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Abstract 

 Chronic absenteeism is a critical issue that has been linked to many adverse student 

outcomes. The current study focuses on improving a key system already in place in many school 

districts—early warning systems (EWSs)—in order to decrease chronic absenteeism in students’ 

earliest schooling years. Using a demographically diverse population of students followed from 

PreK to third grade in Boston Public Schools (N=6,698), we demonstrate how and why two 

modern machine learning algorithms—the Synthetic Minority Oversampling Technique 

(SMOTE) and Extreme Gradient Boosting (XGBoost)—can improve EWS accuracy in 

proactively identifying students who are at risk of becoming chronically absent. The best-

performing XGBoost model with SMOTE was approximately 52 percentage points more 

accurate (in terms of recall rate) than the logistic regression model closest to those used in 

current EWSs in correctly predicting students who would be chronically absent in third grade. 

Our analyses introduce varying probability thresholds and the incorporation of different years of 

data, showing the potential of these models to cater to school districts aiming to leverage 

machine learning predictions while adhering to budgetary or intervention constraints. 
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Leveraging Modern Machine Learning to Improve Early Warning Systems and  

Reduce Chronic Absenteeism in Early Childhood 

In 2016, the U.S. Department of Education sounded the alarm on chronic absenteeism, 

labeling it the "hidden educational crisis" (U.S. Department of Education, 2016a). Fast forward 

to today, this crisis has been thrust into the spotlight due to the unprecedented disruption caused 

by the Covid-19 pandemic (The White House, 2023; Mervosh, 2023; Oliver, 2023). Numerous 

correlational studies have highlighted the potential consequences of chronic absenteeism, linking 

it to lower academic achievement, diminished socioemotional skills, and an increased likelihood 

of high school dropout, even when accounting for confounding variables like family income and 

race (Allensworth et al., 2021; Gottfried, 2014; Romero & Lee, 2007). Despite sustained efforts 

by researchers, school practitioners, and policymakers over the past two decades, problems with 

school attendance have persisted (Jacob & Lovett, 2017). However, the integration of modern 

machine learning methods offers a promising opportunity to enhance our strategies for 

addressing this deeply entrenched problem. 

This study focuses on using modern machine learning (ML) algorithms to improve a key 

system already in place in many school districts—early warning systems (EWSs)—in order to 

reduce students’ risk of becoming chronically absent as early as prekindergarten. Although EWSs 

have the potential to proactively identify students at risk of chronic absenteeism and facilitate 

timely supports, especially in the earliest grades, they are often underutilized for this purpose 

since many EWSs were designed to predict high school dropout (Balfanz & Byrnes, 2019). 

Furthermore, current EWS models may lack the precision needed for accurate and equitable 

predictions due to analytical challenges (Sansone, 2019). These limitations represent a missed 

opportunity, as early childhood is a critical window for establishing positive attendance patterns 
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and represents a more malleable point in a student’s life for intervention (Ansari & Gottfried, 

2021; Heckman, 2008). Modern machine learning holds the potential to overcome these 

limitations and become a formidable tool capable of improving EWSs. While machine learning 

methods have been commonly employed in other disciplines for classification and prediction, the 

field of education has been slower to adopt these methods (Weissman, 2022). In this study, we 

leverage these advanced algorithms, demonstrating how and explaining why they can be used to 

enhance the ability of EWSs to provide more proactive and accurate predictions to reduce 

chronic absenteeism during the earliest years of schooling. 

We first give an overview of chronic absenteeism. Then, using a demographically diverse 

population of students followed from prekindergarten to third grade in the Boston Public 

Schools, we demonstrate the application of two modern ML algorithms—the Synthetic Minority 

Oversampling Technique (SMOTE; Chawla et al., 2002) and Extreme Gradient Boosting 

(XGBoost; Chen & Guestrin, 2016)—for improving EWS accuracy. The analyses show the 

increase in predictive accuracy each additional year of data offers, addressing a policy-relevant 

question of how much historical data is needed to make effective intervention decisions in early 

childhood. Moreover, our models incorporate varying probability thresholds for prediction to 

cater to districts aiming to leverage machine learning predictions for early intervention while 

adhering to budgetary or intervention constraints. Lastly, we hope this paper can serve as a 

gentle, clear introduction to machine learning for education researchers hoping to incorporate 

advanced predictive analytics into their research. 

Overview of Chronic Absenteeism 
 
What is Chronic Absenteeism? 
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 Chronic absenteeism is most commonly defined as missing 10% or more of school days 

for any reason (Allison et al., 2019; Faria et al., 2017). This means that excused absences, 

unexcused absences, and any days a student may miss for being suspended all count as part of 

this metric. This commonly coincides with missing at least 18 total school days in the U.S. (i.e., 

18 is 10% of a 180-day school year). 

In recent years, addressing absenteeism has risen in priority for education policymakers. 

For the first time in 2014, the U.S. Department of Education’s Office for Civil Rights asked 

schools to report how many students missed 15 or more days of school for its survey. In 2015, 

the Obama administration announced Every Student, Every Day: A National Initiative to Address 

and Eliminate Chronic Absenteeism with the goals of better attendance monitoring and decreased 

rates of chronic absenteeism. The Every Student Succeeds Act (ESSA) of 2015 led many states 

to redefine how to measure school accountability. By 2018, 36 states and the District of 

Columbia approved ESSA plans to incorporate school-level chronic absenteeism as an indicator 

of school performance (Swaak, 2018). In January of 2024, the Biden-Harris administration laid 

out the Improving Student Achievement Agenda, which emphasized increasing attendance as one 

of their top three education priorities (The White House, 2024). 

One of the main reasons it has been so difficult to improve attendance rates is that many 

of the factors associated with student absenteeism are rooted in systems of inequity. Studies 

trying to identify the factors driving absenteeism have often linked many individual and family 

characteristics—such as children’s race, health, and socioeconomic status—with higher rates of 

student absenteeism (Allensworth et al., 2021; Ansari & Gottfriend, 2018; Gottfried & Ansari, 

2021; Klein et al., 2020; Purtell & Ansari, 2022). However, although demographic factors play a 

crucial role in understanding patterns of student absenteeism, many of these factors are not easily 
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malleable, especially in the short term. Schools and policy makers therefore often face 

limitations to effectively intervening within the constraints of systemic inequity (Gottfried & 

Hutt, 2019; Kearney et al., 2019).  

Early Warning Systems (EWS) 

As a result, one strand of attendance research focuses on discovering strategies individual 

schools and districts can take an active role in diminishing their own rates of absenteeism 

(Gottfried & Hutt, 2019). Many districts and states have thus embraced the implementation of an 

EWS, a promising, low-cost tool that uses key indicators to identify students at risk of not 

meeting certain milestones (U.S. Department of Education, 2016b). Until the mid-2010s, most 

EWSs relied on threshold-based models which would flag a student only when they surpassed a 

preset threshold, such as failing a course during the semester (Christie et al., 2019). In recent 

years, prediction-based EWSs have become increasingly common since they can proactively 

predict a student’s risk level and identify them for intervention before thresholds are crossed. 

These prediction-based EWSs are the focus of our study. While these EWSs have been used 

primarily for predicting the risk of high school dropout, they also hold potential for reducing 

chronic absenteeism (Balfanz & Byrnes, 2019; Christie et al., 2019).  

Despite their promise, current EWSs face notable limitations. Methodologically, EWSs 

typically rely on risk levels calculated from traditional regression models (Allensworth & 

Easton, 2007; OECD, 2020; Sansone, 2019). Traditional regression models used in EWSs mostly 

entail linear and parametric methods, which may not be well-suited for predictions because they 

typically assume relationships between variables are linear and predefined by the model 

structure. They also make assumptions about the underlying data such as independence of 

observations and no multicollinearity—assumptions that may be violated when using real-world 
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data. Even with interaction terms making the model non-linear, traditional regressions still have 

poor predictive accuracy compared to more modern machine learning algorithms (Deussen et al., 

2017; Sansone, 2019). 

