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Abstract 

We use student-level administrative data from Delaware for 43,767 high school students across 

five 12th grade cohorts from 2017 to 2021.  We apply Item Response Theory (IRT) to high school 

transcript data, treating courses as items and grades as ordered responses, to estimate both student 

transcript strength (𝜃) and course difficulty. We prove, via construct and predictive validation and 

simulation, that 𝜃 improves upon GPA because it accounts for ability selection into courses with 

variable difficulty. Compared to the SAT, 𝜃 shows smaller racial/ethnic gaps but substantially 

larger gender gaps that indicate boys underperform in their courses relative to their standardized 

test scores. We conclude by discussing significant methodological—such as grade-inflation and 

cross-school heterogeneity in course offerings—and practical challenges that remain before such 

measures could be considered for high-stakes applications. 
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Introduction 

Recent shifts toward test-optional college admissions policies have intensified debate about how 

to evaluate student preparedness for college (e.g., Dessein, et al., 2025). While proponents argue 

these policies increase equity and access (Bennett, 2021; Belasco, et al., 2015), critics contend that 

standardized tests provide valuable information about student ability (Dessein, et al., 2025) or that 

alternative measures of college readiness presented to admissions officers may be less equitable 

than the test scores themselves (Newman et al., 2022; Rothstein, 2022). This debate raises im-

portant questions: what information about student ability is contained in high school transcripts, 

how does this information compare to standardized test scores, and how are inferences regarding 

inequality affected by the measurement tool? 

These questions connect to a broader methodological challenge in educational measurement. 

Grade point average (GPA), the standard summary of transcript data, is almost certainly an imper-

fect means of comparing students’ academic performance in high school when students select into 

courses based on course difficulty and their anticipated performance in harder or easier courses. 

While a student taking advanced courses might earn the same GPA as a peer in standard courses, 

these identical GPAs likely reflect different levels of transcript strength. This suggests that tran-

script data might contain more information about college readiness than is captured by GPA alone, 

yet researchers frequently use GPA scores as both predictors and dependent variables in various 

applications (Backes et al., 2024; Jackson, 2018). 

We address both the practical and methodological aspects of this challenge. First, we apply Item 

Response Theory (IRT; Hambleton & Swaminathan, 1985) to high school transcript data, treating 

courses as items and grades as ordered responses to estimate both student ability and course diffi-

culty. This approach explicitly accounts for the differential difficulty of courses in producing 
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scores, potentially improving upon GPA as a measure of transcript strength and college readiness. 

Second, we compare our IRT-based measure of transcript strength (𝜃) to other measures of student 

ability used in both practice and by researchers, student GPA and SAT. We demonstrate construct 

and predictive validity for this IRT-based measure and conclude by characterizing how student 

subgroup differences appear using SAT scores and transcript data. 

Our results provide two main contributions. For policy discussions around college admissions, we 

offer new evidence about the information contained in transcript data that admissions officers ob-

serve, including how different measures characterize educational inequality across student sub-

groups. For researchers, we demonstrate that IRT estimation can substantially improve upon GPA 

as a measure of transcript strength, particularly when students systematically select into courses 

based on ability. Through both empirical analysis and simulation evidence, we show the conditions 

under which IRT approaches outperform GPA, suggesting researchers should consider IRT-based 

alternatives when analyzing transcript data. 

Specifically, our analysis yields several key findings. First, we show that IRT-estimated course 

difficulties align with conventional understanding, with AP/IB STEM courses being the most chal-

lenging and applied courses the least challenging. Second, we demonstrate that 𝜃 captures mean-

ingful variation in student performance beyond GPA, particularly for students who achieve the 

same GPA through different course-taking patterns—taking either more difficult or easier courses. 

Third, 𝜃 is a stronger predictor of college outcomes than either GPA or SAT scores, maintaining 

its predictive power even after controlling for both measures. Fourth, through simulation studies, 

we show that when students take even a small common set of courses, IRT-estimated 𝜃 better 

recovers true student ability than GPA in the presence of ability-based selection into courses. Hav-

ing validated our methodology, we then examine how different measures characterize educational 
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inequality. We find that compared to the SAT, 𝜃 shows smaller racial/ethnic gaps but substantially 

larger gender gaps that indicate boys underperform in their courses relative to their standardized 

test scores. 

Situating the Study  

Our study addresses three related strands of literature. The first is the signaling value of a high 

school transcript in the context of SAT test-optional admissions policy. The field of educational 

measurement has recently grappled with the fairness and consequences of college admissions tests 

(Ackerman, 2021; Albano, 2021; Briggs, 2021; Franklin et al., 2021; Geisinger, 2021; Klugman et 

al., 2021; Koretz, 2021; Lyons et al., 2021; Mattern et al., 2021; McCall, 2021; Randall, 2021; 

Torres Irribarra & Santelices, 2021; Walker, 2021; Way & Shaw, 2021). If required, college admis-

sions tests certainly play a role in the admissions process and can produce inequitable outcomes 

given unequal opportunities to develop skills (e.g., as exemplified by cross group differences in 

test scores) and test preparation (Briggs, 2021).  Yet, counterfactually, much will depend on the 

information contained in other admissions materials if standardized test scores are omitted. Roth-

stein (2022) shows that recommendation letters differ in quality by racial and socioeconomic sub-

groups but do not contribute much weight to admissions decisions. What is likely but not defini-

tively known is that the high school transcript is likely to have a larger influence on admissions 

decisions when test scores are omitted. Then, the question becomes: what latent information about 

student academic performance in high school is contained in a transcript? Our paper seeks to pro-

vide that answer.  

