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Sometimes a treatment, such as receiving a high school diploma, is assigned to students if their
scores on two inputs (e.g., math and English test scores) are above established cutoffs. This forms
a multidimensional regression discontinuity design (RDD) to analyze the effect of the educational
treatment where there are two running variables instead of one. Present methods for estimating
such designs either collapse the two running variables into a single running variable, estimate two
separate one-dimensional RDDs, or jointly model the entire response surface. The first two ap-
proaches may lose valuable information, while the third approach can be very sensitive to model
misspecification. We examine an alternative approach, developed in the context of geographic
RDDs, which uses Gaussian processes to flexibly model the response surfaces and estimate the
impact of treatment along the full range of students that were on the margin of receiving treat-
ment. We demonstrate theoretically, in simulation, and in an applied example, that this approach
has several advantages over current approaches, including over another nonparametric surface re-
sponse method. In particular, using Gaussian process regression in two-dimensional RDDs shows
strong coverage and standard error estimation, and allows for easy examination of treatment effect
variation for students with different patterns of running variables and outcomes. As these nonpara-
metric approaches are new in education-specific RDDs, we also provide an R package for users to
estimate treatment effects using Gaussian process regression.
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1 Introduction

Regression discontinuity designs (RDDs) were first introduced by Thistlethwaite and Campbell

(1960) and are widely used in economics, education, political science, and statistics for estimating

causal effects. In a classical RDD, treatment assignment is determined by a single covariate, called

a “running variable,” being above or below a cutoff. For example, education grants may only be

provided to families with incomes below a certain amount (Li et al., 2015; Ludwig & Miller, 2007),

or students may attend subject-specific summer school if their test score on that subject was below

a certain value (Matsudaira, 2008). The goal of an RDD is to estimate the causal effect of treatment

on outcomes, while accounting for the discontinuous nature of treatment assignment.

RDDs are valuable because, even though treatment assignment is completely confounded by

the running variable, the causal effect at the cutoff is identifiable under the mild assumption that the

treatment and control outcomes are continuous around the cutoff (Hahn et al., 2001). The causal

effect can then be estimated by estimating the mean outcome under treatment and under control

near the cutoff. Many have utilized nonparametric methods—in particular, local linear regression

methods that upweight subjects near the cutoff—to do so (Cattaneo & Titiunik, 2022; Imbens &

Lemieux, 2008; Pei et al., 2022). Local linear regression methods fit regressions of the outcome on

the running variable (one below the cutoff, one above), extrapolate these regressions to the cutoff,

and estimate the causal treatment effect as the difference between these two extrapolations.

Some RDDs have more than one running variable. For example, in education applications, it is

often the case that a treatment—such as access to a tutoring program or high school diploma—is

assigned to students if both of their two test scores (e.g., in math and English) fall either below

or above some cutoff (Ou, 2010; Papay et al., 2014; Reardon et al., 2010). In geographic RDDs,

treatment is assigned to units based on their geographic location which is defined by the running

variables of latitude and longitude (Keele et al., 2015; Keele & Titiunik, 2015; Rischard et al.,

2021). We focus throughout on RDDs that use two running variables to estimate the effect of one

treatment. The cutoffs on the two running variables in a two-dimensional RDD form a boundary

within a two-dimensional space, where units are treated on one side of the boundary but not the
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other. While the causal estimand in a one-dimensional RDD is the average treatment effect at the

cutoff, the causal estimand in a two-dimensional RDD is the boundary average treatment effect, or

BAT E. The BAT E represents an overall estimate of the weighted average of treatment effects that

have been aggregated along the boundary using researcher-specified weights.

Estimating this causal estimand is not as straightforward as estimating an average treatment

effect at the cutoff point in the one-dimensional case using local linear regression. Several common

methods attempt to estimate causal effects in a two-dimensional RDD by extending methods for the

one-dimensional case, but these fail to target the BAT E. For example, one method collapses the two

running variables into a single running variable, and then follows standard local linear regression

methods (Cohodes & Goodman, 2012; Martorell, 2005; Robinson, 2011), while another estimates

two separate one-dimensional RDDs for each running variable (Kane, 2003; Papay et al., 2010;

Reardon et al., 2010). These approaches, though straightforward extensions of existing methods,

reduce the problem to one dimension which loses valuable information (see Rischard et al. (2021)

for further discussion). Response surface modeling methods have also been used to estimate two-

dimensional RDD causal effects, but they can be very sensitive to model misspecification when

conducted parametrically (Dee, 2012; Papay et al., 2014; Papay et al., 2011).

Given these challenges using existing methods for estimating the BAT E in two-dimensional

RDDs, we propose using a nonparametric surface response modeling approach in education re-

search. This has several advantages over current approaches, namely that it allows us to properly

target the BAT E and that it flexibly estimates the mean outcome on both sides of the boundary.

This makes model misspecification less of a concern. Uniquely, this approach also allows for easy

examination of treatment effect variation along the boundary, which is not possible with exist-

ing methods. We compare current two-dimensional RDD approaches to nonparametric surface

response methods that use Gaussian process regression and locally weighted regression (loess).

Our contributions are twofold: first, we examine how nonparametric surface response methods

work for a specific type of two-dimensional RDD. Second, we make these tools more accessible

by providing an R package.

3



In Section 2, we define the notation, setup, and causal estimands for two-dimensional RDDs. In

Section 3, we review current methods for analyzing two-dimensional RDDs, and in Section 4.1, we

present the Gaussian process regression and loess approaches. We compare these various methods

via a simulation study in Section 5. We find that using Gaussian process regression shows slightly

better performance in terms of bias, standard errors, and RMSE, in addition to much stronger cov-

erage of treatment effects and estimation of standard errors. We further demonstrate these methods

in Section 6 by analyzing an educational policy test-score cutoff in Wisconsin. Here, we show how

using Gaussian process regression can help illuminate patterns of treatment effect heterogeneity

for differently-scoring students, as well as provide more precise inference over prior analyses that

use one-dimensional approaches. Finally, we conclude in Section 7.

2 Notation, Setup, and Causal Estimands

Consider N units, indexed by i, each with treatment assignment Wi, outcome Yi, and running vari-

ables Xi1 and Xi2. We focus on sharp two-dimensional RDDs, where

Wi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if Xi1 ≥ c1 and Xi2 ≥ c2

0 otherwise.
(1)

for fixed, scalar cutoffs c1 and c2. This design requires that the individual receive one treatment on

the basis of passing two score cutoff thresholds, and receive no treatment otherwise. For example,

X1 and X2 might be math and reading scores, and the cutoffs represent eligibility to receive a

high school diploma, such as with high school exit examinations. The outcome might be eventual

college enrollment. Other policy designs may allow for different treatments if only one of the score

cutoffs were met, but we do not focus on those here.

Let Yi(1) and Yi(0) denote the potential outcomes of unit i under treatment Wi = 1 and control

Wi = 0, respectively. The observed outcomes can then be written as a function of the potential

outcomes: Yi =WiYi(1)+ (1−Wi)Yi(0). The outcome Yi(1) is observed only if unit i is exposed to
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Figure 1: An example of the two-dimensional RDD we consider in this paper. The cutoffs are
c1 = 0 along Running Variable 1 and c2 = 0 along Running Variable 2. The treated region is in the
top right quadrant and the control region is the region to the left and below the boundary defined
by the black lines. The causal estimand is the BAT E, which is estimated along the boundary.

treatment (Wi = 1), and Yi(0) is only observed if unit i is not exposed to treatment (Wi = 0).

In sharp RDDs, the probability of receiving treatment for every unit is 0 or 1. There are also

fuzzy RDDs, where the probability of assignment to treatment at the threshold still changes, but

can change by a smaller jump (see Imbens and Lemieux (2008) for a conceptual review of sharp

and fuzzy RDDs). We focus on sharp RDDs because they are particularly common in education

applications, where students gain access to a program or treatment if and only if two test scores

fall to one side of their given cutoffs.

Figure 1 plots an example of this type of RDD. The data for this figure come from our applied

example using Wisconsin student test scores (the two running variables) from students who are
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English Language Learners (ELLs) and their treatment of reclassification into non-ELL status.

This reclassification treatment involves a change in students’ educational experience in schools,

where formerly ELL students join ”mainstream” non-ELL classrooms and lose access to ELL-

specific supports. The cutoffs in this RDD are the c1 = 0 and c2 = 0 black lines, the treated units in

the top right quadrant are colored in dark blue, and the control units are colored in light blue.

Other common applications in education assign one treatment if the student performs poorly

on either test, such as access to summer school, which would change the inequalities in (1) to an

or statement between running variable values that were less than the cutoffs. This setup was the

focus of a simulation study in Porter et al. (2017) that compared various methods for analyzing

two-dimensional RDDs, where their control units were in the top right quadrant and treated units

were in the remaining three quadrants. That study simulated 5,000 data points from a standard

two-dimensional normal distribution with varying correlations between the two running variables,

and we will revisit this study design in Section 5.

Unlike a one-dimensional RDD where the causal estimand is the average treatment effect at

a single cutoff value, the causal estimand in this two-dimensional RDD forms from the boundary

created by the two cutoffs (colored in black in Figure 1 ). While geographic RDDs use irregular

boundaries, two-dimensional RDD applications in education typically use test score cutoffs or

other running variable cutoffs that are single values. Our focus in this paper is therefore on a

rectangular boundary. The causal estimand is the weighted average of treatment effects along this

boundary, known as the boundary average treatment effect (BAT E), which depends on the choice

of weights along the boundary. To formalize this causal estimand, define the boundary as

B = {x ∶ x1 = c1 and x2 ≥ c2 , or x2 = c2 and x1 ≥ c1} (2)

where x = (x1,x2) is some realization of the two running variables.