These methodological constraints underscore the need for using more flexible, non-linear 

machine learning algorithms for EWSs, algorithms which can more effectively capture the 

intricate interactions among multiple variables and provide more accurate predictions of students 

at risk of chronic absenteeism. A few studies have explored the use of classification and 

regression tree analysis (CART; Fuchs et al., 2008; Fuchs et al., 2007) or boosting models (Lee 

& Chung, 2019; Sansone, 2019), but these nonparametric methods remain underutilized in 

EWSs, especially in the context of early childhood. Additionally, traditional regression models 

often struggle with class imbalance—a significant challenge when predicting chronic 

absenteeism due to the disparity in the number of students considered at higher versus lower risk 

of absenteeism. This imbalance hampers the regression model’s ability to accurately predict the 

minority of students who are genuinely at risk. Class imbalance is better addressed through non-

traditional machine learning algorithms like the synthetic minority oversample technique 

(SMOTE), but once again, these methods are currently underutilized (Lee & Chung, 2019). 

In addition to methodological limitations, current EWSs are predominantly designed to 

identify students at risk of high school dropout rather than to pinpoint younger students at risk of 

absenteeism (Sansone, 2019; Lee & Chung, 2019; Faria et al., 2017). Part of the reason for this is 

the dearth of data available in early childhood (Ehrlich et al., 2018). EWSs usually rely on a set 

of strong predictors. While this can differ by school, commonly used predictors include 

attendance (indicators for students missing more than 10 and 15 percent of school days), 

behavior (indicators for students who are suspended or expelled at all and for three or more 
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days), and course performance (indicators for failing core courses, failing math courses, and 

failing English/language arts courses), which have become known as the ABC indicators (U.S. 

Department of Education, 2016b). PreK to second grade students may not receive traditional A-F 

course grades, and their suspension or expulsion rates are substantially lower, with some districts 

prohibiting such disciplinary actions for younger students (Jacobsen et al., 2019). The lack of 

indicators able to be used in the early years could consequently result in less reliable predictions, 

but more research is needed examining the predictive accuracy of early EWSs. 

Given these limitations, schools that implement EWSs for early grades make utilize 

available indicators, but they may not focus explicitly on predicting students’ risk of chronic 

absenteeism. For example, the Massachusetts EWS uses student demographics, enrollment, 

attendance, and suspension indicators to evaluate the risk of students not achieving proficient 

reading levels by the end of third grade (Massachusetts Department of Elementary and 

Secondary Education & American Institutes for Research, 2013). While focusing on reading 

proficiency is important and valuable, it may inadvertently overlook the underlying causes of 

academic struggles, such as chronic absenteeism. Chronic absenteeism impacts learning across 

all subjects and is perhaps the indicator most strongly connected to the development of future 

early warning indicators like high school dropout (Allensworth et al., 2021; Balfanz & Byrnes, 

2019). Moreover, attendance rate is one of the few ABC indicators consistently tracked from 

early childhood. By focusing on identifying absenteeism early alongside reading proficiency 

levels in third grade, schools can not only enhance the predictive accuracy of their early EWS 

models but also tackle the foundational barriers to learning, thereby improving overall student 

engagement and long-term academic success.  
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Despite this potential, the research on EWS performance in the early grades remains 

limited, making it difficult to assess their predictive power when used with the limited data 

available from students’ earliest school years. However, the development of attendance habits 

starts early, and focusing predominantly on EWSs in high school obscures the critical influence 

of children’s earliest experiences with schooling and absences (Allensworth et al., 2021; Wei, 

2024). Since the earliest years are a more malleable point in a student’s life for intervention, it 

would be ideal to begin absenteeism interventions early (Heckman, 2008), and improved EWSs 

in early childhood could aid in this task. 

Boston Public Schools Attendance Policy 

The Boston Public Schools (BPS) student attendance policy was first established in the 

1998-1999 school year, and BPS has worked in past years to update its policy and make it as 

equitable as possible. The attendance policy was first revised in 2006 and 2007 to discontinue the 

use of cutoff times to refuse students’ entry into schools and give individual schools more 

flexibility to promote attendance. When the Every Student Succeeds Act (ESSA) was signed into 

law in 2015, Massachusetts was one of the 36 states that included chronic absenteeism as a core 

indicator in its school accountability index, and BPS updated its attendance policy to reflect the 

onset of the chronic absenteeism measure (Boston Public Schools, 2022).1  

Under BPS’s attendance policy, a student must be a school for at least half the day in 

order to be counted as “present.” In most schools, a half day means three hours in elementary 

school, three hours and five minutes in middle school, and three hours and ten minutes in high 

school. Chronic absenteeism is defined by BPS as missing 10%, or the equivalent of 18 school 

 
1 The attendance policy was further revised in 2018 to include cultural and religious holidays as excused absences 
and in 2021 to discontinue the policy of converting tardies into absences along with issuing “No Credit” grades 
based on attendance. This period of time is outside our study period. 
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days, or more of the school year (Boston Public Schools, 2022). BPS currently requires all 

schools to create a truancy prevention and attendance- promoting plan. During the academic 

year, schools use the Aspen system to take attendance and the Panorama Student Success 

Platform to document absenteeism prevention and intervention plans, the latter of which is used 

by over 2,000 other school districts in the nation (Panorama Education, 2023). Student 

attendance data from Aspen is transmitted to Panorama every night. BPS uses this attendance 

monitoring process to inform its Tiered Attendance System. Tier 1 typically consists of universal 

attendance-promoting strategies such as reliable attendance reporting, developing a positive 

school climate, and maintaining positive relationships with parents. Tier 2 consists of more 

targeted intervention supports such as attendance letters for absent students, attendance contracts, 

student-family conferences, and mentoring programs for “emerging absenteeism.” Tier 3 consists 

of intensive interventions for severe absenteeism, such as specialized programming or referrals 

to support services (Boston Public Schools, 2022).  

The state of Massachusetts has their own version of an EWS, called the Early Warning 

Indicator System (EWIS), which was established in 2011 and designed to identify students who 

may require additional attention to achieve certain academic milestones between 1st and 12th 

grade (Massachusetts Department of Elementary and Secondary Education, 2023). The EWIS 

does this by providing risk levels for each student pertaining to meeting the milestone, which it 

updates annually. The Massachusetts Department of Elementary and Secondary Education then 

publishes the risk levels on Edwin Analytics, works to make EWIS known to school districts, 

and provides technical assistance in school districts that use EWIS data. For early elementary 

students in first to third grade, the milestone focus is meeting or surpassing expectations on the 

3rd-grade ELA Massachusetts State Assessment.  
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The EWIS risk levels are determined through an annually updated multilevel logistic 

regression model using various indicators with data sourced from existing state-wide collections 

(OECD, 2020). While the EWIS is one of the only data-based information systems that uses a 

statistical model instead of individual indicators, it still faces the common methodological 

limitations associated with traditional regression approaches. Furthermore, a 2019 case study 

found that awareness and understanding of the EWIS among educators and school officials could 

be further improved, as many were not familiar with how the data system could support their 

work (OECD, 2020). 

Our study explores a modern machine learning-based EWS that addresses the 

methodological limitations of the traditional regression models used in current EWSs and 

examines how accurate EWSs can be for early chronic absenteeism detection. We do not 

explicitly address the broader issues of EWS implementation within schools, including 

organizational structure, administrative support, staff training, and the development of effective 

intervention strategies after students are identified. The practical implementation of EWSs in 

schools will require a separate, multifaceted effort involving collaboration among stakeholders 

beyond the scope of this study. Instead, we strive to advance the reliability and accuracy of the 

EWS algorithm, making it a more valuable and appealing tool for school practitioners to use. 

Our hope is that our machine learning models’ superior predictive accuracy will enhance the 

reliability and relevance of EWSs. When predictions are accurate, schools can more confidently 

allocate resources and interventions to the right students at the right time, which boosts the 

perceived value of the system. This, in turn, fosters greater buy-in among educators. 
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Present Study 

The present study demonstrates the efficacy of modern machine learning techniques, 

specifically the Synthetic Minority Oversampling Technique (SMOTE) and Extreme Gradient 

Boosting (XGBoost), in refining EWSs to proactively identify students who, without 

intervention, have a heightened risk of chronic absenteeism during their early schooling years. 