The second related strand is measurement. To our knowledge, our study is the first to apply IRT to 

estimate the relative strength of each transcript in a full state-level dataset of high school transcripts 

and to demonstrate the construct and predictive validity of the measure, where “construct validity” 
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is the extent to which the measurement tool (e.g., IRT-based transcript strength score in our case) 

represents the theoretical concept it is intended to describe (Shadish et al., 2002), and “predictive 

validity” is the extent to which the measure is associated with future outcomes as expected – what 

is often called “validity based on relations to other variables” in educational and psychological 

measurement (AERA et al., 2014)1.  

We identified three previous applications of IRT to transcript data. Most recently, Hansen et al. 

(2019) used IRT to establish the relative difficulty of a set of high school math courses, though 

their analysis was limited to a population of first-year calculus students, 20 courses in math and 

science only, self-report course grades, and minimal emphasis on validating the measure empiri-

cally or theoretically. Bassiri & Schulz (2003) used an IRT-based approach to establish a scale for 

high school course difficulty, though they intended to see whether transcript data could replicate 

ACT scores and therefore linked the ACT to their estimation procedure. This approach not only 

relies on the assumption that high school courses measure the same construct as the ACT (an as-

sumption we disprove below) but also obviates the possibility of comparing what unique infor-

mation a transcript provides relative to a standardized test. Similarly, Lei et al. (2001) used IRT to 

overcome the non-comparability of GPAs in different college courses, but for a limited sample of 

students at two universities and with limited effort to validate. Still, their findings inform our meth-

ods in that they suggest the use of the Partial Credit Model (PCM; Masters, 1982) over the more 

complex Graded Response Model (GRM; Samejima, 1969) and Generalized Partial Credit Model 

(GPCM; Muraki, 1992) due to model stability issues with the more complex models.  

 
1We note here that while we draw upon the AERA, APA and NCME joint standards here, we intentionally do not use 

the standards’ full framework for validity evidence, as the standards are written to describe evidence requirements 

for test development, whereas this study is a secondary data analysis.  
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The third related strand is the utility of GPA as a signal of student academic performance. As is 

well known, high school GPA plays a crucial role in several major educational policies around the 

world. In Chile, university admissions use a GPA rank score as part of their centralized admission 

system, with evidence suggesting this policy has led to strategic responses in high school grading 

practices (Fajnzylber et al., 2019). In the United States, the Texas Top 10% Rule guarantees state 

university admission to students graduating in the top decile of their high school class, a policy 

that has significantly impacted college enrollment patterns and serves as an alternative to race-

based affirmative action (Cortes, 2010; Niu & Tienda, 2010). State merit aid programs also fre-

quently use GPA requirements, with Georgia's HOPE scholarship program being a prominent ex-

ample requiring students to maintain a 3.0 GPA. This program has had substantial effects on insti-

tutional behavior and student outcomes (Long, 2004). 

Relatedly, the GPA is used widely in empirical research despite its self-evident limitations as a 

measure of student performance in high school. Researchers commonly employ GPA either as a 

covariate/predictor of other outcomes (Cohn et al., 2004; Grove et al., 2006) or as an outcome 

variable itself (Backes et al., 2024, 2024; Goldhaber & Goodman Young, 2024; Hill, 2015; Jack-

son, 2018). In general, GPA serves as a proxy for the latent variable of interest—student perfor-

mance in high school, or what we refer to as transcript strength. For example, researchers use GPA 

to assess whether students have learned more because of a policy (GPA as outcome) or to control 

for selection into a program by adjusting for student performance (GPA as covariate). However, 

GPA likely suffers from correlated measurement errors, as lower-ability students may select into 

easier courses, inflating their GPA, while higher-ability students may choose harder courses, de-

flating their GPA. Economists have long recognized that using variables with non-classical meas-

urement error on either side of regression equations can result in unpredictable bias (Pischke, 
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2007). Yet, perhaps due to the absence of available alternatives, researchers have used GPA as a 

proxy for transcript strength with little critical attention. In this paper, we aim to provide a feasible 

alternative to GPA using IRT methods, which may be of use to policymakers as well desiring to 

assign program opportunities based on high school performance and are worried that the GPA can 

mask differences in performance across course difficulty. 

Data 

Our analytic sample consists of 43,767 students from Delaware from graduating cohorts 2017 to 

2021, with descriptive statistics shown in Table 1. The sample is diverse, with 48% White students, 

30% Black students, 15% Hispanic students, and 4% Asian students. Approximately one-third 

(34%) of students are from low-income backgrounds, while 13% are students with disabilities 

(SWD) and 13% are English language learners (ELL). The gender distribution is nearly even, with 

49% male students. Academic performance indicators show that students earned a mean GPA of 

2.91 (SD=0.73) and achieved average SAT scores of 476.42 (SD=100.33) in Mathematics and 

488.76 (SD=99.54) in English Language Arts, with the ELA sample slightly smaller at 43,744 

students. 

< Table 1 Here > 

In Table 2, we show the top 5 percent of enrolled courses. No course is enrolled by all students, 

but some are enrolled by nearly everyone. For example, Health Education and Physical Education 

have 39,850 (91%) and 38,488 (88%) of all students, respectively. Core academic subjects also 

show high enrollment numbers, with Biology (37,717 students), English/Language Arts I (36,703 

students), and English/Language Arts II (35,229 students) rounding out the top five most enrolled 

courses. Course performance, as measured by mean GPA, varies considerably among these sub-

jects with high enrollment. Mean GPA is 3.3 in these courses with a standard deviation of 0.27. 
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Unsurprisingly, Physical Education, Career Exploration and Fitness/Conditioning have the highest 

GPAs, whereas core academic subjects have GPAs ranging from 2.5-2.8.  