The treatment effect τ(x) is a conditional average treatment effect, or CAT E, function along
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the boundary, and is defined as

τ(x) =E[Yi(1)−Yi(0)∣X1i = x1,X2i = x2] (3)

Throughout, we assume that these conditional expectations are continuous at x ∈ B, which is one

assumption needed to identify τ(x) (Hahn et al., 2001; Keele et al., 2015). Then, weights w(x) can

be specified for each x along B to estimate a the single quantity BAT E τw, which is the weighted

average of the treatment effects across all x ∈ B:

τ
w = ∫x∈Bw(x)τ(x)∂x

∫x∈Bw(x)∂x
(4)

Researchers can choose the weights w(x) for the treatment effects along B. The simplest form

of weights are uniform weights, defined as w(x)= 1, which place equal weight on every point along

the boundary. However, this may not be the most sensible choice if there is little data along some

parts of the boundary, such as at the center-top or far-right portions of the boundary in Figure 1.

We may not want to place much weight on these areas during inference.

Following this logic, researchers often place more weight on sections of the boundary with

denser populations of units, i.e., setting w(x) = ρ(x), where ρ(x) is the density of units at x. This

defines the following causal estimand:

τ
pop = ∫x∈Bρ(x)τ(x)∂x

∫x∈Bρ(x)∂x
(5)

Such weights have previously been considered by Wong et al. (2013) and Porter et al. (2017). A

benefit of this estimand is that it corresponds to the average treatment effect of the super-population

of units residing on the boundary (Imbens & Zajonc, 2011; Keele & Titiunik, 2015; Rischard et al.,

2021). In practice, ρ(x) must be estimated, such as by using a kernel density estimator.

There may be situations in which we are also interested in the average treatment effect across

particular portions of the boundary. For example, the boundary in Figure 1 consists of a vertical
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boundary (where the running variable X1 is fixed) and a horizontal boundary (where X2 is fixed),

and researchers could estimate the average treatment effect for each of these two different bound-

aries. Define B1 = {x ∶ x1 = c1,x2 ≥ c2} and B2 = {x ∶ x1 ≥ c1,x2 = c2} as these sections of the boundary.

Then, we have the following causal estimands:

τ
w
1 =
∫x∈B1

w(x)τ(x)∂x

∫x∈B1
w(x)∂x

, τ
w
2 =
∫x∈B2

w(x)τ(x)∂x

∫x∈B2
w(x)∂x

(6)

Note that τw
1 and τw

2 in (6) are special cases of τw in (4), where for τw
1 we have set w(x) = 0 for

x ∈ B2, and likewise for τw
2 we have set w(x) = 0 for x ∈ B1. However, the causal estimands in the

two-dimensional RDD literature are usually not written in the form of (6). More typically, they are

written in the following form:

τ1 =E[Yi(1)−Yi(0)∣X1i = c1,X2i ≥ c2], τ2 =E[Yi(1)−Yi(0)∣X2i = c2,X1i ≥ c1] (7)

For examples of this form for the causal estimands, see Porter et al. (2017), Equations (1) and (2),

as well as the 13 papers they discuss in their literature review of two-dimensional RDDs. We prefer

the form of (6) over (7) for defining these causal estimands because it is more flexible and more

explicit. It is more flexible because it defines the large class of weighted average treatment effects

that may be of interest depending on the application, and it is more explicit because it makes clear

what kind of “averaging” is being done across the boundary. Meanwhile, the expectation in (7) is

usually with respect to some hypothetical infinite population, meaning that it is (implicitly) using

population-density weights to define a BAT E.

We note that identification of these causal estimands for multidimensional RDDs must meet

RDD assumptions. These include the continuity of potential outcomes at the boundary, a discon-

tinuity in the probability of treatment at the boundary, and inability of individuals to sort above

or below the cutoff (e.g., by manipulating the value of their running variables). For discussion of

these assumptions see Reardon and Robinson (2012) and Wong et al. (2013).

In Section 3, we review state-of-the-art methods for analyzing two-dimensional RDDs. These
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methods typically use local linear regression to conduct inference for the estimands τw
1 and τw

2

instead of the overall treatment effect τw due to substantive interest in the different boundary’s

treatment effects as well as difficulties in targeting the whole boundary’s treatment effect. However,

τw is often the main causal estimand of interest in a two-dimensional RDD, because it reflects the

aggregated treatment effects across the entire boundary, rather than sections of it. Furthermore,

researchers may also be interested in τ(x) for each x ∈ B, as opposed to aggregating these effects

across the boundary. A benefit of our approach is that—in addition to providing estimates for

average effects such as τw
1 , τw

2 , or τw—it provides estimates for τ(x) for every x ∈ B. This allows

researchers to assess if there is treatment effect heterogeneity along the boundary, instead of only

focusing on average treatment effects (Rischard et al., 2021).

3 Review of Approaches for Two-Dimensional RDDs

Most current RDD methods leverage local linear regression approaches. First we will review local

linear regression for one-dimensional RDDs, and then turn to two-dimensional RDD estimation.

3.1 Using Local Linear Regression for One-Dimensional RDDs

Consider the case where there is only one running variable X with cutoff c, and define treatment as

Wi = 1 if Xi ≥ c and 0 otherwise. Because treatment assignment depends on this single variable, it is

important to model E[Yi(1)∣Xi] and E[Yi(0)∣Xi] to estimate causal effects (Rubin, 1977). As there

is no overlap in terms of X between treatment and control units, causal effect estimates will be

particularly sensitive to model misspecification, especially the further we extrapolate. Thus, most

RDD researchers focus on estimating the average treatment effect at the cutoff, defined as

τ(c) =E[Yi(1)∣Xi = c]−E[Yi(0)∣Xi = c] (8)
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because it requires the least amount of extrapolation. As noted in Hahn et al. (2001), “any nonpara-

metric estimator [can be used] to estimate” E[Yi(1)∣Xi = c] and E[Yi(0)∣Xi = c]. Local linear regres-

sion is a popular method for analyzing one-dimensional RDDs because of its desirable boundary

properties (Cattaneo & Titiunik, 2022; Hahn et al., 2001; Imbens & Lemieux, 2008).

Local linear regression solves two least-squares problems (one in the treatment group and one

in the control group):

min
αT ,βT

∑
i∶Wi=1

(Yi−αT −βT ⋅(Xi−c))2)K(Xi−c
h
) (9)

min
αC,βC

∑
i∶Wi=0

(Yi−αC −βC ⋅(Xi−c))2)K(Xi−c
h
) (10)

Here, K(⋅) is the kernel and h is the bandwidth, which dictate how much weight is placed on

each unit during estimation. For example, one common choice for K(⋅) is the rectangular kernel,

defined as 1(c−h ≤ Xi ≤ c+h), which places an equal amount of weight on each unit within dis-

tance h of the cutoff and a weight of zero otherwise. Throughout, we focus on rectangular kernels

when conducting local linear regression. A common choice for h is the MSE-optimal bandwidth

of Imbens and Kalyanaraman (2012), but others—such as Ludwig and Miller (2007) and Porter

et al. (2017)—have used cross-validation to select h, and work such as Calonico et al. (2020) has

developed bandwidth choices tailored for inference in RDDs. After these least-squares problems

are solved, the average treatment effect at the cutoff is estimated as the difference between the two

estimated intercepts: α̂T − α̂C. Research such as Calonico et al. (2018), Calonico et al. (2014) have

used bias corrections to improve local linear regression methods, and this approach has become

popular in econometrics (Athey & Imbens, 2017).

There are also alternatives to local linear regression. The local randomization literature (Bran-

son & Mealli, 2018; Cattaneo et al., 2015; Li et al., 2015; Sekhon & Titiunik, 2017) envisions the

RDD as an as-if randomized experiment around the cutoff, due to randomness in the running vari-

able. In this setup, they estimate the average treatment effect in a neighborhood of the cutoffs where

assignment is assumed unconfounded given observed covariates. Cattaneo et al. (2017) compare
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local randomization methods to local linear regression methods, and Dı́az and Zubizarreta (2023)

consider local randomization for complex RDDs with multiple treatment assignment rules.

Finally, there are Bayesian approaches to RDDs (Alcantara et al., 2024; Chib et al., 2023; Chib

& Jacobi, 2016; Geneletti et al., 2015; Li et al., 2015). Branson et al. (2019) proposed using Gaus-

sian process regression to analyze one-dimensional RDDs, and found that this approach exhibited

promising coverage, interval length, and mean squared error over local linear regression methods.

We propose the use of Gaussian process regression for two-dimensional education RDDs in Sec-

tion 4.1, but first we will review current other approaches for analyzing two-dimensional RDDs.

3.2 Current Approaches for Analyzing Two-Dimensional RDDs

There are four leading methods in the literature for analyzing sharp two-dimensional RDDs like

those presented in Figure 1. Wong et al. (2013) and Porter et al. (2017) reviewed them and con-

ducted simulation studies comparing methods. The first three methods described below attempt

to simplify the two-dimensional RDD into a one-dimensional RDD so that local linear regres-

sion methods can be used, while the fourth method attempts to model the RDD’s two-dimensional

nature. We discuss their implementation in Appendix 9.1.