More broadly, we hope to provide a gentle introduction to SMOTE and XGBoost and enhance 

understanding of their applicability for decreasing chronic absenteeism. In particular, we aim to 

answer the following research questions: 

1. How does the prediction accuracy from using modern machine learning algorithms 

(like SMOTE and XGBoost) compare to that from more traditional parametric 

methods (like logistic regression) for use as a proactive early warning system? What 

factors contribute to the differences in prediction accuracy between these approaches? 

2. How accurately and early can we identify students who will be chronically absent in 

3rd grade? 

3. How can models be personalized to inform policies regarding chronic absenteeism 

intervention while taking into account an institution’s financial and resource 

constraints? 

Method 
 

Sample 

Our sample for this paper is the population of students who enrolled in the Boston Public 

Schools (BPS) PreK program for four-year-olds between the 2007-2008 and 2010-2011 school 

years. The BPS PreK program is a large-scale early childhood education program based entirely 

in the public schools during our study years. The program began in 2005 with then-Mayor 
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Thomas Menino’s vision of offering free public universal PreK education to all four-year-olds in 

Boston. It is open to any child in the city, regardless of income, and has garnered a high profile in 

the past 15 years due to its attention to evidence-based practices (Kabay et al., 2020).  

We followed students for each focal cohort from their application to PreK to third grade. 

We combined PreK students from all four cohorts (2007-2010) into our final sample because the 

third-grade attendance rate distributions for each cohort looked similar (Appendix S1). A total of 

12,740 families applied to the BPS PreK program during these four years. For this paper, we 

included students who got accepted into a BPS PreK program and ended up enrolling in it, 

attended BPS PreK for greater than or equal to 90 days (out of 180 total school days) in the 

school they attended the most, and were enrolled in the 3rd grade elementary school they attended 

the most for 90 or more days. We restricted the sample to only include students who attended for 

90 or more days following the practice set forth by other researchers exploring absenteeism 

(Weissman, 2022; Chang & Romero, 2008), and we only included students who enrolled in BPS 

PreK to ensure continuity of student data from PreK to third grade.  

We ended with a final analytic sample of 6,698 students. Sample descriptives are in Table 

1. On average, our final sample was 51% male and racially diverse (17% White, 28% Black, 

42% Hispanic/Latino, 9% Asian, 3% multiracial or other). Almost half of the sample (44%) 

identified as a dual language learner, 71% was eligible for free or reduced-price lunch, and 17% 

were eligible for special education services. Of our sample, 6,066 students were not chronically 

absent in 3rd grade while 632 were. There were statistically significant differences between these 

two groups for race/ethnicity, eligibility for free or reduced-price lunch and special education 

services, and chronic absenteeism rates in past school years. Our study subsample contained 

more students who qualified for free/reduced lunch (71% in study sample compared to 65% in 
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full sample) and more special education students (17% in study sample compared to 13% in full 

sample) compared to the full sample of 12,740 students. A table of student characteristics for the 

full sample is in Appendix S2. 

Outcome Variable 

The aim for all our models was to predict which students would be chronically absent in 

third grade. This outcome was a binary variable equal to one if the student was chronically 

absent in third grade and a zero if they were not. A student was counted as chronically absent if 

they had an absence rate of 10% or more during their third-grade year (Allison et al., 2019; Faria 

et al., 2017). Absence rate was calculated by dividing the number of days a student was absent by 

the total number of days they were enrolled. 

Predictor Variables 

 We chose predictor variables based on data that school districts in Massachusetts already 

collect to make our analyses more easily replicable and accessible to other schools. Our time-

varying predictors from PreK to second grade included the attendance rate, number of retentions, 

number of suspensions, whether the student was eligible for free/reduced priced lunch2, whether 

the student was in special education, and the school attended for the given school year prior to 

third grade. Additionally, we included a set of student-level covariates using administrative 

records. We captured students’ race/ethnicity using a set of binary variables that identified 

whether a student was Black, Hispanic, Asian, White, or multiracial/other. We also created binary 

variables for whether the student was a dual language learner and whether the student was 

female or male. 

 
2 In the 2014-2015 school year, Massachusetts revised its definition of “low income” and introduced a new income 
status metric with a slightly different measurement approach However, since we use eligibility for FRL as a 
predictor variable only from PreK to 2nd grade, and our final cohort was enrolled in 2nd grade during the 2013-2014 
school year, this change did not affect our sample. 
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Analytical Approach 

 We explain various ML algorithms along with the results from our data below. Analyses 

for implementing the modern machine learning algorithms SMOTE and XGBoost were 

conducted in Python version 3.9.13, and sample code to run each algorithm is provided in 

Appendix S4. 

Supervised Learning 

 We focus on the branch of ML called supervised learning in this study. Supervised 

learning is the machine learning approach that involves training a statistical model using a 

labeled dataset that contains both dependent and independent variables (Hastie et al., 2009). In 

our study, we possess a labeled dataset where each student observation is associated with the 

outcome variable, third grade chronic absenteeism, in addition to a set of predictor variables. 

Typically, the outcome variable for supervised learning models is a binary variable like whether a 

student is chronically absent or not. The goal of supervised learning models is to train a model to 

predict—or classify—the outcome variable as accurately as possible for new, unseen data. For 

this reason, supervised learning models are oftentimes called classifiers as well. For example, we 

would like to train a classifier to predict third grade absenteeism in another cohort of students 

outside our sample.  

The most common machine learning classifiers minimize the difference between the 

predicted and actual values of the outcome by adjusting the model’s parameters, like the method 

of least squares commonly used in linear regressions (Hastie et al., 2009). In fact, traditional 

linear (ordinary least squares) and logistic regressions both fall into the category of supervised 

learning. Beyond traditional regressions, more modern machine learning algorithms include 

ensemble methods like boosting techniques, which we will explain in the XGBoost section. 
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 In order to mitigate overfitting and enhance our classifier’s generalizability, it is common 

in machine learning to divide the data we have into a training set and a test set. We first train our 

model on the training set, and then we use the data from the testing set to gauge the accuracy of 

the resulting model. Research indicates optimal outcomes when dedicating 70-80% of the data 

for training purposes and allocating the remaining 20-30% of the data for testing (Gholamy et al., 

2018). Since the 80/20 split is more common, that is how we split our data in this study.  

Performance Metrics 

 How well a supervised learning model performs is determined by how accurate it is. 

Many popular performance metrics are based on a confusion matrix (Table 2) that gives the true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) values based on the 

whether the true and predicted outcome labels match. An example of a true positive (TP) is if a 

student was chronically absent in third grade (actual label equals 1) and were also predicted by 

our machine learning model to be chronically absent in third grade (predicted label equals 1).  

These confusion matrix values can then be combined to define many performance 

metrics. Accuracy rate ((TP+TN)/(TP+TN+FP+FN)) is the most common metric used to evaluate 

a model and gives the number of labels correctly predicted by the model out of the total number 

of observations. For example, if our model correctly predicts the chronic absenteeism label of 

3,000 students out of a total of 6,000 students, then our accuracy rate is 50%. However, accuracy 

rate can be misleading in imbalanced datasets, as we will later explain. 

Beyond accuracy, there are more nuanced metrics we can look at. The recall or true 

positive rate (TPR; TP/(TP+FN)) tells us the percentage of labels our model predicted correctly 

out of all the students who were actually chronically absent in 3rd grade. This metric is especially 

helpful for policies and interventions since it focuses on the identification of chronically absent 
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students. The specificity or true negative rate (TNR; TN/(FP+TN)) tells us the percentage of 

labels our model predicted correctly out of all the students who were not chronically absent in 3rd 

grade. The Balanced Error Rate (BER; 1-0.5*(TPR+TNR)) takes into account both TPR and 

TNR, and considers the tradeoff between the model’s ability to classify both chronically absent 

and non-chronically absent students. This metric is helpful in cases of class imbalance, which we 

explain below, and provides a more balanced assessment of the model’s overall effectiveness 

across different classes. 