<Table 2 Here> 

Methods 

Overview of the Item Response Theory (IRT) Framework 

The measurement approach used in this study is based upon the premise that when external readers 

such as admissions officers review applicants’ high school transcripts, they make comparisons of 

the overall strength or quality of the transcripts according to a holistic judgment that considers the 

entirety of the transcript. In making such judgments, the reader must make comparisons between 

students who have taken different sets of courses in different schools, requiring some degree of 

informal equating of the difficulty of different courses in order to arrive at the final judgment. 

Given this framing, we estimate transcript strength as a continuous, unidimensional, latent variable 

using an IRT model that takes students’ recorded grade in each course as input and produces tran-

script strength and course difficulty estimates on a common scale. In short, we treat each transcript 

like a set of answers to questions on a test and try to estimate the difficulty of each “item” so that 

we can ascribe proper value to an A grade in an easier course versus an A (or B, C, etc.) grade in a 

harder course for the purpose of summarizing the strength of each transcript as a score. Given the 

wealth of accessible guides to IRT in general and Rasch modeling specifically (e.g. Baker & Kim, 

2004, 2017; Bandalos, 2018; Bond & Fox, 2015; Wilson, 2023), we focus here on what IRT has 

to offer in the analysis of transcript data.  

IRT emerged from the field of educational testing (Birnbaum, 1968, in Lord & Novick, 1968; Lord, 

1980) to address several issues inherent in the use of number- or proportion-correct scores on tests 

(this extends to scores based on average item scores, such as GPA). Many of the issues with 



8 
 

proportion-correct scoring boil down to the fact that students taking two different tests do not 

inherently have comparable scores due to differences in the difficulty of the items on the two tests, 

even if the tests are built to assess very similar content. Most importantly for the present applica-

tion, when items are calibrated as part of the same model, IRT produces item parameters and ex-

aminee scores on the same scale even if groups of students take different items. For example, a 

large-scale testing program might use one form in year 1, and a different form in year 2 for security. 

As long as the items were initially calibrated as part of the same model, no additional work would 

be needed to produce scores on a common scale, unlike in classical linking and equating contexts 

(Kolen & Brennan, 2014). This is possible because the item parameters in IRT are an integral part 

of scoring. Proportion-correct scores do not directly represent the difficulty of the items in any 

way, while IRT-based scores do. 

The IRT framework, relative to GPA alone, provides two notable advantages. First, it produces 

estimates of the difficulty of items (in this case, courses) that are used to score students. A course 

might appear difficult in terms of GPA because the course is challenging, because the course is 

taken by generally lower-performing students, or both. IRT methods (under certain conditions, 

discussed below) can overcome this, while GPA cannot because GPA itself does not in any way 

account for the difficulty of the courses in which the grades being averaged were observed.2 IRT’s 

definition of a scale for the items then carries through to produce scores – estimates of the strength 

of an examinee’s standing on a continuum representing the construct being measured by the test, 

 
2 This is not strictly true with GPA, as GPA is sometimes weighted to reflect greater course difficulty, such as A’s in 

AP courses being worth 5 points towards GPA in some high schools. These weights however are arbitrarily selected 

for a handful of courses and discrete, not continuous, and therefore the general point about GPA not differentiating 

between course selection stands. 
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typically referenced as 𝜃. Estimates of 𝜃 account for the difficulty of the items taken, a feature that 

makes IRT potentially more appropriate for summarizing transcripts than GPA.  

Second, IRT can be used to produce reliable and unbiased estimates of course difficulty – the 

foundation for generating student scores – even if students have not answered the same questions 

(or, in our case, taken the same courses) (Thissen & Orlando, 2001). This is possible as long as 

respondents overlap in some of the items they answer, as demonstrated in the multistage adaptive 

testing literature, in which students are provided specific items calibrated to their performance on 

previous items in blocks (Glas, 1988; Steinfeld & Robitzsch, 2021; Wang et al., 2020), and ex-

plored in this study via simulation. 

The IRT framework provides an estimate of college readiness based on students' high school tran-

script data. While this approach offers advantages over traditional GPA measures, it still faces 

certain limitations. An IRT approach cannot fully account for variations in course content, teaching 

practices, and school-specific grading policies such as grade inflation. However, these limitations 

are unlikely to be more severe than those inherent in using GPA alone. The fundamental challenge 

lies in synthesizing complex educational data: students take diverse courses across different 

schools with varying grading practices, and their course selection decisions depend heavily on 

specific contexts. The IRT methodology addresses this challenge by reducing this multifaceted 

data into a single continuous unidimensional variable. This approach mirrors, in a formal and 

standardized way, the process that college admissions officers already undertake informally when 

they evaluate transcripts to make admissions decisions. While individual institutions may codify 

this evaluation process differently, they all face the need to transform complex transcript data into 

actionable insights. IRT provides a systematic framework for this transformation. 

Model specification. 
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To produce student-level transcript strength estimates and course-level difficulty estimates on a 

common scale, we calibrate the PCM. The PCM is a Rasch-type (Rasch, 1960) IRT model for 

polytomous data (i.e. categorical data with more than two ordered response categories). The PCM 

models the probability of responses from a person n to an item i in category k as a function of a 

person-side parameter 𝜃𝑛 representing, in this case, the overall strength of a student’s high school 

academic performance, as well as the overall difficulty of an item 𝛿𝑖 and a threshold 𝜏𝑖𝑘. The item 

response function for the PCM is  

ln [
𝑃𝑛𝑖

(𝑥𝑖 = 𝑘)

𝑃𝑛𝑖
(𝑥𝑖 = 𝑘 − 1)

] = 𝜃𝑛 − 𝛿𝑖 − 𝜏𝑖𝑘 
(1) 

 That is, the log-odds of a response to item i in category k, relative to category k – 1, are a linear 

function of the three parameters specified above. The higher an individual’s 𝜃𝑛 and/or the lower 

the overall difficulty of the item 𝛿𝑖 and threshold 𝜏𝑖𝑘, the likelier the individual is to respond in 

category k compared to the category one below k. That is, the PCM is a linear model in the logit 

metric. 