1. The binding score method: This method for analyzing a two-dimensional RDD instead

analyzes a single one-dimensional RDD. It uses both running variables to define a “binding

score” under the rationale that one score (either the minimum or maximum of the running

variables for each unit) will be responsible for a unit’s assignment to treatment by falling

either above or below the cutoff. The binding score then acts as the running variable in a

one-dimensional RDD that uses local linear regression. In the case of Figure 1, where units

receive treatment only if both running variables meet the threshold, the binding score BSi

is defined as min(X1i,X2i) after X1i and X2i are centered around their cutoffs. This method

implicitly makes the assumption that τ1 = τ2 (7) and will target some weighted average of

τ1 and τ2 if they differ. This method has been discussed in works such as Martorell (2005),

Robinson (2011), and Cohodes and Goodman (2012).
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2. The frontier method and pooled frontier: The frontier method divides a two-dimensional

RDD into two one-dimensional RDDs using standard approaches (e.g. local linear regression

described in Section 3.1). First, units who are not assigned to treatment because of the values

of both running variables are discarded, which may decrease precision due to smaller sample

size. For example, the units in the lower-left quadrant of Figure 1 would be discarded because

X1i < c1 and X2i < c2. Then, once the running variables are centered around their cut point

values, the upper quadrants of Figure 1 can be viewed as a one-dimensional RDD across

the boundary defined by c1 = 0, where treatment is determined only by X1 with X2 being a

nuisance variable. Similarly, only X2 determines treatment across the c2 = 0 boundary in the

right-hand quadrants and X1 is a nuisance variable. This method’s two one-dimensional RDD

analyses provide estimates for τ1 and τ2 in (7), respectively. This method has been discussed

in works such as Kane (2003), Papay et al. (2010), and Reardon et al. (2010).

The pooled frontier method, by contrast, produces a single overall BAT E per (4). This

method estimates the BAT E as a weighted average of the treatment effects on both seg-

ments of the boundary, using the proportion of data close to each side of the boundary as the

weights (see Wong et al. (2013), Equations (3) - (5)).

Porter et al. (2017), who focused on τw
1 and τw

2 and did not aggregate them, recommend using

the frontier method in most situations due to its strong performance and straightforward

implementation in their simulation study. However, they did recommend comparing it to the

binding score method if there is reason to believe that average treatment effects are similar

along both segments of the boundary.

3. The fuzzy IV method: Like the frontier method, this method generates two separate one-

dimensional RDD estimates, but it does so while using more sample data. By viewing Figure

1 as a one-dimensional RDD in terms of X1 (and thus ignoring X2), there is non-compliance

to the right of c1 because only some units receive the control condition while some are

treated. This can therefore be viewed as a fuzzy one-dimensional RDD. Fuzzy RDDs can be
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estimated by defining an instrumental variable (IV) for treatment assignment and targeting an

average treatment effect among compliers at the boundary for X1 and, separately, X2 (Imbens

& Lemieux, 2008). This method has been discussed in works such as Robinson (2011), Dee

(2012), and Wong et al. (2013). Porter et al. (2017) found this method to more frequently

exhibit bias and have higher variance than others, and we therefore do not investigate it.

4. The parametric surface method: This is the only method that views the two-dimensional

RDD as, indeed, a two-dimensional RDD, instead of simplifying the problem into one-

dimensional RDDs. Using a parametric approach, the method estimates separate response

surfaces in the treatment and control groups by modeling the relationship between the two

running variables and the outcome. This method is described in Reardon and Robinson

(2012) and Wong et al. (2013). The treatment effect is then estimated as the average differ-

ence in outcomes for units on the treatment assignment boundary. A nonparametric approach

would adaptively select a functional form as opposed to it being researcher-specified.

Although the surface method may seem to be the most appropriate method for analyzing a

two-dimensional RDD, current implementations are not without their complications. The draw-

back most noted in the literature is that the surface method is very sensitive to model specification

if conducted parametrically (Porter et al., 2017; Reardon & Robinson, 2012). Furthermore, it is un-

clear how to use a bandwidth to focus estimation on units near the cutoffs, as local linear regression

does in one-dimensional RDDs. For example, one could select two bandwidths (h1,h2)—such as

by cross-validation, as done in Papay et al. (2014), Papay et al. (2011)—and restrict analyses to the

subset of data that falls within both of these bandwidths. However, this restricts analyses to data

within a rectangular subset centered around the origin of Figure 1, which may discard many units

that are very close to one of the borders (B1 or B2) but not both. More concerningly, (Wong et al.,

2013) showed that the bandwidth is sensitive to arbitrary scaling decisions of the running variables.

For these reasons, Porter et al. (2017) did not include the surface method in their simulation study.

Nonparametric surface response methods can avoid these concerns. We next explain the imple-

mentation of two such approaches: Gaussian process regression and loess regression.
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4 Nonparametric Surface Response Approaches

Surface response methods, both parametric and nonparametric, support estimation of the two un-

known functions in a two-dimensional RDD (the treatment response function and the control re-

sponse function), yet nonparametric approaches are rare in applied educational RDD contexts.

Nonparametric approaches offer advantages over parametric methods, such as flexibly model the

treatment and control response surfaces, making model misspecification less of a concern as the

researcher does not need to impose a structural form. In addition to this flexible fit, units near the

boundary can be automatically upweighted, akin to using a bandwidth, and these weights can vary

continuously across the two-dimensional domain recognizing the correlation between the running

variables. Another unique benefit of nonparametric approaches is that they can be used to assess if

there is treatment effect heterogeneity along the boundary.

4.1 Gaussian Process Regression for Two-Dimensional RDDs

To estimate the two unknown functions, we recommend the use of Gaussian process regression,

because of its success in the machine learning and Bayesian modeling literature for estimating

unknown functions (Rasmussen & Williams, 2006) as well as its success in one-dimensional RDDs

(Branson et al., 2019) and geographic RDDs (Rischard et al., 2021).

Define µT (X1,X2) ≡ E[Yi(1)∣X1,X2] and µC(X1,X2) ≡ E[Yi(0)∣X1,X2] as the mean response

functions for treatment and control, respectively. We will assume that the treatment and control

response for each unit i are generated as

Yi(1) = µT (Xi1,Xi2)+εiT , and Yi(0) = µC(Xi1,Xi2)+εiC, where

εiT
iid∼ N(0,σ2

yT ), and εiC
iid∼ N(0,σ2

yC)
(11)

Local linear regression methods make the same above assumption, but also specify a model for

µT (X1,X2) and µT (X1,X2). Instead of specifying a functional form for µT (X1,X2) and µC(X1,X2),
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we will place a Gaussian process prior on both of these functions:

µT (X1,X2) ∼GP(mT (X),KT (X,X′))

µC(X1,X2) ∼GP(mC(X),KC(X,X′))
(12)

where we treat the two Gaussian process priors in (12) as independent.1 The notation GP(m(X),K(X,X′))

denotes a Gaussian process prior with mean function m(X) and covariance function K(X,X′),

where X is the N ×2 matrix of running variables for all units. This states that the joint distribution

of the unknown response function for the N units is a multivariate normal distribution with mean

(m(x1), . . . ,m(xN)) and an N ×N covariance matrix K(X,X′) whose (i, j) entries are K(xi,x′j),

where xi ≡ (Xi1,Xi2)T .

Following Branson et al. (2019) and Rischard et al. (2021), we will choose the linear mean

functions mT (X) = αT +Xβ T and mC(X) = αC +XβC with standard multivariate Normal priors on

(αT ,β T ) and (αC,βC). This does not force the estimated treatment and control responses to be

linear in the running variables, but rather represents our prior information that test scores often have

some association with the outcome of interest. Furthermore, we specify the covariance functions

in treatment and control as the squared-exponential covariance function:

KZ(X,X′) = σ
2
GP,Z exp(−(X−X′)T (X−X′)

2ℓ2
Z

)for Z = T,C.
(13)

This kernel is the most common covariance function in the Gaussian process literature, and it is

often found to have good performance. See Rasmussen and Williams (2006, Chapter 4) for details

about other covariance functions.

The squared exponential covariance function contains two parameters: the variance σ2
GP, which

affects the amplitude, and the lengthscale ℓ, which affects the smoothness. Following Rischard

et al. (2021), we use maximum-likelihood to estimate these parameters. However, as shown in

Branson et al. (2019), priors can also be placed on these parameters, thereby propagating their
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uncertainty. As discussed in Branson et al. (2019), these covariance parameters play a role that is

analogous to the bandwidth in local linear regression, in that they determine the weight of each

unit in estimating the treatment effect. For example, if the lengthscale ℓ is large, then the prior

says the response does not vary rapidly across values of the running variables; as a result, many

units will play a role in estimating the response along the boundary. Likewise, if the lengthscale

is small, then only units very close to the boundary will play a role in estimation. Meanwhile, the

variance σ2
GP determines how far departures from the mean function can be. Small values force

the response surface to be relatively linear, and large values allow for departures from linearity.