Besides accuracy rate, area under the curve (AUC) is the second most common metric 

reported for machine learning models. It is often used in conjunction with the Receiver 

Operating Characteristic (ROC) curve. The ROC curve (Figure 1) is a graphical representation of 

the trade-off between the True Positive Rate (TP/(TP+FN)) and the False Positive Rate (1-

TN/(FP+TN)). The AUC is a single value that summarizes the overall performance of the model 

represented by the ROC curve. It measures the area under the ROC curve, hence its name, and 

ranges from 0 to 1, where a value of 1 indicates a perfect classifier (the model makes no 

prediction mistakes) and a value of 0.5 represents a completely random model (the model’s 

predictions are as good as guessing). In other words, the higher the AUC number, the better the 

model performance. 

Class Imbalance & SMOTE 

 Since we have many more students who were not chronically absent in third grade 

(N=6,066) compared to those who were (N=632), we have a class imbalance problem. In 

machine learning, “class” refers to the categorical labels (chronically absent or not) our models 

predict. The classes are imbalanced when there are many more observations fitting into one class 

than another. Class imbalance poses a challenge because models trained on an imbalanced 
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dataset tend to have high predictive accuracy for the majority class (students who are not 

chronically absent) but low predictive accuracy for the minority class (students who are 

chronically absent). This is a problem because we want to identify students who will be in the 

minority class. This bias toward the majority class occurs because there are so few instances of 

the minority class that the model treats these observations as outliers or noise. In other words, 

there are not enough instances of the minority class for the model to “learn” how to classify them 

accurately.  

Table 3 demonstrates why this is a problem when assessing the accuracy of our models, 

based on an example by Lee and Chung (2019). The confusion matrix shows an imbalanced 

distribution of students who are chronically absent (10 students) and not chronically absent (990 

students). The hypothetical model predicts nobody will be chronically absent, but remarkably, 

the model's accuracy rate is 99% (990/1000), concealing its misclassification of all the 

chronically absent students. That is, Table 3 portrays the case where a model can be deceptively 

accurate but neglects the misclassification of the minority class. 

 Since our objective is to identify chronically absent students, it is necessary to find a way 

to properly handle class imbalance when building a predictive model. While not much attention 

has been paid to class imbalance when developing early warning systems, this problem is well-

known in the machine learning community (Lee & Chung, 2019). Therefore, we can borrow 

methods that have already been proposed to address class imbalance. 

 Synthetic Minority Over-sampling Technique (SMOTE; Chawla et al., 2002) is a 

resampling technique widely employed in machine learning to address class imbalance. SMOTE 

works by creating synthetic instances of the minority class, as opposed to creating the same 

minority observation multiple times with replacement. The algorithm does this by first 
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identifying a minority class instance and its k nearest neighbors and then generating the synthetic 

instances along the line segments connecting the original instance with its neighbors. By 

introducing synthetic minority observations, SMOTE enhances the model’s ability to capture 

patterns separating the minority from the majority class. Figure 2 illustrates a hypothetical 

example of a 2-D feature space before and after SMOTE. Before SMOTE, the chronically absent 

x’s are sparse because of the class imbalance. This makes it difficult to classify these points. 

After SMOTE, the circular boundary line separating the chronically absent from non-chronically 

absent students becomes clearer. We will run our models both with and without using SMOTE to 

demonstrate the importance of addressing class imbalance. 

Logistic Regression 

We chose to use a logistic regression model as our base comparison model because 

logistic regressions are often the model of choice for education researchers when analyzing a 

binary outcome and are the statistical model most commonly used in existing EWSs 

(Allensworth & Easton, 2007; OECD, 2020; Peng et al., 2002). Logistic regression is a type of 

parametric model because it makes assumptions about the underlying data, including the 

independence of observations and linearity in the logit. Because of this, logistic regression tends 

to not be very flexible and make a linear classification boundary line unless the predictor 

variables contain an interaction. 

We fit the following multilevel logistic regression model, separately for each school year 

first: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1�� =  𝛽𝛽0 + 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖 

where i denotes student and j denotes school. 𝑌𝑌𝑖𝑖𝑖𝑖 represents the third grade chronic absenteeism 

label for student i in school j. 𝛿𝛿𝑖𝑖𝑖𝑖 represents the vector of student-level predictor variables. 𝜇𝜇𝑗𝑗 is 
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the random intercept for school j. 𝜖𝜖𝑖𝑖𝑖𝑖 is the student-level residual error. We included random 

intercepts for school to account for the nesting of students within schools. We chose this model 

specifically because it is the closest to what Massachusetts currently uses in their early warning 

system (Massachusetts Department of Elementary and Secondary Education & American 

Institutes for Research, 2013). We then also ran models with predictors from all the school years 

together and a model interacting student demographic characteristics.  

XGBoost 

 XGBoost (Extreme Gradient Boosting; Chen & Guestrin, 2016) is a relatively new 

machine learning method that has quickly gained popularity among data scientists for building 

predictive models. According to the Kaggle State of Data Science Survey 2021, nearly 50% of 

respondents reported using XGBoost, and XGBoost has been the winning model in a majority of 

Kaggle competitions (Kaggle, 2021). Despite its widespread success in the data science domain, 

XGBoost has yet to attain comparable popularity or integration in education research. To the best 

of our knowledge, it has only been previously applied in one other study as a potential EWS 

algorithm, which focused on predicting high school dropout (Christie et al., 2019). Thus, there 

remains a gap in evaluating and understanding XGBoost's potential for enhancing early-grade 

EWSs. 

XGBoost is an ensemble method that creates a sequence of simple classifier models 

(usually decision trees) that correct the mistakes of the models before it. Ensemble methods are 

those that combine multiple machine learning algorithms (Zhou, 2012). Analogous to assembling 

a team of specialists with distinct proficiencies is various domains, ensemble methods 

amalgamate predictions from simpler models to arrive at more accurate predictions. The central 

idea hinges on harnessing the diversity of these simpler models and orchestrating their 
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predictions in a way that capitalizes on their respective strengths while compensating for their 

weaknesses through iterative refinement.  

 The objective function (loss function and regularization) that XGBoost minimizes at each 

iteration t is the following: 

𝐿𝐿(𝑡𝑡) =  �𝑙𝑙(𝑦𝑦𝑖𝑖,
𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) +  Ω(𝑓𝑓𝑡𝑡)  

where 𝑦𝑦𝑖𝑖 is the true label value (0 if not chronically absent, 1 if chronically absent), 𝑦𝑦𝚤𝚤�  is the 

predicted label value at a given iteration t-1, and 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) is the correction term for each data point 

at a given iteration. The function l measures the dissimilarity between 𝑦𝑦𝑖𝑖 and the corrected 

predicted label 𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖). A small value for l means that the corrected predicted label is 

closer to 𝑦𝑦𝑖𝑖, leading to better accuracy. The regularized Ω(𝑓𝑓𝑡𝑡) prevents the trained model from 

overfitting to the data. The incorporation of this regularization term is especially helpful when 

the data is scarce or corrupted with noise (Chen & Guestrin, 2016). 

Figure 3 illustrates how XGBoost works conceptually, adapted from visualizations by 

Shah (2020). While a bit oversimplistic and resembling existing visualizations of another 

boosting method called AdaBoost, Figure 3 conveys the intuition behind how successive simple 

classifiers correct the errors of preceding models and why XGBoost, along with other boosting 

methods, are such powerful predictive tools. At Iteration 1, we see the feature space of the 

original training dataset, with blue circles representing non-chronically absent students and 

orange x’s representing chronically absent students. The first classifier—a decision tree—is 

created by making a simple horizontal split, represented by the dotted line. Students above the 

line are predicted to be blue, and those below the line are predicted to be orange. Misclassified 

points are circled.  
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In subsequent iterations, XGBoost refines the model using the errors, or residuals, from 

the previous iteration. Specifically, the algorithm will fit new decision trees to predict the 

residuals. This means that, at each iteration, XGBoost attempts to minimize the residuals from 

the previous model by focusing on the patterns of the errors. For example, in the second 

iteration, the algorithm may make a vertical split, trying to correctly classify points that were 

previously misclassified. This process continues iteratively, with each new tree correcting 

residual errors from the previous one. Once all iterations are complete, XGBoost combines the 

predictions from all the individual decision trees into a final prediction through a weighted sum 

of the outputs, scaled by how much each tree’s prediction contributes to the final model. 