In this parameterization, each 𝜏𝑖𝑘 expresses the location of the threshold relative to 𝛿𝑖. For exam-

ple, say a given course has a 𝛿𝑖 of 1 and a 𝜏𝑖2 of 0.5, representing the threshold between category 

1 and category 2. The point on the logit scale at which responses of 1 and 2 are equally likely is 

𝛿𝑖 + 𝜏𝑖2 = 1.5. As such, the PCM is often reparametrized to remove the 𝛿𝑖 parameter entirely and 

just estimate threshold parameters. In this reparameterization, the example 𝜏𝑖2 would be 1.5, and 

no 𝛿𝑖 would be estimated. This is the parameterization we use in this study. 

<Figure 1 here> 
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The parameters of the PCM combine to form item characteristic curves (ICCs) such as that shown 

in Figure 1. This figure contains four curves, each representing the probability of responding in a 

given category at the 𝜃 value on the x-axis. The points at which the curves representing probabil-

ities for adjacent categories cross are the thresholds, such that for example the left-most crossing 

is the threshold between responding in category 1 and responding in category 2. At this value of 

𝜃, a bit below -2, a respondent would have an equal probability of responding in category 1 versus 

category 2. As 𝜃 increases, the probability of a response in category 1 decreases, while the proba-

bility of a response of 2 increases – to a point. The probability of a 2 starts decreasing as 𝜃 ap-

proaches the next threshold because as 𝜃 continues to increase, a response of 2 starts to become 

less likely and a response of 3 (or 4, the highest category) becomes increasingly likely.  

Model estimation. 

We estimate the PCM using full-information marginal maximum likelihood (FIMML) as imple-

mented in the R software package mirt (Chalmers, 2012). The full-information aspect of estimation 

reflects the fact that the estimation procedure accounts for all individual response strings, a critical 

feature given the huge number of distinct course-taking patterns present in our data (in contrast to 

limited-information approaches based upon e.g. a variance-covariance matrix; see Cai, 2010 for 

an outline of the estimation algorithm implemented in mirt); the “marginal” aspect reflects the fact 

that estimation is based upon assuming a distribution for 𝜃 (in this and most cases, a normal dis-

tribution).  

Though full-information maximum likelihood estimation typically assumes that data are missing 

at random or completely at random (Enders & Bandalos, 2001)—an assumption clearly unlikely 

to hold in a course-selection context where students choose which courses to take as a function of 
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what their school offers, what interests them, and other unobserved selection mechanisms—the 

implications of this assumption for estimation of the PCM are not necessarily as problematic as 

one might suspect. Notably, IRT models estimated with FIMML have proven to be remarkably 

robust to nonrandom missingness of item responses. This robustness is most clearly demonstrated 

by the fact that one can readily estimate unbiased item parameters from a multistage adaptive test 

(Glas, 1988; Steinfeld & Robitzsch, 2021; Wang et al., 2020) using FIMML. This result occurs 

because the multistage design involves a subset of items taken by many or all examinees, enabling 

the estimation procedure to effectively anchor the item parameters against this “core” of courses 

for which examinees’ performances can be compared directly. More detail on parameter estimation 

for IRT models is available in Baker & Kim (2017). 

The PCM places individuals and items onto a scale that is common, but whose location on the 

continuum from negative to positive infinity is indeterminate. That is, in Rasch-type models, the 

distances between the item parameters and 𝜃 variance are identified from the item response data, 

but the mean of the 𝜃 and difficulty parameter distributions are not (Bechger & Maris, 2015). One 

must therefore fix a parameter in the model to “anchor” the scale and identify the model. We follow 

the mirt default (and common choice in IRT) of specifying 0 as the mean of the 𝜃 distribution. 

Importantly, a choice of a different anchor (e.g. specifying the mean item difficulty instead of the 

mean 𝜃 or choosing a different value for the mean of 𝜃, such as 1000) would have no impact on 

model fit or any of our subsequent analyses, as all parameters would be shifted by the same linear 

transformation.   

Meta-Analytic Average of Item Parameters  

For each course i, there are typically 4 thresholds (j=1,2,3,4 for D,C,B,A) j associated with the 

course. To calculate average course difficulty, we take a meta-analysis approach by averaging 
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threshold parameters for each item, weighting the average by the estimated variances of the thresh-

olds. Let 𝜏𝑖𝑗 represent the threshold parameter estimate from course i for threshold j, with associ-

ated standard error 𝜎𝑖𝑗. Then, the random effects meta-analysis framework takes the mean thresh-

old parameter 𝜏𝑖𝑗̅̅ ̅ for each course type i and threshold j by assuming that 𝜏𝑖𝑗 = 𝜏𝑖𝑗̅̅ ̅ + 𝜀𝑖𝑗, where 

𝜀𝑖𝑗represents sampling error (in this case, the standard error of the parameter). Then, the meta-

analytic estimate 𝜏𝑖𝑗̅̅ ̅ is computed as 𝜏𝑖𝑗̅̅ ̅ = Σ𝑗(𝑤𝑖𝑗𝜏𝑖𝑗)/Σ𝑗𝑤𝑖𝑗, where 𝑤𝑖𝑗 are inverse variance 

weights 𝑤𝑖𝑗 = 1/𝜎𝑖𝑗
2 . 