Following Branson et al. (2019) and Rischard et al. (2021), we will also make the assumption that

σ2
GP,T = σ2

GP,C and ℓT = ℓC; this is analogous to the common practice of letting the bandwidth in the

treatment and control groups be the same when implementing local linear regression (Imbens &

Lemieux, 2008). This assumption can be relaxed, though more data would be required for precise

estimation of the larger number of parameters.

After the covariance parameters are estimated, the posterior distribution of µT (x) and µC(x)

for any point x = (x1,x2) along the border B can be found via standard multivariate Normal theory.

Thus, the posterior of the treatment effect τ(x)= µT (x)−µC(x) (defined in (3)) for any x ∈B can be

readily obtained. In fact, a large benefit of this approach is that the joint distribution of any number

of treatment effects along the boundary can be obtained as follows: consider R points x1, . . . ,xR on

the boundary where we would like to estimate the treatment effect, which we refer to as sentinel

points. Then, under our Gaussian process model, the posterior joint distribution of τ(x1∶R), the

vector of treatment effects to be estimated for x1, . . . ,xR, is

τ(x1∶R)∣X,y ∼NR (µx1∶R∣T −µx1∶R∣C,Σx1∶R∣T +Σx1∶R∣C) (14)

≡NR (τ1∶R∣Y ,Στ1∶R∣Y ),
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where τ1∶R∣Y ∶= µx1∶R∣T −µx1∶R∣C, Στ1∶R∣Y ∶= Σx1∶R∣T +Σx1∶R∣C, and, for Z = T,C,

µx1∶R∣Z ≡KZ(x1∶R,XZ)[KZ(XZ,XZ)+σ
2
yZI]−1yZ

Σx1∶R∣Z ≡KZ(x1∶R,x1∶R)−KZ(x1∶R,XZ)[KZ(XZ,XZ)+σ
2
yZI]−1KZ(XZ,x1∶R).

(15)

To clarify notation of the above equations: x1∶R is an R×2 matrix (denoting the two dimensions

for each of the R points), while XT and XC are NT × 2 and NC × 2 matrices, respectively, of the

running variables of the treatment and control units. The vector τ1∶R∣Y of estimates at the sentinel

points is an R-vector. The Σ⋅∣⋅ covariance matrices are all R×R.

There are three key properties of the posterior distribution shown in (14). First, the mean of this

posterior distribution shows us that the average treatment effect at each x is estimated as simply

the difference between the estimated treatment mean response and control mean response at that

x. Second, the covariance matrix in (14) shows us that the covariance of the treatment effects is

the sum of the treatment and control covariances, because the two response surfaces are treated

as a priori independent.. Third, the definitions of the treatment and control covariance matrices

Σx1∶R∣T and Σx1∶R∣C (15) tell us that the covariance between any two τ(x) and τ(x′) depends on the

proximity of x and x′, where proximity is measured by KT (X,X′) and KC(X,X′) in (13).

The above formulation models the treatment effect as varying smoothly along the boundary.

Estimates for the individual τ(x) can then be combined together with weights to conduct inference

on the treatment effect for sections of the boundary, such as B1, B2, or even the entire boundary B.

As we show later in Section 6, it is useful to plot the point estimates of the average treatment ef-

fects for (τ(x1), . . . ,τ(xR)) and their corresponding confidence bands across the R sentinel points.

Because we have modeled the joint distribution of (τ(x1), . . . ,τ(xR)), these confidence bands ac-

count for the covariance among these effects. This allows researchers to graphically diagnose the

degree of treatment effect heterogeneity along the boundary, which—to our knowledge—cannot be

done with other estimation approaches. One can also test if there is treatment effect heterogeneity

across the boundary to a statistically significant degree; see Rischard et al. (2021), Appendix B.
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4.1.1 Inference for Treatment Effects along the Boundary

Equation (14) provides a posterior for the joint distribution of τ(x1∶R) for any x1, . . . ,xR ∈ B. To

estimate τw for any set of weights w, we first take a weighted average of these τ(x1∶R). Techni-

cally, τw integrates the treatment effect across every infinitesimal point along the boundary, and

we are approximating this integral with our sentinels. We can approximate more closely with more

sentinels, if we choose. In particular, we estimate the treatment effect only for the finite number of

sentinel points x1, . . . ,xR by predicting outcomes from both the treatment and control surfaces at

the sentinels. Assuming that these points are evenly spaced along B, it is reasonable to approximate

the causal estimand τw as

τ
w = ∫x∈Bw(x)τ(x)∂x

∫x∈Bw(x)∂x
≈ ∑

R
r=1 w(x)τ(x)
∑R

r=1 w(x)
(16)

The above is a linear combination of the vector τ(x1∶R), whose posterior (14) is Normally

distributed. Under our Gaussian process model, the posterior of τw is also Normally distributed:

τ
w∣X,y ∼N(

w(x1∶R)T (µx1∶R∣T −µx1∶R∣C)
w(x1∶R)T 1R

,
w(x1∶R)T (Σx1∶R∣T +Σx1∶R∣C)w(x1∶R)

[w(x1∶R)T 1R]2
) (17)

where w(x1∶R) ∈RR is a vector of weights, and the other parameters in (17) are already defined in

(15). The posterior distribution of τw (17) can then be used to obtain a point estimate and credible

interval for the overall BAT E defined by weighting w; we discuss this, along with weight selection,

in Section 4.1.2. We compute τ̂w with a plug in estimator, plugging the posterior means µ̂x1∶R∣T and

µ̂x1∶R∣C and estimated density weights w(x1∶R) into (16).

4.1.2 Implementation

We use the laGP package to conduct Gaussian process regression for two-dimensional RDDs (Gra-

macy, 2016). Specifically, we use the functions newGPsep, mleGPsep, and predGPsep. newGPsep

generates empirical Bayes priors and creates an initial Gaussian process, whose hyperparameters
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are updated using mleGPsep. Then, predGPsep uses the Gaussian process model to make a predic-

tion at each x1, . . . ,xR sentinel.

We use 20 sentinels along each section of the treatment boundary depicted in Figure 1. The

sentinels were evenly spaced between the cutoff along each running variable to the maximum

running variable value. Using fixed sentinel points is an alternative choice for researchers.

We generate predictions in two ways: first, we use all the data and predict at the sentinels. Sec-

ond, and this is the process we follow for results in Section 5, we set the mean of the priors in (12)

as a linear model and fit a single Gaussian process before predicting at the sentinels. We implement

this second approach by regressing the outcome Y on the two running variables and then treating

the residuals of that regression as the outcome to predict at the sentinels. This two-step process of

residualizing simplifies the analytic computation compared to estimating a full Bayes model with

a built-in linear model; this is the method used by Rischard et al. (2021). Once the predictions are

generated at each sentinel along the boundary on both the treated and control surfaces, the differ-

ence between a predicted treatment-side sentinel outcome, µT (x), and the predicted control-side

sentinel outcome, µC(x), is the estimate of the treatment impact at that sentinel τ(x).

Choice of Weights Gaussian process estimates of the BAT E also rely on how the sentinels are

weighted, as our outcome of interest is a weighted average of these sentinel-level estimates. We

offer two ways of weighting the sentinels.

Our first approach is to weight the sentinels by the density of observations at that sentinel. This

involves estimating the density from the distribution of the running variables. For our context, we

fit a multivariate normal distribution to the running variables in our data and then calculate density

weights given this distribution. Other means of estimating the density are possible; we take this

approach because test score data often has a normal shape and fitting a parametric density model

stabilizes the density estimation considerably.

As an alternative, we can generate a precision-weighted BAT E, τ INV , using the same sentinel-

level effect estimates but weighted by the inverse of the sentinels’ posterior variances, taking into
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account their covariance. These (normalized) precision weights are

w⃗ = (1T
RΣ
−1
τ1∶R∣Y 1R)−1 ⋅1T

RΣ
−1
τ1∶R∣Y , (18)

where Σ−1
τ1∶R∣Y is the covariance matrix of the posterior of the sentinels estimates (see (14)).

This precision weighting approach accounts for the correlation structure of sentinel estimates,

such that the information gained from the sentinel estimates is maximized. In other words, this

weighting approach targets an estimand, τ INV , that can be most precisely estimated among all τw.

However, τ INV is arguably less interpretable than τ pop, because it is a data-dependent estimand.

Because a greater density of samples often leads to more precision, precision weighting also

tends to upweight areas of the boundary with high density, but while also accounting for the cor-

relation structure of sentinel estimates. As a result, areas of the boundary with a higher density of

sentinel points tend to not be “over counted,” compared to the density weighting approach.

Using either approach, in our computation we chose to drop low-weight sentinels because using

those sentinels would have extrapolated too far outside of the support of the distribution. Dropping

these sentinels computationally adds a slight but negligible amount of bias to our BAT E estimate

because of the small weight of data around these points.

Standard Errors We calculate the standard error of the B̂AT E using (17): we take the square

root of the posterior variance as the standard error. In shorthand, we have, for weights w(x1∶R),

SE(τw) = ( 1
W 2 w(x1∶R)T Στ1∶R∣Y w(x1∶R))

−1/2
, (19)

with normalizing constant W =w(x1∶R)T 1R.

For precision weights, our formula simplifies as the precision weights cancel with the covari-

ance of our estimates. After some algebra, we produce standard errors for τ INV of the form

SE(τ INV ) = (1T
RΣ
−1
τ1∶R∣Y 1R)

−1/2
. (20)
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See Rischard et al. (2021), Section 2.3.3, for more details on the precision weighting approach.