This boosting approach, along with XGBoost’s regularization techniques, makes it highly 

powerful and effective in many prediction tasks. The iterative progression of XGBoost makes it 

well-suited for modelling non-linear relationships and complicated interactions in the data. 

XGBoost can also easily incorporate predictors from multiple school years together in the same 

model. These models are also more robust against overfitting and outliers due to their ability to 

combine models and adjust hyperparameters. While they lack the interpretability of regression 

methods, the versatility and accuracy of XGBoosts makes it a valuable tool for education 

research in instances where accurate predictions are crucial for informed decision-making.  

Analytical Process 

 We trained a total of 22 models across four different types of classifiers: logistic 

regression, logistic regression with SMOTE, XGBoost, and XGBoost with SMOTE. Inputs for 

each model are detailed in Table 4. Preprocessing, SMOTE, and XGBoost algorithms were 

coded using the Scikit-learn, Imbalanced-learn, and XGBoost libraries in Python, respectively.  
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For preprocessing, the original dataset (N=6,698) was divided into training (80%; 

N=5,358) and test (20%; N=1,340) datasets in order to both train and evaluate our models. For 

the models using SMOTE, we used a variant of SMOTE called SMOTE-Nominal Continuous 

(SMOTE-NC; Chawla et al., 2002) to preprocess the training dataset since our features contained 

both continuous and categorical variables. All missing features were imputed using MICE 

(Multivariate Imputation by Chained Equations; Van Buuren & Groothuis-Oudshoorn, 2011). We 

tuned each XGBoost model using 5-fold cross-validation for the hyperparameters of the number 

of trees, depth of trees, learning rate, and gamma, which is a regularization term that penalizes 

the complexity of the tree. Optimal hyperparameters were chosen by comparing the Area Under 

the Precision-Recall Curve for each classifier with different hyperparameter values. Optimal 

hyperparameters for each model are listed in Appendix S3. 

Trained models were evaluated on the testing set using accuracy rate, recall/TPR, 

specificity/TNR, BER, and AUC, and all these performance metrics are reported in our results. 

However, we will pay particular attention to recall/TPR and BER as the main performance 

metrics when assessing our different models. We emphasize recall/TPR because our focus is on 

predicting students who will be chronically absent and BER because BER accounts for both false 

positives and false negatives, making it more robust for evaluating model performance datasets 

with class imbalance. 

Results 

RQ1: Prediction Accuracy from SMOTE and XGBoost Versus Logistic Regression 

 Table 4 presents the performances of each machine learning algorithm we tested. The 

first 6 rows are the results for the parsimonious logistic regression model, with row 4 (results 

from the model using just the second grade data) representing the model closest to that used in 
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Massachusetts’s current EWSs for third grade. This is followed by the set of results for logistic 

regression with SMOTE, then for XGBoost without SMOTE, and finally for XGBoost with 

SMOTE. 

For accuracy rate, the XGBoost model with predictors from school years PreK-2nd grade 

performed the best with 91.6% accuracy. However, most of the accuracy rates for all models 

hovered around 90%. For recall/TPR, the XGBoost models with SMOTE using predictors from 

all school years PreK-2nd grade had the highest rate at 62.7%. For specificity/TNR, the logistic 

regression using kindergarten predictors performed the best at 0.995. For BER, the XGBoost 

model with SMOTE using predictors for all school years performed best at 0.222. Finally, the 

model with the highest AUC at 0.891 was the XGBoost model with SMOTE using predictors for 

all school years. The best performing logistic and XGBoost models based on recall and BER are 

highlighted in darker grey in Table 4.  

Overall, the models using SMOTE performed better than the ones not using SMOTE, and 

the XGBoost models performed better than the logistic regression models. The best model 

performance based on recall rate, BER, and AUC was the XGBoost model using SMOTE with 

predictors from all grades. It had a recall of 0.627 and a BER of 0.222. 

Regarding overall patterns in the results, the first six rows of logistic regression models in 

Table 4 had a high accuracy rate (around 90%) but hovered around 5-10% for recall, even when 

we add covariates from all school years PreK-2nd grade. The logistic regression with the best 

recall rate was the one which included all students’ PreK-2nd grade data and interaction terms, 

with a recall rate of 0.151. This means that only a small percentage of students in the test sample 

who ended up being chronically absent in 3rd grade was identified as having a high risk of 

chronic absenteeism. The performance of these models, in particular the one using only the 
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second grade predictors, is closest to approximating the performance of existing EWSs. Our 

results show that current EWSs that rely solely on logistic regression results may not have high 

predictive accuracy for identifying students who will be chronically absent even if they do 

include predictors from all students’ past school years and interactions.  

The low recall rate for this first set of logistic regression results is likely due to two main 

reasons. First, the minority class of chronically absent students was not well-represented in our 

original dataset. We see that the recall rate increased from around 5-10% to approximately 25-

30% in the second set of models in Table 4 when we use SMOTE to address class imbalance in 

addition to the logistic regression. This is evidence that synthetically increasing the number of 

minority class samples did make a positive impact in our predictive ability. The tradeoff was that 

the specificity rate decreased by approximately 4-5 percentage points when using SMOTE, so 

the accuracy decreased for identifying students who would not be chronically absent. 

Nevertheless, the specificity rate remained high at 94-95%. We also see a boost in the recall rate 

in the XGBoost models when using SMOTE, giving further evidence of the utility of using the 

SMOTE algorithm to train predictive models for an early warning system. This result is 

consistent with recent studies on the impact of class rebalancing techniques like SMOTE on the 

performance of predictive models (Tantithamthavorn et al., 2018; Lee & Chung, 2019). 

The second reason for the low recall rate is that the logistic regression models without an 

interaction term make a linear classification boundary which may not do well separating the two 

classes if the true classification boundary is non-linear. A visualization of a 2-D example is 

shown in Figure 4. Using the class imbalance graph we previously showed, we see that a linear 

model like a logistic regression cannot accurately separate out the chronically absent points from 

the non-chronically absent points if the true shape of the data is non-linear. A possible fix would 
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be to run a nonlinear logistic regression by including interaction terms. We do this in the sixth 

row in Table 4, interacting all non-time-varying student characteristic variables. We see that this 

improves the recall rate to 0.151, providing evidence for our theory that the true classification 

boundary is likely non-linear. While we would ideally like to have interacted all the predictors 

together to test the extent of non-linearity, we were only able to interact non-time-varying 

predictors. Including interactions for the time-varying along with the non-time-varying 

predictors led to non-convergence errors in the regression model. Including interactions terms in 

the logistic regression model with SMOTE also led to non-convergence errors, likely because of 

multicollinearity issues between the synthetic samples generated and our actual sample. Both 

these instances demonstrate the limits of using logistic regression for prediction purposes. 

XGBoost models, on the other hand, do not run into this limitation. The higher recall 

rates from the XGBoost models provide evidence supporting the need for a more non-linear, 

non-parametric classification boundary line than a logistic regression is able to produce. The 

recall for the best XGBoost model was 62.7%, approximately 31 percentage points higher than 

the best performing logistic regression model with SMOTE (row 10 in Table 4) and 52.4 

percentage points higher than the parsimonious logistic regression that best approximates the 

model used in current EWSs (row 4 in Table 4). This best-performing XGBoost model also had 

the lowest BER (0.222) and the highest AUC (0.891) out of all the models. While there is no 

specific threshold for what is considered a good AUC score, models with an AUC of 0.8-0.9 are 

generally considered excellent classifiers (Hosmer & Lemeshow, 2000).  

RQ2: Accuracy and Timeliness in Predicting 3rd Grade Chronic Absenteeism  

 As aforementioned, the best model (XGBoost using SMOTE with predictors from all 

grades) could predict third grade chronic absenteeism status with an overall accuracy of 90.1% 
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and a recall rate of 62.7%. While the recall rate is less than ideal, it is 31 percentage points 

higher than the recall rate of the top logistic regression model with SMOTE, close to a 50% 

improvement, and approximately 52 percentage points higher than the recall rate of the logistic 

regression model that best approximates the model used in EWSs today. The usage of predictors 

spanning all grades from PreK-2 implies that having more data from more years of schooling 

will bolster the accuracy of the XGBoost and SMOTE models.  