Scoring. 

Model estimation as outlined above produces item parameters, but not individual 𝜃 estimates 

(these are marginalized out of the estimation procedure, as indicated by the term “marginal” max-

imum likelihood). Producing 𝜃 estimates is therefore a separate step from estimating item param-

eters. Note that when we refer to 𝜃 estimates in the analyses that follow, we reference them as 𝜃, 

in line with the fact that these scores are estimates of the unobservable underlying value 𝜃 for each 

student. 

We compute 𝜃 via maximum likelihood (MLE; see Thissen & Orlando, 2001). MLE scoring as-

signs to each student the value of 𝜃 that maximizes the likelihood of their observed course grades 

in the courses they took, treating the estimated parameters of the PCM as known. MLE is often 

presented in contrast to empirical Bayes scoring methods such as expected a posteriori (EAP) 

scoring (Bock & Mislevy, 1982). EAP scoring assigns to each individual, as their estimated score, 

the mean of the posterior distribution produced by multiplying together the probability distribu-

tions representing (1) their individual  𝜃 likelihood, given their item responses, and (2) the popu-

lation-level first and second moments of a normal 𝜃 distribution. The main benefit of EAP scoring 
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relative to maximum likelihood is that the use of a population prior distribution makes it possible 

to produce a  𝜃 for individuals with all-perfect or all-zero response strings; maximum likelihood 

estimates for these patterns would be positive and negative infinity, respectively. However, for 

relatively short tests, EAP (and empirical Bayes scoring, more generally) can substantially shrink 

the distribution of  𝜃s toward zero, the default mean of the 𝜃 distribution. During preliminary 

analysis of the models used in this study, we found that EAP scoring produced an unacceptable 

amount of shrinkage, especially for students with very high course grades. On this basis, we opted 

to use MLE scoring. 

This means that a strategy for dealing with “perfect” (i.e. all-A) or “zero” (i.e. all F) course grades 

was required. We considered several strategies for addressing this issue. Arbitrary definition of a 

highest and lowest obtainable 𝜃 was deemed unacceptable due to this approach failing to differen-

tiate between perfect grades in easy versus difficult courses. Typical IRT methods based upon the 

test characteristic curve (Lord & Wingersky, 1984) were deemed infeasible because there are thou-

sands of different ways that students’ transcripts combine the 700+ courses in the dataset, and each 

observed combination with at least one perfect or all-zero transcript would need to be treated as 

its own test with its own characteristic curve. We ultimately settled upon a somewhat arbitrary 

approach of, for perfect course grades, recoding the student’s grade of A to B for the hardest course 

they took (i.e. the course in their transcript with the highest 𝜏4); Linacre (2009) provides some 

precedent for this scoring approach. This has the effect of slightly shrinking 𝜃 estimates for these 

students toward 0, but far less so than EAP scoring; the students with these course grades remained 

very high in the 𝜃 distribution after recoding.  

Course grades as item responses. 
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The large majority of course grades in the dataset follow an A-B-C-D-F scheme, and we limited 

our analytic dataset to grades following this scheme. We coded these grades numerically as A = 4, 

B = 3, C = 2, D =1, F = 0. For courses that students took more than once, we assigned the mean of 

their multiple numerically coded course grades, rounded to the nearest integer, as their course 

grade for the purpose of fitting the model and producing scores. For example, a student who took 

a course three times and received grades of D, A, A would have a score of 3 for that course in our 

analytic dataset. 

We further limited courses in the analytic sample to those taken by at least 10 of these students, 

and in which at least two distinct grades were given according to our 0-3 grading scheme. These 

choices were made to ensure that thresholds could be estimated for all courses in the analytic 

dataset. We conducted extensive checks of the appropriateness and fit of the model; a summary of 

which is available in Appendix A: IRT Model Fit Results.  

Results 

Construct Validity: Plausible course difficulty estimation. 

We now turn to estimation results. We start by looking at course difficulty, focusing on the average 

course difficulty 𝜏𝑖𝑗̅̅ ̅ instead of individual item parameters. Because we have prior understanding 

of “hard” and “easy” courses, the item parameters provide a useful piece of construct validation: 

if the IRT model orders course difficulty as we might expect, this lends credibility to the exercise.  

We start with Figure 2, which shows a meta-analytic ranking of course difficulties. The results 

largely align with conventional understanding of course difficulty hierarchies, providing important 

construct validation for our methodology. Advanced Placement (AP) courses, particularly in 

STEM subjects, cluster at the higher end of the difficulty spectrum, with AP Physics C emerging 

as the most challenging course (≈+4 logits). This is followed by other AP science and mathematics 
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courses. At the other end of the spectrum, more applied and introductory courses such as Work-

place Experience, Physical Education, and basic ROTC courses show lower difficulty estimates 

(≈-4 logits). Core academic subjects generally fall in the middle range, with some variation by 

level and content area. 

The color-coding of courses by subject area reveals interesting patterns in the difficulty hierarchy. 

STEM courses (shown in blue shades) tend to concentrate in the upper half of the difficulty range, 

while arts and sports (orange) typically appear in the lower half. Language courses (maroon) show 

a clear progression of difficulty, with advanced language courses and AP language offerings posi-

tioned higher on the scale than their introductory counterparts. This systematic ordering of courses 

by difficulty level, which aligns with educational experience and prior research, suggests that our 

IRT-based methodology effectively captures meaningful differences in course challenge levels. 