4.2 Locally Weighted Regression

Gaussian process regression, at its root, is giving a flexible model to a two-dimensional function.

Other choices are possible such as using local averaging, or loess (Cleveland & Devlin, 1986;

Jacoby, 2000). This is a nonparametric technique that uses local weighted regression to fit a smooth

curve through points. Here we present a straightforward way to use loess for two-dimensional

RDDs, that, to our knowledge, is a novel application of this procedure.

The traditional one-dimensional loess can be extended to two dimensions: For each point X =

(x1,x2), we weight the data within a user-specified radius using (1− 3
√
(d))3 where d represents

the distance between the data point and (x1,x2). Using these weights, we fit a linear model with an

interaction term to the treated and control units separately:

Yi = β0+β1X1i+β2X2i+β3X1iX2i+εi (21)

to generate predictions at each (x1,x2) point. We then apply this smoothing function to each point

on the boundary. We calculate the difference in predictions at the sentinels as the estimated treat-

ment effect at each point and combine them as a weighted average to form the estimated BAT E.

In our implementation, we use a radius of 0.5 around each sentinel, which is half the standard

deviation of our simulated data, and require a minimum sample size of 8 data points within each

radius to fit a model. This approach readily gives us point estimates, but generating standard errors

and thus confidence intervals is more challenging and would require a bootstrap procedure.

5 Simulations

This paper uses simulations to compare the performance of the binding score, pooled frontier, and

loess modeling methods discussed in Sections 3 and 4.2 to that of Gaussian process regression,
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particularly in cases of heterogeneous treatment effects along the boundary.

We use the simulation data generating process of Porter et al. (2017), who compared binding

score, non-pooled frontier, and fuzzy IV approaches. We were interested in seeing performance in

a context we did not choose, to limit researcher degrees of freedom. As mentioned in Section 3,

both Gaussian process regression and loess can be thought of as a “surface method” approach—an

approach that Porter et al. (2017) discussed but did not include in their simulation study.

While we build upon the valuable insights from Porter et al. (2017)’s simulation study, our

study differs in several ways. First, we do not use the fuzzy IV method due to its underperformance

in Porter et al. (2017) and in Wong et al. (2013). Second, Porter et al. (2017) did not compare

binding score’s performance in scenarios where the treatment effect was unequal between the two

segments of the boundary. We include binding score for comparison even in those cases because,

in practice analyzing some treatment, we would not know that the treatment effect is unequal in

different segments of the boundary. Third, we use pooled frontier estimates (Wong et al., 2013), as

opposed to the individual frontier estimates described in Porter et al. (2017). Fourth, we include

the loess curve modeling approach, which, as a flexible surface response model, serves as a more

similar competitor to Gaussian process regression. Finally, though we use the same data generating

models as found in Porter et al. (2017), the way we implemented each method is different. Porter

et al. (2017) assumes the true model is known a priori and pass it to the regression discontinuity

estimator. By contrast, we always fit the data using the same model for these methods which, except

for the nonparametric surface response approaches, is a local linear regression on data within a

given bandwidth. Thus, estimators’ bias in our simulation study are higher than that in Porter et al.

(2017), reflecting the deteriorated performance we would expect from estimators when we do not

know the true data-generating process.

5.1 Setup and Data Generating Processes

Using the data setup of Porter et al. (2017), we generate running variables from a bivariate normal

distribution with a mean of 0 and marginal standard deviations of 1, and outcomes from four
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different data generating processes.

Consider N simulated data points with running variables X1 and X2, treatment W , and outcome

Y . Each running variable is generated as

⎛
⎜⎜
⎝

X1i

X2i

⎞
⎟⎟
⎠

iid∼ N2

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0

0

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 ρ

ρ 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
, (22)

and we vary the correlation parameter ρ ∈ {0.3,0.5,0.9,0.95,0.99}. Treatment is defined as

Wi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if X1i ≥ c1 and X2i ≥ c2

0 otherwise.
(23)

for cutoffs c1 and c2. We use three combinations of locations for the cutoff parameters: the 50th

percentile of the N (0,1) distribution for both running variables, the 30th percentile for both, and

the 30th percentile for one running variable and the 70th percentile for the other.

In addition to matching some of Porter et al. (2017)’s simulation parameters, we also explore

parameter setups that are a closer match to empirical applications in education research. This in-

volves using high running variable correlation parameters ρ ∈ {0.95,0.99} and a smaller sample

size of n = 1,000 in addition to Porter et al. (2017)’s sample size of n = 5,000.

We show results using n = 1,000 here and include results using n = 5,000, which were similar,

in the Appendix Section 9.

Finally, the outcomes are generated as Yi =Wi + µ(Xi1,Xi2)+ τ(Xi1,Xi2)+ εi, with µ(⋅, ⋅) and

τ(⋅, ⋅) under four different settings as shown in Table 1, following Porter et al. (2017) with residuals

εi
iid∼ N (0,1). In Models 1 and 2, the treatment effect is 0.4 everywhere along the boundary. In

Models 3 and 4, the treatment effect is heterogeneous along the boundary, such that the choice of

weights to estimate τw in Section 4.1 is consequential. Porter et al. (2017) focused on population-

density weights for these models (see Appendix A of their supplementary material). For each data

generating model and parameter setup, we generate 500 simulated data sets. We apply each method
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Model Control Side Outcome µC(X1,X2) Treatment Effect τ(X1,X2)
1) Y = 0.4+0.5X1+X2 τ = 0.4
2) Y = 0.4+0.5X1+X2+2X2

1 +X2
2 τ = 0.4

3) Y = 0.4+0.5X1+X2+2X2
1 +X2

2 τ = 0.4−0.1X1−0.2X2
4) Y = 0.4+0.5X1+X2+2X2

1 +X2
2 τ = 0.4−0.1X1−0.2X2

−0.08X2
1 −0.08X2

2

Table 1: Simulation Outcome Generating Models. For all models, Yi(1) =Yi(0)+τi.

to estimate the BAT E and standard error for each simulated data set. A full list of parameters and

BAT E values for each data generating model is listed in Appendix Section 9.2. Our predictions,

and correspondingly our treatment effect estimates, are scaled by the standard deviation of the

control unit outcomes such that our results are in effect size units.

5.2 Implementation

We use the R package rddapp (Jin et al., 2021) to implement the binding score and pooled frontier

methods (see Appendix Section 9.1). We specify sharp two-dimensional RDDs and include the

running variables as covariates, which showed better precision in Porter et al. (2017). Gaussian

process regression and loess are implemented as described in Sections 4.1.2 and 4.2.

5.3 Results

We compare the performance of each method on its average absolute bias, precision, RMSE, cov-

erage, and standard error estimation across data generating models. We show results averaged over

the three sets of running variable cutoff percentiles for the n = 1,000 case as results are similar

across the three choices. We do not see substantial gains in using precision-weighted Gaussian

process regression and therefore show results here relative to density-weighted Gaussian process

regression. Results showing precision-weighted Gaussian process regression, precision-weighted

residualized Gaussian process regression, and precision-weighted loess are in the Appendix 9.3.

In Figure 2, the columns correspond to the numbered models in Table 1. The models in the

first two columns have a constant treatment effect, while those in the third and fourth columns
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Figure 2: Simulation results averaged over running variable cutoff percentiles of 30/30, 50/50, and
30/70.

introduce heterogeneous treatment effects along the boundary. Additionally, models in columns

two and four are more complex (they have curvature and interactions in the running variables) than

the models in columns one and three. The rows of Figure 2 show our outcomes. In the first row, we

compare the methods in terms of their absolute bias across simulations and simulation parameters.

The second row shows their precision, and the third shows the RMSE.

From Figure 2, we see that Gaussian process regression does slightly better than other the meth-

ods in terms of absolute bias, particularly as the data generating models become more complex

across the first row. Additionally, the difference between residualized and non-residualized Gaus-

sian process regression’s estimated bias in the first column shrinks in these three later columns.

Looking across the middle row of the figures, density-weighted Gaussian process regression re-

sults are similarly precise between residualized and non-residualized regression. Density-weighted

loess is always less precise than the other methods, but beyond this distinction, differences between

methods are small, with Gaussian process regression results almost always matching or exhibiting

smaller standard errors than the remaining methods. There is one exception in Model 1, where
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binding score slightly outperforms Gaussian process regression under high running variable cor-

relations. Finally, as shown in the third row of Figure 2, Gaussian process regression does well in

terms of RMSE, with residualized and non-residualized Gaussian process regression performing

similarly throughout. RMSE gives overall performance, taking any bias-variance trade-offs into

account. Gaussian process regression ends up outperforming the other methods in the three more

complex models in terms of RMSE as it balances these trade-offs most strongly. Like with the

simulation’s standard errors, Gaussian process regression’s RMSE always matches or outperforms

the other methods, except for the high correlation case in the least complex model, Model 1, where

binding score slightly outperforms.

Figure 3 shows coverage results of the BAT E in the top panel using a 95% confidence interval

averaged over the three running variable cutoff percentiles as results looked similar across them.

The bottom panel of this figure shows how well the methods estimated standard errors. Note that we

did not estimate standard errors for loess, which would require a bootstrap procedure. All methods

except pooled frontier perform well for the simplest data setup, the first column. Gaussian process

regression continues to do well, and outperforms the other methods, across the other three data

generating models in terms of both coverage and estimation of standard errors. Results are fairly

similar between residualized and non-residualized density-weighted Gaussian process regression.