Surprisingly, relying solely on PreK data in the XGBoost and SMOTE model yielded a 

comparable recall rate of 58.7% (albeit at the cost of decreased specificity, resulting in an overall 

accuracy of only 81.4% for this configuration). This suggests that even data from children’s 

earliest schooling experience has predictive power for later outcomes. Solely using second grade 

data led to a recall rate of 54% and accuracy of 88.5%. Overall, the results from the models with 

just one grade level of data indicate that even if a school or district only possesses data from one 

school year, the XGBoost and SMOTE model can still harness it to identify students at a 

heightened risk of chronic absenteeism without losing too much precision, especially compared 

to the accuracy and recall rates obtained by using logistic regression for those same years of data.  

RQ3: Personalization of Machine Learning Models 

Table 5 presents the performance metrics of the best-performing logistic regression 

model with SMOTE and the best-performing XGBoost model with SMOTE with varying 

probability thresholds. The default probability threshold for all models in Table 4 is 0.5 (greater 

than or equal to 0.5 means that a student is predicted to be chronically absent). However, there 

are cases when educational institutions may want to be more or less stringent with the threshold. 

For example, a district facing severe budget constraints may want to implement an intensive 

intervention only for students who have a very high likelihood of being chronically absent in the 
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next year without the intervention. In this case, the district may want to use a higher probability 

threshold of 0.8 or 0.9. Conversely, a district considering a low-cost text messaging intervention 

may opt to use a lower probability threshold of 0.4 or 0.5 to reach a wider range of students. 

Importantly, as seen in Table 5, the XGBoost model performs better than the logistic 

regression at each given threshold based on recall and BER. Using a probability threshold of 0.8, 

for instance, the XGBoost model can correctly predict 31% of chronically absent students and 

98% of non-chronically absent students. Table 5 demonstrates the ability to personalize machine 

learning models to inform school and district policies based on their specific needs, including 

accounting for financial or resource constraints. This adaptability equips educational institutions 

with a more flexible tool for shaping chronic absenteeism interventions. 

Discussion & Conclusion 

 This present study illustrates the utility of two modern machine learning algorithms, 

SMOTE and XGBoost, in enhancing early warning systems for the proactive identification of 

students at heightened risk of chronic absenteeism during early childhood. Notably, the top-

performing XGBoost model with SMOTE outperformed the logistic regression model closest to 

that in current EWSs by approximately 52 percentage points and the best logistic regression 

model with SMOTE by approximately 31 percentage points in accurately forecasting chronic 

absenteeism among third-grade students. This finding aligns with Sansone’s (2019) conclusion 

that machine learning tools provide more precise predictions compared to the logistic regression 

models used in many parsimonious early warning systems today. Furthermore, we introduce a 

table of performance metrics that incorporates flexible probability thresholds, demonstrating how 

EWSs could be a viable tool for helping decrease chronic absenteeism in early childhood while 

accounting for school budgetary limitations and intervention severity.  
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Despite the evidence supporting the use of XGBoost with SMOTE to improve existing 

early warning systems, there are several important limitations to our approach. First, there are 

many more hyperparameters we could tune in our XGBoost model that could enhance model 

performance, such as the maximum delta step and the lambda and alpha regularization terms. 

Future studies should explore additional hyperparameters that could help reduce overfitting and 

help the algorithm run faster. Additionally, there are many other supervised learning models such 

as random forest or neural networks that may yield better recall rates and AUC. Future studies 

should compare the performance of XGBoost with other modern machine learning models.  

Another limitation of our study is that it does not specifically delve into the broader 

challenges associated with implementing early warning systems within educational institutions. 

This includes the task of training teams to interpret EWS outputs and the subsequent 

development of tailored interventions for students once they have been identified (Frazelle & 

Nagel, 2015). In 2014-15, about 52% of all public high schools nationwide already initiated 

some form of EWS (U.S. Department of Education, 2016b). A next step could entail the 

integration of modern machine learning-based algorithms into preexisting EWS frameworks to 

enhance predictive accuracy and partnering with schools and districts to test the efficacy of this 

proof of concept for machine learning algorithms. There are also worries that any type of EWS 

implementation could increase stereotyping of students and bias teachers in a way that will be a 

self-fulfilling prophecy for students (Brown, 2016). While our findings offer a compelling case 

for the accuracy of machine learning-enhanced EWSs, we acknowledge that these tools must be 

implemented with caution to avoid reinforcing existing biases.  

Relatedly, it is essential to recognize the potential for bias in machine learning algorithms 

and how they can perpetuate or even amplify existing biases in EWSs (Feathers, 2023). Given 
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that our predictive models use demographic and disciplinary information, we need to be careful 

to ensure they do not predict higher or lower risk unfairly for students from marginalized 

backgrounds. To ensure fairness, machine learning models should be rigorously tested for biases 

based on race, gender, socioeconomic status, or other demographic factors that may lead to 

unequal treatment. Therefore, an important next step is to evaluate the bias in our XGBoost and 

SMOTE models using fairness metrics such as demographic parity, equalized odds, equal 

opportunity, and disparate impact (Hardt et al., 2016; Feldman et al., 2015). These metrics can 

help ensure that the model predicts chronic absenteeism at similar rates for all groups and 

highlight whether any group is disproportionately affected by incorrect predictions. If unfairness 

is detected, strategies such as reweighting the training data or applying fairness constraints 

during model training should be examined to mitigate bias in predictions (Kamiran & Calders, 

2012; Zafar et al., 2017). 

In sum, the application of the modern machine learning algorithms, namely XGBoost and 

SMOTE, in EWSs could lead to a substantial increase in schools’ ability to detect students who 

have a higher risk of becoming chronically absent and, consequently, to mitigate chronic 

absenteeism during elementary school years. The findings have implications for future education 

research grappling with the consequences of class imbalance and leveraging predictive analytics 

for outcomes beyond chronic absenteeism. It illuminates the advantages of integrating modern 

machine learning algorithms into the field of education, and we hope this paper also serves as a 

valuable introduction for education researchers hoping to incorporate these techniques into their 

own research. 
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Figures & Tables 

Figure 1. ROC Curve 
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Figure 2. SMOTE Visualization  
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Figure 3. Graphical Scheme of XGBoost Algorithm (adapted from visualizations by Shah 
(2020)) 
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Figure 4. Linear vs. Non-linear Classification Boundary Line 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

Table 1. Descriptive Statistics by Chronic Absenteeism Status 

Variable Overall 

Not CA in  
3rd Grade, 
N = 6,066 

CA in  
3rd Grade, 

N = 632 p-value* 
Male 50.57% 50.40% 52.40% 0.34 

White 17.15% 17.80% 10.80% <0.001 
Black 28.17% 28.00% 29.60% 0.41 

Hispanic/Latino 42.25% 41.00% 53.80% <0.001 
Asian 9.32% 10.00% 2.50% <0.001 

Mixed/Other Race 3.11% 3.10% 3.30% 0.74 
Free/Reduced Lunch 71.10% 69.30% 88.60% <0.001 

Special Education 17.31% 16.20% 28.30% <0.001 
Dual Language Learner 43.77% 44.60% 35.60% <0.001 

PreK Chronically Absent 26.56% 22.20% 68.00% <0.001 
K Chronically Absent 18.66% 14.50% 59.00% <0.001 

1st Grade Chronically Absent 11.44% 7.60% 48.50% <0.001 
2nd Grade Chronically Absent 10.25% 5.70% 54.00% <0.001 
Note: CA stands for ‘chronically absent’. p-values are for differences between students who were and were not chronically 
absent in 3rd grade, calculated using a Pearson’s chi-squared test. Time-varying characteristic percentages (free/reduced lunch 
and special education) are based on students’ PreK value. There was a small amount of missing data for students in special 
education (0.20%), K chronically absent (2.10%), 1st grade chronically absent (3.20%), and 2nd grade chronically absent 
(0.50%).  
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Table 2. Sample Confusion Matrix 