<Figure 2 Here> 

Looking across all courses confirms these patterns. To do this, we apply a meta-analytic regression 

to the average course difficulties leveraging the fact that for each course difficulty we estimate its 

cross-item parameter variance. We then use binary predictors to explain variance in course diffi-

culty across subject areas and course levels (e.g., AP/IB versus regular courses, indicator variable 

for course content areas). The regression results reveal several key patterns. First, compared to 

mathematics courses (the reference category), arts and sports courses are significantly less diffi-

cult, with coefficients (in logits) of -1.005 and -1.021 respectively (p < 0.001). Science, humanities, 

and language courses do not differ significantly from mathematics in their difficulty levels, with 

relatively small and statistically insignificant coefficients ranging from -0.107 to 0.078. 
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Advanced Placement (AP) and International Baccalaureate (IB) courses consistently show higher 

difficulty levels across all subject areas. The AP premium is largest in mathematics (1.748) and 

science (1.588), followed by humanities (1.297), arts (0.973), and languages (0.829). Similarly, IB 

courses show substantial increases in difficulty across most subjects, with effects ranging from 

1.410 in mathematics to 1.101 in languages, though notably, the IB effect in humanities (0.246) is 

not statistically significant. These findings quantify the considerable increase in academic chal-

lenge represented by AP and IB coursework, while also highlighting how this challenge premium 

varies across subject areas. More broadly, these results show that IRT-estimated item difficulties 

match common understanding of course difficulty.  

<Table 3 Here> 

Construct Validity: Plausible transcript strength (𝜃) estimation.  

Having established the validity of our course difficulty estimates, we now examine student tran-

script strength (𝜃) and its relationship to GPA. While we expect 𝜃 and GPA to be highly correlated, 

𝜃 should provide additional information particularly when students select into more challenging 

courses. Figure 3 illustrates this relationship through three complementary analyses. 

Panel A shows the variation in 𝜃 for students with GPAs of 2.0, 2.5, 3.0, and 3.5. For each GPA 

level, we observe substantial variation in transcript strength (𝜃), which we divide into terciles for 

subsequent analysis. This variation suggests that students achieving the same GPA do differ mean-

ingfully in their underlying academic performance. Panel B demonstrates how this performance 

difference manifests in course-taking patterns by plotting the difference in enrollment rates be-

tween top (Tercile 3) and bottom (Tercile 1) 𝜃 students across courses of varying difficulty. The 

consistently positive slopes across all GPA bands indicate that higher-ability students systemati-

cally select into more challenging courses, regardless of their GPA level. 
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Panel C reveals the consequences of this differential course-taking behavior. We plot the cumula-

tive contribution to GPA as students progress through increasingly difficult courses, separated by 

𝜃 tercile within each GPA band. While higher-𝜃 (Tercile 3) students initially maintain higher GPAs, 

their tendency to enroll in more challenging courses gradually reduces their GPA advantage, ulti-

mately converging with their lower-𝜃peers who take easier courses. This pattern explains the sub-

stantial within-GPA variation in 𝜃 observed in Panel A and demonstrates how IRT-based ability 

estimates capture important information about student achievement that GPA alone masks. Specif-

ically, students with the same GPA may arrive at that outcome through different pathways: higher-

ability students taking more challenging courses versus lower-ability students taking less challeng-

ing ones. 

<Figure 3 Here> 

Construct Validity: 𝜃 and SAT comparisons. 

Having now shown that item difficulties capture meaningful representations of course difficulty 

and student ability (𝜃) captures meaningful representations of student selection into more or less 

difficult courses, we now turn to substantive analysis of 𝜃 and compare it to the other primary 

metric college admissions officers use to evaluate student ability, the SAT. Figure 4 illustrates the 

relationship between students' standardized 𝜃 scores and their average Math and ELA SAT scores. 

While there is a clear positive relationship between these measures (adjusted R² = 0.51, implied 

correlation of 0.71), there remains substantial unexplained variation. A 100-point increase in SAT 

score is associated with a 1.25 standard deviation increase in 𝜃, suggesting these measures capture 

related but distinct aspects of student achievement. The marginal distributions shown along the 

axes reveal that both measures are approximately normally distributed, though 𝜃 shows somewhat 

heavier tails, particularly in identifying high-achieving students. 
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<Figure 4 Here> 

As with the 𝜃/GPA comparison, residual variation in 𝜃 conditional on the SAT (and vice-versa) 

can be used to understand how a student's transcript can contain ability-related information distinct 

from the SAT itself. To do this, we divide students into four groups based on their joint SAT and 𝜃 

distributions: high-SAT/high-𝜃, high-SAT/low-𝜃, low-SAT/high-𝜃, and low-SAT/low-𝜃, where 

"high" and "low" are defined by the top and bottom two quintiles respectively. 

Results shown in Table 4 reveal striking patterns in both course-taking behavior and performance 

across these groups. High-SAT/high-𝜃 students (N=12,477) show consistently strong performance 

across all courses (GPAs typically above 3.5) and high enrollment rates in advanced courses. For 

instance, 55% take Pre-Calculus and 24% take AP Calculus AB, with GPAs of 3.37 and 3.33 re-

spectively. In contrast, high-SAT/low-θ students (N=2,067) show markedly lower GPAs despite 

similar SAT scores. While they maintain relatively high enrollment in standard courses, their par-

ticipation in advanced courses also drops substantially (36% in Pre-Calculus, 4% in AP Calculus 

AB), and their GPAs in these courses are notably lower (1.79 and 1.35 respectively). 