In summary, residualized density-weighted Gaussian process regression performs slightly bet-

ter than the non-surface response methods across our data generating models and simulated pa-

rameters in terms of estimated absolute bias, precision, and RMSE. Among nonparametric surface

response approaches, Gaussian process regression is much more precise than density-weighted

loess, particularly for data from the least complex model. Compared to binding score and pooled

frontier, Gaussian process regression shows stronger coverage of the BAT E and more consistent re-

covery of the true standard errors. Taken together, Gaussian process regression exhibits the overall

best performance of these methods in this simulation.
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Figure 3: Simulation coverage and SE estimation across parameters.

6 Application: Wisconsin English Language Learner Reclassi-

fication

To understand the methods’ comparative performance with real world data, we use Gaussian pro-

cess regression, binding score, pooled frontier, and loess to analyze an empirical two-dimensional

RDD. We describe the data and policy context, define the estimand of interest, and show the result

of analyzing the two-dimensional RDD using the different methods. Since we do not know the true

BAT E, we compare the methods in terms of their precision. We end with a demonstration of the

capacity of Gaussian process regression to investigate heterogeneous treatment effects.

6.1 Policy Context

The two-dimensional RDD we use centers on the assignment of English Language Learner (ELL)

students to non-ELL status based on their test scores in public high schools in Wisconsin. This

change is known as reclassification, which indicates that these students are now considered to be
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fully English proficient. After reclassification, they typically join mainstream classes with native

English speakers and no longer receive English language instruction or linguistic accommodations.

In Wisconsin, ELL students in grades K-12 are tested annually in the winter on the ACCESS

examinations, which measure English proficiency. ELL students receive ACCESS scores in multi-

ple English language domains: Speaking, Listening, Reading, and Writing. Literacy is calculated

as Literacy = 50%Reading+50%Writing. Students also receive an Overall ACCESS score, which

is a weighted average of the four domains: Overall = 35%Reading+35%Writing+15%Listening+

15%Speaking (Wisconsin Department of Public Instruction, 2023). ACCESS scores are provided

in terms of scale scores as well as proficiency levels, which range from 1.0 (lowest) to 6.0 (highest).

Each proficiency level score corresponds to the bottom of a range of scale scores. For example, a

Literacy proficiency level of 5.0 requires a minimum scale score of 406 in the data we use.

From 2011-2016, Wisconsin state policy was to reclassify ELL students as non-ELL if they:

a) received a score of 6.0 on their Overall proficiency level score, or

b) received a score of 5.0 on their Overall proficiency level score AND a score of at least 5.0

on their Literacy proficiency level score.

We examine the two-dimensional case of b), where students were required to pass two thresh-

olds to be eligible to receive the treatment of reclassification as a non-ELL. Even though there are

technically two policy pathways to be labeled as a non-ELL, the rule of reclassification given at

least a 5.0 on Literacy and a 5.0 on Overall fully determines who is reclassified and who is not,

since anyone who scores a 6.0 on Overall also scores at least a 5.0 on Literacy. This means that

we can conduct a two-dimensional RDD along the boundary defined by Literacy ≥ 5.0 and Over-

all ≥ 5.0 and employ the methods of this paper. Our research question is whether being eligible

for mainstreaming into non-ELL classrooms helped students in terms of their academic outcomes,

which in this case are their ACT test score results in the year after reclassification.

Similar data were used by Carlson and Knowles (2016) to examine the impacts of reclassifi-

cation for ELL students in Wisconsin on their ACT achievement, likelihood of high school grad-

uation, and post secondary enrollment following high school graduation, using the first rule (a) as

28



the discontinuity in a fuzzy one-dimensional RDD. In Wisconsin, students typically take the ACT

in the spring of 11th grade, meaning that the ELL reclassification we and Carlson and Knowles

study occurred one year prior to this outcome measure. Using both linear and quadratic functional

form specifications above and below the singular 6.0 cutoff on the Overall proficiency level score,

Carlson and Knowles found that reclassification in 10th grade had a positive effect on students’

Composite ACT scores, mainly driven by increases in English and Reading ACT scores.

Although reclassification under these policies in Wisconsin was intended to be automatic, there

were students who passed these ACCESS test score thresholds but who were not classified as non-

ELL students. This is partly due to the state’s manual reclassification policies, where automatically

reclassified students could be manually classified back as ELL students if their districts deemed

them not to be fully proficient in English. Manual reclassification was also possible in the other

direction for students who scored a 5.0 on their Overall ACCESS score but less than a 5.0 on

their Literacy ACCESS score, if the district determined that the students were in fact proficient in

English. These counts of students were “relatively few” in either direction (Carlson & Knowles,

2016, p. 562). A more likely explanation for discrepancies between passing ACCESS scores and

reclassification status is that the automatic reclassification policy was a Wisconsin Department

of Public Instruction recommendation without a strong forcing mechanism at the time. As such,

there may have been delays between state-level automatic reclassification and district-level enacted

reclassification of these students into non-ELL classrooms.

These discrepancies motivate our examination of intent-to-treat (ITT) effects of becoming eligi-

ble for reclassification after passing both score thresholds, as opposed to effects of reclassification

itself, for this analysis. We believe that analyzing this sharp RDD is, in fact, preferable to a fuzzy

RDD, as it involves more precise inference. Furthermore, analyzing the two-dimensional nature

of the policy allows us to assess potential treatment effect heterogeneity along the boundary. This

gives us a more detailed perspective about which particular students are affected by ELL reclas-

sification. Utilizing sharp two-dimensional RDD methods therefore provides a more appropriate

analysis of this data.
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Average scores All observations Below threshold Above threshold
ACT Composite 15.0 13.9 16.5

ACT Math 16.2 15.4 17.4
ACT Reading 14.6 13.5 16.2
ACT English 12.7 11.5 14.5
ACT Science 15.9 14.9 17.4

N 3,489 2,038 1,451

Table 2: ACT score descriptives for ELL students

6.2 Data

Our analytic sample consists of all 10th grade Wisconsin ELL students who were administered the

ACCESS test between academic years 2010-11 through 2015-16 and who also took the ACT over

that time, similarly to Carlson and Knowles (2016). This corresponds to 3,489 students.

In our data, 44% of students scored a 5.0 or above on Literacy, 52% scored a 5.0 or above on

Overall, and 39% scored a 5.0 or above on both, meaning they passed the reclassification threshold.

There were 2,038 students who did not meet the reclassification threshold in total. Of those students

who did not pass, 3.9% scored a 5.0 or above on Literacy but not Overall (these were Overall scores

in the 4.0-4.9 range), and 17.1% scored a 5.0 or above on Overall, but not on Literacy.

Table 2 presents statistics about these students’ ACT scores, which can range from 0-36. On

average, ACT scores were higher for students whose ACCESS scores fell above the reclassification

threshold than for students whose scores fell below.

The test score data are displayed in Figure 1 in Section 2, with student ACCESS Literacy

scores along the x-axis and ACCESS Overall scores along the y-axis. The estimated correlation

between the two running variables is high, 0.96. Although the reclassification policy’s two passing

rules are defined using ACCESS proficiency levels from 1.0 to 6.0, we use the proficiency levels’

corresponding scale scores to run our analysis following Carlson and Knowles (2016) and centered

the running variables around their cutoffs. There is one scale score point that divides students who

were eligible for treatment (the darker blue points in the top right of Figure 1) from those who

were not eligible for treatment (the lighter blue points).
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6.3 Estimand and Methods

We conduct inference on the τw defined in Section 4.1 to estimate the BAT E. This corresponds to

estimating the intent to treat effect of just barely passing the reclassification threshold boundary in

10th grade on ACT achievement. Our estimand is still the population estimand, and we examine

results using both population density weights as well as precision weights. We consider all ACT

skill area scores (English, Reading, Math, and Science) as well as students’ Composite ACT scores.

We compare the results of using Gaussian process regression, loess, binding score, and pooled

frontier methods. We implemented these methods the same way we had in the simulation study.

6.4 Results and Comparison

The results from all four methods are presented in Table 3. Each column represents one type of

ACT test outcome estimate with standard errors in parentheses.2

The only statistically significant results are for ACT English scores using residualized density-

weighted Gaussian process regression, as well as for ACT Math scores using binding score. These

results are not consistently significant within outcome, across methods, though they are both neg-

ative. Directionally, Gaussian process regression, binding score, and precision-weighted loess re-

sults are almost all negative across ACT test results. Pooled frontier and density-weighted loess

results are generally positive, though these are never significant.

When comparing the standard errors of the estimates across methods, precision-weighted Gaus-

sian process regression estimates slightly outperform density-weighted Gaussian process regres-

sion, though they are similar. Meanwhile, pooled frontier and loess’s standard errors are larger

than Gaussian process regression results, while binding score results are slightly more precise. We

conjecture that this performance is related to the 0.96 correlation between the running variables.