               Actual Label  
  0 (Not CA) 1 (CA)  

Predicted 
Label 

0 (Not CA) TN FP Specificity or TNR = TN/(TN+FP) 
1 (CA) FN TP Recall or TPR = TP/(TP+FN) 

 

Table 3. Class Imbalance Example 

               Actual Label 
  0 (Not CA) 1 (CA) 

Predicted 
Label 

0 (Not CA) 990 10 
1 (CA) 0 0 
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Table 4. Performance Metrics for All Models 

Algorithm Inputs Performances 

 PreK K 1st 2nd Accuracy 
Recall/TPR 

(Predicting CA) 
Specificity/TNR 

(Predicting non-CA) 
BER  

(want low) 
AUC  

(want high) 

Logistic ✓    0.899 0.095 0.982 0.461 0.8 
Logistic  ✓   0.905 0.04 0.995 0.483 0.768 
Logistic   ✓  0.904 0.079 0.99 0.465 0.774 
Logistic    ✓ 0.91 0.103 0.993 0.452 0.851 
Logistic ✓ ✓ ✓ ✓ 0.905 0.127 0.986 0.444 0.847 

Logistic w/ Interactions ✓ ✓ ✓ ✓ 0.908 0.151 0.987 0.431 0.845 
Logistic + SMOTE ✓    0.881 0.286 0.943 0.386 0.75 
Logistic + SMOTE  ✓   0.875 0.254 0.939 0.403 0.729 
Logistic + SMOTE   ✓  0.881 0.333 0.938 0.364 0.747 
Logistic + SMOTE    ✓ 0.896 0.317 0.956 0.364 0.801 
Logistic + SMOTE  ✓ ✓ ✓ ✓ NC NC NC NC NC 

Logistic + SMOTE w/ Interactions  ✓ ✓ ✓ ✓ NC NC NC NC NC 
XGBoost ✓    0.901 0.04 0.991 0.485 0.825 
XGBoost  ✓   0.91 0.135 0.991 0.437 0.794 
XGBoost   ✓  0.906 0.183 0.982 0.418 0.812 
XGBoost    ✓ 0.913 0.325 0.974 0.35 0.864 
XGBoost ✓ ✓ ✓ ✓ 0.916 0.317 0.979 0.352 0.877 

XGBoost + SMOTE ✓    0.814 0.587 0.838 0.287 0.819 
XGBoost + SMOTE  ✓   0.833 0.556 0.862 0.291 0.808 
XGBoost + SMOTE   ✓  0.851 0.524 0.885 0.296 0.808 
XGBoost + SMOTE    ✓ 0.885 0.54 0.921 0.27 0.867 
XGBoost + SMOTE ✓ ✓ ✓ ✓ 0.901 0.627 0.929 0.222 0.891 

Note: CA stands for chronically absent. TPR stands for True Positive Rate. TNR stands for True Negative Rate. BER stands for Balanced Error Rate. AUC stands 
for Area under the ROC Curve. The logistic regression with interactions included interactions for all non-time-varying covariates: sex, race, and whether a student 
was a dual language learner. NC stands for no convergence, meaning the regression model fit was singular. 
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Table 5. Performance Metrics at Varying Probability Thresholds 

 Threshold Accuracy Recall/TPR Specificity/TNR BER AUC 
Best Logistic Regression (with SMOTE) Model  
 

  0.1 0.583 0.849 0.555 0.298 0.801 

 0.2 0.758 0.651 0.769 0.290 0.801 

 0.3 0.837 0.540 0.867 0.296 0.801 

 0.4 0.879 0.429 0.926 0.323 0.801 

 0.5 0.896 0.317 0.956 0.364 0.801 

 0.6 0.907 0.254 0.974 0.386 0.801 

 0.7 0.908 0.175 0.984 0.421 0.801 

 0.8 0.907 0.127 0.988 0.443 0.801 

 0.9 0.907 0.071 0.994 0.467 0.801 
Best XGBoost (with SMOTE) Model      

 
 
 
 
  

0.1 0.699 0.905 0.678 0.209 0.891 
0.2 0.804 0.833 0.801 0.183 0.891 
0.3 0.848 0.770 0.856 0.187 0.891 
0.4 0.879 0.714 0.896 0.195 0.891 
0.5 0.901 0.627 0.929 0.222 0.891 
0.6 0.904 0.508 0.945 0.274 0.891 
0.7 0.912 0.405 0.965 0.315 0.891 
0.8 0.914 0.294 0.979 0.364 0.891 
0.9 0.916 0.183 0.992 0.413 0.891 
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Online-Only Appendix 

Appendix S1. Attendance Rate Distributions for All Cohort Years (2007-2010) 

 
 
Appendix S2. Descriptive Statistics of Full 12,740 Sample 

Variable 
Full Sample 
Missingness 

Full Sample 
(N=12,740) 

Study Sample 
(N=6,098) 

Male 0.25% 51.72% 50.57% 
White 0.25% 17.06% 17.15% 
Black 0.25% 28.43% 28.17% 

Hispanic/Latino 0.25% 43.87% 42.25% 
Asian 0.25% 7.58% 9.32% 

Mixed/Other Race 0.25% 3.06% 3.11% 
Free/Reduced Lunch 1.45% 65.07% 71.10% 

Special Education 22.32% 13.36% 17.31% 
Dual Language Learner 5.24% 41.03% 43.77% 

Note: CA stands for ‘chronically absent’. Time-varying characteristics (free/reduced lunch and 
special education) are based on students’ PreK value. p-values are for differences between 
students who were and were not chronically absent in 3rd grade, calculated using a Pearson’s chi-
squared test. There was a small amount of missing data for students from the Study Sample in 
special education (0.20%), K chronically absent (2.10%), 1st grade chronically absent (3.20%), 
and 2nd grade chronically absent (0.50%). 
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Appendix S3. Optimal Hyperparameters of XGBoost Models 
 

Algorithm Inputs  

 PreK K 1st 2nd  

XGBoost ✓    Depth of trees = 7, Learning rate = 0.2, # trees = 100, Gamma = 5 

XGBoost  ✓   Depth of trees = 7, Learning rate = 0.01, # trees = 100, Gamma = 5 

XGBoost   ✓  Depth of trees = 5, Learning rate = 0.01, # trees = 100, Gamma = 5 

XGBoost    ✓ Depth of trees = 5, Learning rate = 0.01, # trees = 100, Gamma = 5 

XGBoost ✓ ✓ ✓ ✓ Depth of trees = 5, Learning rate = 0.01, # trees = 100, Gamma = 5 

XGBoost + SMOTE ✓    Depth of trees = 7, Learning rate = 0.2, # trees = 100, Gamma = 5 

XGBoost + SMOTE  ✓   Depth of trees = 7, Learning rate = 0.2, # trees = 100, Gamma = 5 

XGBoost + SMOTE   ✓  Depth of trees = 7, Learning rate = 0.2, # trees = 100, Gamma = 5 

XGBoost + SMOTE    ✓ Depth of trees = 7, Learning rate = 0.1, # trees = 100, Gamma = 5 

XGBoost + SMOTE ✓ ✓ ✓ ✓ Depth of trees = 7, Learning rate = 0.1, # trees = 100, Gamma = 5 
 