Perhaps most revealing are the low-SAT/high-𝜃 students (N=1,867), who demonstrate strong aca-

demic performance despite lower standardized test scores. These students achieve GPAs compa-

rable to their high-SAT peers in many courses (e.g., 3.18 in AP Chemistry compared to 3.51 for 

high-SAT/high-θ students), though they enroll in advanced courses at lower rates. The low-

SAT/low-θ group (N=12,302) shows both the lowest enrollment rates in advanced courses and the 

lowest GPAs across nearly all courses, suggesting that both measures capture meaningful dimen-

sions of academic preparation. 
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These patterns suggest that 𝜃 captures important information about student ability that comple-

ments SAT scores, particularly in identifying students whose classroom performance may diverge 

from their standardized test performance. 

<Table 4 Here> 

Predictive Validity: GPA, SAT, and 𝜃 as predictors of college outcomes.  

We obtain data from the National Student Clearinghouse (NSC) to investigate whether a student's 

GPA, SAT score, or 𝜃 differently predict college-going behavior. We examine three college out-

comes: expected earnings based on college attendance using the College Mobility Report Card 

(Chetty et al., 2017), college selectivity (coded 1-5, from no college to most selective institutions), 

and college completion (coded 1-4, from no college to 4-year degree), which is restricted to the 

2017 graduating cohort. 

Results shown in Table 5 reveal several key patterns. In Panel A, where GPA and 𝜃 are estimated 

separately, both measures significantly predict college outcomes, but with different magnitudes. A 

one standard deviation increase in 𝜃 is associated with a $7,148 increase in expected earnings, 

compared to $6,291 for GPA and $5,132-$6,128 for SAT (depending on model specification). For 

college selectivity and degree completion, 𝜃 also shows stronger predictive power than both GPA 

and SAT, with odds ratios of 2.50 and 3.21 respectively, compared to 2.37 and 2.85 for GPA and 

lower values for SAT. All differences between coefficients are statistically significant (p < 0.001). 

Panels B and C examine 𝜃's predictive power conditional on GPA, using two different approaches 

to GPA fixed effects. Panel B uses fixed effects for specific GPA values (2.0, 2.5, 3.0, 3.5), mirror-

ing Figure 2 above, while Panel C uses a more granular approach with fixed effects for each 

rounded GPA value from 1.0 to 4.0 in increments of 0.1. In both specifications, 𝜃 remains a strong 
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predictor of college outcomes even after controlling for GPA. The effects are particularly striking 

for expected earnings, where a one standard deviation increase in 𝜃 is associated with $25,235-

$28,980 higher expected earnings, substantially larger than the SAT’s effect of $3,566-$4,209. 

Similar patterns emerge for college selectivity and degree completion, with θ showing significantly 

stronger predictive power than SAT across all specifications (p < 0.001). 

These results suggest that 𝜃 captures important dimensions of academic preparation and potential 

that are distinct from both GPA and SAT scores, and these differences have meaningful implica-

tions for college outcomes. In Appendix Table B1, we take the groups from Table 4 – e.g., high 

SAT/low 𝜃—and estimate whether those students with high residual 𝜃 scores have different col-

lege outcomes than similarly scoring SAT students with low residual 𝜃. As expected, high 𝜃 stu-

dents attend more selective colleges than low 𝜃 students with similar SAT scores. Most notably, 

high 𝜃-low SAT students attend more selective colleges than students in the low 𝜃-high SAT stu-

dents, furthering evidence that 𝜃 is a better predictor of college outcomes than the SAT.  

<Table 5> 

Robustness to Grade Inflation 

In Appendix C: Grade Inflation, we evaluate the influence of systematic grade inflation on 𝜃. We 

note at the onset that a measure of transcript strength should be sensitive to grade inflation, a 

phenomenon that generally reduces the utility of transcript data (Tyner and Gershenson, 2022). 

Here, we focus on the extent to which grade inflation occurs mostly between schools or course 

types and whether 𝜃 is more explained by grade inflation or an independent measure of ability, the 

SAT. First, stylistically, we show that there are schools that grade calculus courses differently, 

ranging about 0.5 GPA points on average, conditional on mathematics SAT. School-level 𝜃 scores 

are similarly variable conditional on mathematics SAT, suggesting that these grading practices 
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influence 𝜃 estimation (Figure C1). Then, we generate a grade inflation variable and show that, on 

average, grade inflation predicts 𝜃, but student mean SAT score is a better predictor. In standard 

deviation units, a 1 SD increase in student level grade inflation is associated with a 0.36 SD in-

crease in 𝜃, whereas a 1 SD increase in mean SAT is associated with a 0.72 SD increase in 𝜃 (Table 

C1). We also cannot rule out other explanations; for example, residual GPA performance in a 

course may not be grade inflation but better teaching or greater student effort. Thus, though we 

conclude that grade inflation is likely to have some influence on latent transcript strength, an in-

dependent measure of student college readiness via the SAT more closely tracks the quality of a 

student’s coursetaking history.  

Course Selection Effects: Simulations of Course-Selection Bias for GPA and 𝜃 

To evaluate how student course selection patterns might affect our 𝜃 estimates, we conduct three 

simulation studies varying in their data generating processes (see the Appendix D: Simulation 

Study Details for more information). Each study simulates 𝜃 for 1000 students and course-taking 

behavior across 200 potential courses, but we estimate 𝜃 using only 28 selected courses to mirror 

real-world scenarios where students take a subset of available courses. The studies vary in the 

distribution of course difficulty relative to 𝜃 and the mechanism by which courses are selected at 

the student level. In all cases, the average course difficulty is lower than the average 𝜃, reflecting 

the distributions found when we fit the model to real data. For each study, we compare the extent 

to which 𝜃 based on the 28 non-randomly selected courses recovers 𝜃 based on all 200 courses, to 

the extent to which GPA from the 28 courses recovers GPA from all 200. We also report correla-

tions between the “observed” 𝜃 and GPA, and the extent to which the standardized “full” (all 200 

courses) 𝜃 and GPA recover the standardized data-generating 𝜃. 
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Study 1 represents the simplest case, where course selection depends on 𝜃and courses vary in 

difficulty such that all students can take courses whose difficulty is close to their 𝜃. Importantly, 

this scenario includes a "core" of 8 courses from which students must take at least five. Study 2 

introduces range restriction in course difficulty while maintaining the core course requirement. 

