmer(correct ~ treat*pretest + (1|pid) + (treat|itemid),

data = dat,

family = binomial)
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