They are so highly correlated because a student’s Literacy score makes up part of their Overall

score. These results in terms of precision are in line with the lower standard errors for binding

score results and higher standard errors for pooled frontier and loess that we saw in the simulation

study under high running variable correlations, see Figure 2.
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ACT Score Composite English Reading Math Science
Residualized GPR - density weights -0.276 -0.471* 0.039 -0.228 -0.281

(standard error) (0.213) (0.265) (0.264) (0.249) (0.272)
Residualized GPR - precision weights -0.292 -0.393 0.096 -0.371 -0.277

(standard error) (0.201) (0.246) (0.249) (0.232) (0.259)
Binding Score -0.304 -0.319 0.102 -0.398* -0.373
(standard error) (0.187) (0.231) (0.245) (0.213) (0.250)
Pooled Frontier 0.094 0.140 0.205 -0.175 0.193
(standard error) (0.238) (0.315) (0.311) (0.259) (0.386)

Loess - density weights 0.272 -0.138 0.179 0.061 0.785
(standard error) (0.406) (0.734) (0.739) (0.448) (0.654)

Loess - precision weights -0.102 -0.315 -0.024 -0.142 0.098
(standard error) (0.475) (0.644) (0.420) (0.342) (0.578)

Table 3: ITT estimates using two-dimensional RDD methods. *p < 0.1

In Carlson and Knowles (2016)’s analysis of the fuzzy one-dimensional ELL reclassification

RDD, they found estimated positive effects of reclassification that were 1 ACT Composite score

point and 1.2-1.7 ACT English and Reading score points in magnitude. We, in contrast, found

a significant but negative intent-to-treat effect of assignment to reclassification for ACT English

scores when analyzing the two-dimensional case using Gaussian process regression, though note

that this effect is one third the magnitude of Carlson and Knowles (2016). The difference in these

two papers’ results, as well as the differences among methods in this application, likely relate to

differences in the methods’ approaches to estimating treatment effects and hints at the existence

of treatment effect heterogeneity. Namely, the binding score method assumes that the treatment

effects of each segment of the boundary are equal, while the pooled frontier method combines the

weighted average of each segment’s treatment effects additively. Gaussian process regression, by

contrast, would not double count units close to the intersection of the segments, nor would it require

both segments to exhibit the same treatment effect. Across the two reclassification analyses, we

may be seeing more non-statistically significant effects than Carlson and Knowles (2016) because

of the existence of treatment effect heterogeneity, which we elaborate on further below.

Importantly, using Gaussian process regression, we are able to visually investigate evidence of

any heterogeneous treatment effects. Conducting this analysis allows us to understand if treatment
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functions differently for students with different values of running variables.

We show the ACT English test score outcome as an example here as it was found to be signifi-

cant using Gaussian process regression. Figures for other ACT test outcomes are in the Appendix

in Section 9.6. In some cases, B̂AT Es that are null overall can exhibit statistically significant effects

at specific sentinels along the boundary, such as when sentinel-level results are both negative and

positive and cancel out. This is more likely to happen when we estimate the BAT E along a whole

boundary in two dimensions as opposed to a local average treatment effect at one point.

In Figure 4, the left panel shows the boundary defined by the sentinels that are numbered black

dots from 1 to 39. Sentinel 20 is at the intersection of the two running variable cutoffs. The right

panel shows the Gaussian process regression estimates (the light blue bars) using the ACT English

score outcome. The accompanying orange whiskers represent +/- 1.65 standard errors on each

estimate. As expected given the distribution of data in the left panel, the standard error bars widen

for sentinels further away from sentinel 20. Note that the figure’s right hand panel only shows

estimates for sentinels 12-25, meaning that sentinels 1-11 and 26-39 had too little data to estimate

treatment effects and were therefore dropped as explained in Section 4.1.2 .

We provide the following interpretation of Figure 4 as an example of how one could use a

figure like this, with sentinel-level estimates from Gaussian process regression, to investigate het-

erogeneous treatment effects along the boundary. Looking at the right hand panel, we see that the

magnitude and direction of the estimates vary over the sentinels, beginning with positive estimates

for sentinels 12-15 and then showing negative estimates for the remaining sentinels. The standard

error bars show that the estimated treatment effects were significantly negative only for sentinels

18 through 21, and not significant otherwise. This provides evidence that the ELL reclassification

policy functioned differently in terms of students’ English ACT scores for students who scored

close to the ACCESS Literacy cutoff (those who just barely passed the Literacy cutoff, with an

Overall score well above the cutoff along sentinels 12-15) or to the Overall cutoff with relatively

high Literacy scores (along sentinels 22-25), compared to students who scored close to both cutoffs

(along sentinels 18-21). Those students who scored closer to the intersection of the two running
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Figure 4: Treatment effect heterogeneity along the boundary.

variable cutoffs experienced negative, statistically significant treatment effects of assignment to re-

classification on their ACT English scores. This implies that the reclassification policy may be less

helpful for students with this pattern of running variable scores that are both close to their cutoffs.

In contrast, students who scored away from this intersection did not experience significant effects

of assignment to reclassification.

7 Discussion

Two-dimensional RDDs, such as requiring students to pass both an English and a math test score

to receive a high school diploma, are fairly common in education research. Most existing methods

to analyze these contexts collapse the two-dimensional RDD into a one-dimensional RDD, which

may be inappropriate if there is treatment effect heterogeneity across the two-dimensional bound-

ary. This article compares the performance of state-of-the-art two-dimensional RDD methods with

that of previously unused nonparametric surface response approaches in education contexts, and

provides code to implement them to estimate the boundary average treatment effect or BAT E.

These nonparametric approaches are Gaussian process regression, a Bayesian surface response

method, and locally weighted regression (loess). The BAT E estimates a weighted average of the
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treatment effect estimates at points along the boundary.

A key difference between surface response methods and the other methods is that the binding

score and pooled frontier methods project the discontinuity to a one-dimensional space, which we

argue is unduly limiting. By reducing the scope of the problem to one dimension, they lose infor-

mation in order to use local linear regression. Meanwhile, our implementation of Gaussian process

regression and loess analyzes treatment effects along the original two-dimensional boundary. Not

only does this more accurately incorporate the two-dimensional nature of the data, but also it allows

one to assess treatment effect heterogeneity along the two-dimensional boundary. This is particu-

larly important when researchers suspect that the same treatment may impact subjects differently,

depending on how they qualify for treatment.

Another state-of-the-art method that was not used by Porter et al. (2017), parametric surface

response, may be a better comparison to Gaussian process regression, as it allows the researcher to

jointly model the treatment and control response surfaces and estimate the BAT E as the difference.

However, this method is difficult to use in practice given its sensitivity to the researcher’s choice of

functional form (Porter et al., 2017). Using nonparametric surface response methods reduces such

concerns for model misspecification.

We target the BAT E in comparing the statistical properties of Gaussian process regression and

loess to existing methods in simulated as well as empirical data. Our simulation approach extends

the work of Wong et al. (2013) and Porter et al. (2017), with some key differences: We include

additional high correlation contexts that mimic our empirical example, and we explore how these

methods perform when the data generating models are unknown and potentially misspecified. We

believe that this generates fairer comparisons between methods as well as to non-simulated data

contexts where the researcher cannot predict the existence of heterogeneous treatment effects or

nonlinear data in advance.

In simulations using similar parameter and data generating setups as Porter et al. (2017), we

find that density-weighted Gaussian process regression performed slightly better in terms of ab-

solute bias, RMSE, and precision compared to binding score, pooled frontier, and loess methods.
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Though binding score exhibited slightly more precision in the least complex data scenario for high

running variable correlations, Gaussian process regression showed the best consistent performance

across all other running variable correlations, data generating processes, and running variable cut-

offs. Gaussian process regression also demonstrated much better coverage and estimation of stan-

dard errors than the other methods.

Our simulation results partly agree with Porter et al. (2017) who found that results using bind-

ing score tended to be more precise than those using frontier as the correlation between running

variables increased, though we used pooled frontier instead. Pooled frontier produces one singular

estimate that combines the weighted average of the treatment effects along each individual frontier

(Wong et al., 2013), as opposed to analyzing them separately as done Porter et al. (2017). However,

Porter et al. (2017) recommended using the frontier method even if binding score’s assumption that

treatment effects are homogeneous across frontiers holds theoretical justification, whereas we saw

either larger bias or less precision from pooled frontier compared to binding score across our sim-

ulation’s parameters. In both our simulation as well as in Wong et al. (2013)’s simulation study,

pooled frontier showed poor performance without using the true model when the authors applied a

constant treatment effects model using pooled frontier to data with heterogeneous treatment effects.

Therefore, we believe that frontier and pooled frontier methods are unsatisfactory approaches to

estimating two-dimensional RDDs. Except for the least complex data setups, we recommend using

Gaussian process regression which showed consistently strong properties. Future research could

provide an expanded set of recommendations for when to use Gaussian process regression over

other methods, as well as extending the analytic design to applications that involve more than two

dimensions to assign students to treatment.

We next applied these methods to an educational data set for an English Language Learner

reclassification policy. Gaussian process regression showed similarly precise results to binding

score, which showed the smallest standard errors, across all ACT outcomes.

Importantly, we are able to use Gaussian process regression to visually investigate evidence

of treatment effect heterogeneity for students with different patterns of running variables. In our
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empirical example, our overall BAT E estimate for the ACT English test score outcome showed

a statistically significant negative effect of assignment to reclassification. When we examined the

effects at the sentinel level, we saw underlying heterogeneity: for example, students with a high

Overall score but a Literacy score close to the cutoff boundary showed positive and insignificant

treatment effect estimates for this outcome, while students with relatively lower Overall scores and

Literacy scores that were both close to the boundary experienced negative and significant treatment

effects. Their reclassification assignment lowered their ACT English test scores.