Appendix S4. Sample code for XGBoost with SMOTE 

  1. # Import necessary libraries 
  2. import pandas as pd 
  3. import numpy as np 
  4. from sklearn.model_selection import train_test_split 
  5. import seaborn as sns 
  6. import matplotlib as mpl 
  7. import matplotlib.pyplot as plt 
  8. import xgboost as xgb 
  9. from sklearn.impute import SimpleImputer 
 10. pd.set_option('display.max_rows', None) 
 11.   
 12. # Read in datset 
 13. training = pd.read_csv("dataset.csv") 
 14.   
 15. # Splitting data into training (80%) and test (20%) set. 
 16. from sklearn.model_selection import train_test_split 
 17. training_train, training_test = train_test_split(training,  
 18.                                            test_size=0.2,  
 19.                                            stratify=training['chronic_absence_fy4'], #fy4 is 
3rd grade 
 20.                                            random_state=28)  
 21.   
 22. # Split into X and y 
 23. X_train = training_train.drop(['chronic_absence_fy4'], axis=1) 
 24. X_test = training_test.drop(['chronic_absence_fy4'], axis=1) 
 25. y_train = training_train.chronic_absence_fy4 
 26. y_train_df = training_train.loc[:, ['chronic_absence_fy4']] 
 27.   
 28. y_test = training_test.chronic_absence_fy4 
 29. y_test_df = training_test.loc[:, ['chronic_absence_fy4']] 
 30.   
 31. # SMOTE-NC 
 32. from imblearn.over_sampling import SMOTE 
 33. from imblearn.over_sampling import SMOTENC 
 34. from sklearn.impute import SimpleImputer 
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 35.   
 36. # Apply SMOTE-NC to training data 
 37. smotenc = SMOTENC(categorical_features=categorical_feature_indices, random_state=28, 
sampling_strategy = 0.7) 
 38. X_train_resampled, y_train_resampled = smotenc.fit_resample(X_train, y_train) 
 39.   
 40. # Convert the resampled numeric data back to a DataFrame 
 41. X_train_resampled_df = pd.DataFrame(X_train_resampled, columns=X_train.columns) 
 42.   
 43. # XGBoost cannot take categorical vars, so we need to one-hot encode 
 44. # Identify categorical variables 
 45. categorical_vars = X_train_resampled_df.select_dtypes(include=['object', 'category']) 
 46.   
 47. # Perform one-hot encoding 
 48. X_train_encoded = pd.get_dummies(X_train_resampled_df, columns=categorical_vars.columns) 
 49.   
 50. # View the encoded dataframe 
 51. print(X_train_encoded.head()) 
 52.   
 53. # Do the same for X_test 
 54. # XGBoost cannot take categorical vars, so we need to one-hot encode 
 55. # Identify categorical variables 
 56. categorical_vars = X_test.select_dtypes(include=['object', 'category']) 
 57.   
 58. # Perform one-hot encoding 
 59. X_test_encoded = pd.get_dummies(X_test, columns=categorical_vars.columns) 
 60.   
 61. # Compare column sets 
 62. train_columns_set = set(X_train_encoded.columns) 
 63. test_columns_set = set(X_test_encoded.columns) 
 64.   
 65. # Check if the column sets are equal 
 66. if train_columns_set == test_columns_set: 
 67.     print("X_train_encoded and X_test_encoded have the same columns.") 
 68. else: 
 69.     print("X_train_encoded and X_test_encoded do not have the same columns.") 
 70.      
 71. # Make both df's have the same column order or else XGBoost won't run 
 72. # Get the column order from X_train_encoded 
 73. column_order = X_train_encoded.columns 
 74.   
 75. # Reorder the columns in X_test_encoded 
 76. X_test_encoded = X_test_encoded[column_order] 
 77.   
 78. # Disable warnings 
 79. import warnings 
 80. warnings.filterwarnings('ignore') 
 81.   
 82. import xgboost as xgb 
 83. from sklearn.model_selection import GridSearchCV 
 84. from sklearn.metrics import make_scorer, roc_auc_score 
 85.   
 86. # Define XGBoost model 
 87. xgb_model = xgb.XGBClassifier( 
 88.     objective='binary:logistic', 
 89.     seed=28, 
 90.     eval_metric='aucpr', 
 91.     use_label_encoder=False  # suppresses a warning message 
 92. ) 
 93.   
 94. # Set up the hyperparameter grid 
 95. param_grid = { 
 96.     'max_depth': [3, 5, 7], 
 97.     'learning_rate': [0.01, 0.1, 0.2], 
 98.     'n_estimators': [100, 500, 1000], 
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 99.     'gamma': [5, 10, 20], 
100.   #  'early_stopping_rounds': [10, 20], 
101.   #  'missing': ['nan'], 
102.   #  'reg_alpha': [0, 0.1], 
103.   #  'reg_lambda': [0, 0.1, 0.5, 1], 
104.   #  'subsample': [0.6, 0.8, 1.0], 
105.   #  'colsample_bytree': [0.6, 0.8, 1.0] 
106. } 
107.   
108. # Set up the scorer for GridSearchCV 
109. scorer = make_scorer(roc_auc_score) 
110.   
111. # Perform GridSearchCV 
112. grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, scoring=scorer, cv=5) 
113. grid_search.fit(X_train_encoded, y_train_resampled) 
114.   
115. # Print the best hyperparameters and the corresponding ROC-AUC score 
116. print("Best Hyperparameters: ", grid_search.best_params_) 
117. print("Best ROC-AUC Score: ", grid_search.best_score_) 
118.   
119. # Make predictions on the test data using the best model 
120. best_model = grid_search.best_estimator_ 
121. y_pred = best_model.predict(X_test_encoded) 
122.   
123. # Calculate accuracy 
124. accuracy = (y_test == y_pred).mean() 
125. print('Accuracy:', accuracy) 
126.   
127. # Predict class probabilities for test data 
128. y_prob = best_model.predict_proba(X_test_encoded)[:, 1] 
129.   
130. from sklearn.metrics import roc_auc_score, balanced_accuracy_score, classification_report 
131.   
132. # Calculate AUC 
133. auc = roc_auc_score(y_test, y_prob) 
134. print('AUC:', auc) 
135.   
136. # Calculate BER 
137. y_pred = best_model.predict(X_test_encoded) 
138. ber = 1 - balanced_accuracy_score(y_test, y_pred) 
139. print('BER:', ber) 
140.   
141. # Calculate recall 
142. report = classification_report(y_test, y_pred, target_names=['Negative', 'Positive'], digits = 
3) 
143. print('Recall:\n', report) 
144.   
145. # Calculate accuracy 
146. accuracy = (y_test == y_pred).mean() 
147. print('Accuracy:', accuracy) 
148.   
149. # Define the probability thresholds to test 
150. thresholds_to_test = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 
151.   
152. # Initialize lists to store evaluation metrics for each threshold 
153. accuracy_scores = [] 
154. auc_scores = [] 
155. ber_scores = [] 
156. recall_positive_scores = [] 
157. recall_negative_scores = [] 
158.   
159. # Loop through each threshold and calculate metrics 
160. for threshold in thresholds_to_test: 
161.     # Apply the threshold to the predicted probabilities 
162.     y_pred_custom_threshold = (y_prob > threshold).astype(int) 



MACHINE LEARNING TO REDUCE CHRONIC ABSENTEEISM                                       49 

163.      
164.     # Calculate metrics 
165.     accuracy_custom_threshold = (y_test == y_pred_custom_threshold).mean() 
166.     auc_custom_threshold = roc_auc_score(y_test, y_prob) 
167.     ber_custom_threshold = 1 - balanced_accuracy_score(y_test, y_pred_custom_threshold) 
168.     report_custom_threshold = classification_report(y_test, y_pred_custom_threshold, 
target_names=['Negative', 'Positive'], output_dict=True) 
169.      
170.     # Append metrics to lists 
171.     accuracy_scores.append(accuracy_custom_threshold) 
172.     auc_scores.append(auc_custom_threshold) 
173.     ber_scores.append(ber_custom_threshold) 
174.     recall_positive_scores.append(report_custom_threshold['Positive']['recall']) 
175.     recall_negative_scores.append(report_custom_threshold['Negative']['recall']) 
176.   
177. # Create a DataFrame to store the metrics for each threshold 
178. results_df = pd.DataFrame({ 
179.     'Probability Threshold': thresholds_to_test, 
180.     'Accuracy': accuracy_scores, 
181.     'AUC': auc_scores, 
182.     'BER': ber_scores, 
183.     'Recall (Positive)': recall_positive_scores, 
184.     'Recall (Negative)': recall_negative_scores 
185. }) 
186.   
187. # Display the results DataFrame 
188. print(results_df) 
189.   
190. # Export the results DataFrame to an Excel file 
191. results_df.to_excel('XGBoost_probthresholds.xlsx', index=False) 
192.   

 
 