We recommend that researchers and policymakers use tools such as Gaussian process regres-

sion to understand these patterns of treatment effect heterogeneity when conducting program eval-

uations. In our application, the negative treatment effects on English test scores were only experi-

enced by some students, while for other ACT outcomes and in other contexts, overall null BAT E

estimates may mask a mix of positive and negative effects for students at different points along the

treatment boundary. By recognizing the differences in both running variables and outcomes of stu-

dents at different points along the boundary, future policymakers can direct programs differentially

to students and therefore target students who may benefit the most.

Notes

1. Letting the treatment and control mean response functions be a priori independent is analogous to fitting two separate

local linear regressions—one in the treatment group, one in the control group—which is by far the common practice in

RDDs (Imbens & Lemieux, 2008). As an alternative to placing independent priors on the treatment and control mean

response functions, work by Hahn et al. (2020) suggested placing priors on the control mean response function and

the average treatment effect. This was recommended with the assumption that there is some covariate overlap between

treatment and control, which is explicitly not the case in RDDs. Applying approaches such as Hahn et al. (2020) is

outside the scope of this work, but is discussed in other recent work (Alcantara et al., 2024).

2. For loess, standard errors were estimated via bootstrap.
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9 Appendix

9.1 Implementation of Comparison Methods

9.1.1 Binding Score

This method uses both running variables to define a new score, the “binding score,’ which is the

minimum or maximum of the running variables. The binding score then acts as the running variable

in a one-dimensional RDD that uses local linear regression.

In addition to using the binding score BSi as a running variable, one can also use the original

running variables X1i and X2i as additional covariates to improve precision. We include them as

covariates per Porter et al. (2017). Within a specified bandwidth, the following model is fit:

Yi = β0+β1Wi+β2BSi+β3WiBSi+β4X1i+β5X2i+εi (24)

where BS =min(X1−c1,X2−c2). The estimated coefficient β̂1 is used as the causal effect estimator.

We use the R package rddapp (Jin et al., 2021) to estimate β̂1. rddapp calculates an optimal

bandwidth using the Imbens and Kalyanaraman (2012) method. In contrast to the definition of

treatment in (1), the package combines both running variables using an or statement. This means

that instead of using the package to define the treated area as the top right quadrant in Figure 1, we

use the package to define the treated area as the remaining three quadrants and then multiply the

resulting β̂1 by −1. This allows us to identify the BAT E that applies to our design, where treated

units are in fact in the top right quadrant. In particular, when using packages, it is important to

establish that the treatment region defined by the package’s functions aligns with the policy setup.

9.1.2 Pooled Frontier

The frontier method described in Section 3.2 reduces a two-dimensional RDD into two one-

dimensional RDDs, one across each frontier, and uses local linear regression to estimate each

frontier’s AT E.
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To produce a single overall BAT E, we use the pooled frontier method described in Wong et

al. (2013). To calculate the X1 frontier’s average treatment effect, we limit the data to units that

fall above the cutoff, c2, for the X2 running variable. Similarly to binding score, we include the

X2 running variable as a covariate to increase precision. Then given the sample, we use units that

are centered around their cut point values within a package-specified optimal bandwidth to fit the

following model:

Yi = β0+β1Wi+β2X1i+β3WiX1i+β4X2i+εi (25)

We do this first for X1, then again for X2 (where we include X1 as a covariate). These two re-

sulting β̂1 are then combined, with weights proportional to the average density along each run-

ning variable, to calculate the BAT E. Standard errors of pooled frontier estimates are obtained via

bootstrapped samples. We note that Wong et al. (2013) cautions that calculating τw from the two

boundary estimands τw
1 and τw

2 uses weights that are sensitive to the metric, or unit of measure-

ment, and scale, or spread in standard deviation units, of the running variables. This calculation is

complicated whenever τw
1 ≠ τw

2 .

We also implement this method by using the R package rddapp (Jin et al., 2021). Therefore, it

requires the same adjustment of the identified treated area and multiplication of the B̂AT E by −1

described above for the binding score method.

9.2 Simulation Parameters

Table 4 lists all parameter combinations used in the simulation as described in Section 9.2, along

with BAT E values.

9.3 Precision-weighted Results

In Figure 5, we show the results of comparing Gaussian process regression approaches, both

density-weighted and precision-weighted, as well as both residualized and non-residualized, in

the simulation described in Section 5. These values are averaged over running variable cutoff per-
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Model Correlation Cutoff 1 Cutoff 2 BAT E
Location Percentile Location Percentile

1 0.20, 0.50, 0.90, 0.95, 0.99 30 30 0.400
1 0.20, 0.50, 0.90, 0.95, 0.99 50 50 0.400
1 0.20, 0.50, 0.90, 0.95, 0.99 30 70 0.400
2 0.20, 0.50, 0.90, 0.95, 0.99 30 30 0.400
2 0.20, 0.50, 0.90, 0.95, 0.99 50 50 0.400
2 0.20, 0.50, 0.90, 0.95, 0.99 30 70 0.400
3 0.20 30 30 0.257
3 0.20 50 50 0.283
3 0.20 30 70 0.291
3 0.50 30 30 0.281
3 0.50 50 50 0.296
3 0.50 30 70 0.296
3 0.90 30 30 0.345
3 0.90 50 50 0.348
3 0.90 30 70 0.300
3 0.95 30 30 0.361
3 0.95 50 50 0.363
3 0.95 30 70 0.298
3 0.99 30 30 0.383
3 0.99 50 50 0.383
3 0.99 30 70 0.296
4 0.20 30 30 -0.832
4 0.20 50 50 -0.485
4 0.20 30 70 -0.794
4 0.50 30 30 -0.486
4 0.50 50 50 -0.304
4 0.50 30 70 -0.799
4 0.90 30 30 0.177
4 0.90 50 50 0.196
4 0.90 30 70 -0.646
4 0.95 30 30 0.278
4 0.95 50 50 0.285
4 0.95 30 70 -0.617
4 0.99 30 30 0.366
4 0.99 50 50 0.367
4 0.99 30 70 -0.591

Table 4: Simulation parameters.
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Figure 5: Comparison of residualized and non-residualized Gaussian process regression, both using
density or precision weights for n = 1,000.

centile combinations as results were similar.

Residualized Gaussian process regression tends to outperform non-residualized in the first col-

umn, which represents the least complex data generating model, and shows comparable properties

non-residualized Gaussian process regression otherwise. Then, looking within residualized Gaus-

sian process regression, its absolute bias, standard errors, and RMSE are fairly similar between

precision weights and density-based weighting. The only notable difference is in the top right cor-

ner, where density-weighted residualized Gaussian process regression shows lower absolute bias

than non-residualized density weighted regression for low running variable correlations. As we do

not see strong gains from using precision-weighted residualized Gaussian process regression, we

only used density-weighted residualized Gaussian process regression results in our main results.

Next, we compare the properties of residualized Gaussian process regression and loess, varying

their weighting method, for simulations using n = 1,000 in 6 and using n = 5,000 in 7. Results were

similar over running variable cutoff percentile combinations and are therefore averaged in this

figure.
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Figure 6: Loess and residualized Gaussian process regression results using both density and preci-
sion weights for n = 1,000.

Across both sample sizes, results are quite similar between the weighting approaches within

methods. There is some evidence of underperformance of precision-weighted loess compared to

density-weighted loess in model one in terms of standard errors, though this difference dissipates

for the n = 5,000 case. Given these results and to make consistent comparisons with density-

weighted Gaussian process regression, we used density-weighted loess in the main text of the

simulation results.

9.4 Simulation Results n = 5,000

Porter et al. (2017) use a sample size of n = 5,000 in their simulation study. We chose to use n =

1,000 in our main text simulation results because this sample size may more closely approximate

the size of typical empirical data sets. However, for completeness we include n = 5,000 results here

in terms of bias, precision, RMSE, coverage, and estimation of standard errors. The results here

are similar to those in the n = 1,000 case.
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Figure 7: Loess and Gaussian process regression results using both density and precision weights
for n = 5,000.

Figure 8: Simulation results across running variable cutoff percentiles for n = 5,000.
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Figure 9: Simulation coverage across parameters.

9.5 Simulation Results n = 1,000 across Cutoff Percentiles

We, following Porter et al. (2017), averaged our main results over three different running variable

percentile cutoffs: the 30th percentile on both running variables, the 50th percentile on both running

variables, and the 30th percentile on one running variable with the 70th percentile on the other

running variable. We include these results broken out by cutoffs here. Note that we are unable to

estimate pooled frontier results under high correlations for running variable cutoff percentiles of

30/70 due to a lack of data around the 70th percentile cutoff for one of the running variables.

9.6 Treatment Effect Heterogeneity in ACT Test Outcomes
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Figure 10: Simulation results for running variable cutoff percentiles of 30/30 for n = 1,000.

Figure 11: Simulation results for running variable cutoff percentiles of 50/50 for n = 1,000.
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Figure 12: Simulation results for running variable cutoff percentiles of 30/70 for n = 1,000.

Figure 13: Gaussian process regression sentinel estimates for ACT Composite scores.
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Figure 14: Gaussian process regression sentinel estimates for ACT Reading scores.

Figure 15: Gaussian process regression sentinel estimates for ACT Math scores.
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Figure 16: Gaussian process regression sentinel estimates for Science scores.
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