Study 3 presents the most challenging scenario, combining restricted course difficulty range with 

no core course requirement. For each study, we conducted 50 replications. 

Results shown in Table 6 demonstrate that IRT-estimated 𝜃 generally outperforms GPA across all 

scenarios. In all studies, 𝜃 estimates show minimal bias (ranging from -0.006 to 0.027) compared 

to larger biases in GPA (ranging from 0.104 to 0.181). The concordance correlation coefficients 

(Lin, 1989) for 𝜃 are substantially higher than for GPA in Study 1 (0.967 vs 0.456) and Study 2 

(0.979 vs 0.815). Study 3 demonstrates that there are circumstances under which IRT performs 

quite poorly (i.e. a relatively narrow range of course difficulty with no core of highly-taken 

courses), but GPA performs even worse – the concordance correlation coefficients are identical in 

this scenario, but the root-mean-square error of the GPA estimates relative to the GPAs observed 

when all 200 courses are observed is larger than the equivalent error for 𝜃 once the errors are 

normalized by the two measures’ respective standard deviations. 

Figure 5 provides visual confirmation of these patterns, plotting both 𝜃 and GPA estimates from 

the 28-course subset against "true" values from all 200 courses. The bottom row shows that 𝜃 

estimates (blue curve) more closely follow the identity line (red) across all three studies, indicating 

strong recovery of true ability. In contrast, the top row shows GPA estimates deviate more substan-

tially from the identity line, particularly at the extremes. This pattern is most pronounced in Study 

3, where the absence of core courses leads to greater deviation in both measures, though 𝜃 main-

tains better performance than GPA. 
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These results suggest that IRT-based ability estimation is sufficiently robust to various course se-

lection patterns, particularly when students share some common courses, to be preferable to GPA 

in many cases. Even in more complex scenarios with restricted course difficulty and no core re-

quirements, 𝜃 provides more accurate transcript strength estimates than GPA alone. That is, even 

in data-generating scenarios that would be expected to make it challenging to do so, the IRT ap-

proach is able to account for course difficulty well enough to improve upon GPA (as GPA does not 

account for course difficulty in any way). 

<Figure 5 Here> 

<Table 6 Here> 

𝜃 and SAT group-level inequality. 

We now examine how 𝜃 and SAT differently (or similarly) characterize between-group inequality. 

Since both 𝜃 and SAT represent latent variables with indeterminate interval properties, we calcu-

late ordinal achievement gaps using the V-Gap statistic of Ho (2009) and Ho and Reardon (2012), 

which can be interpreted as a standardized mean difference between groups under the assumption 

of respective normality. These gaps are visualized in Figure 6 through cumulative probability plots, 

where the area under the curve (AUC) represents the probability that a randomly selected student 

from one group scores higher than a randomly selected student from the comparison group. Fur-

ther, we conduct tests to see whether the AUCs for 𝜃 and SAT are different from each other.  

The results reveal several distinct patterns across demographic groups. Most notably, male and 

female students have very different levels of inequality using the 𝜃 metric, whereas for SAT scores, 

there is almost no difference (p<0.000). For the SAT, the AUC falls just below 0.5, meaning that 

males are just as likely to have higher scores as females. In contrast, the AUC in 𝜃 is 0.377, mean-

ing that a randomly drawn male student has just a 38% chance of having a higher score than a 
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randomly drawn female student, corresponding to a Cohen’s D-like difference (i.e., V) of 0.445. 

In contrast, socioeconomic gaps show remarkable consistency across both measures (p = 0.972), 

with nearly identical AUCs for non-low-income versus low-income students. 

Racial/ethnic achievement gaps show varying patterns. The Asian-White gap is similar across both 

measures (p = 0.228), though with slightly different shapes in the probability curves. However, 

both Black-White and Hispanic-White gaps show significant differences between 𝜃 and SAT 

measurements (p < 0.000 in both cases). For Hispanic students, the SAT shows larger gaps (V = -

0.745) compared to θ (V = -0.386), while both measures indicate substantial gaps for Black stu-

dents relative to White students, though with different magnitudes and distributions. 

These findings suggest that choice of metric (𝜃 versus SAT) can substantially affect our under-

standing of educational inequities, particularly for gender and certain racial/ethnic comparisons. 

This has important implications for how we measure and interpret group-level differences in out-

comes in educational policy and research. 

<Figure 6 Here> 

Standardizing 𝜃 and the SAT allows us to compare estimates in a regression framework, though 

still reliant on the interval properties of the two scales. If, however, the standardized metric gaps 

are roughly commensurate to the V-gaps, which only rely on ordinal information and the assump-

tion of respective normality, then we can be more confident that the interval properties of the re-

spective metrics do not confound gap estimation. Standardizing then lets us test whether group-

level differences in 𝜃 remain controlling for SAT scores. This latter question is important as it 

speaks to whether 𝜃 inequality is distinct from SAT inequality. We estimate group-level differences 

sequentially to avoid controlling for other group-level differences (e.g., estimating racial/ethnic 
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differences controlling for economic differences). Results shown in Table 7 reveal several key 

patterns. 

First, the standardized differences largely align with the ordinal gaps shown in Figure 6. For in-

stance, gender differences are more pronounced in 𝜃 (-0.413 SD) than in SAT (-0.062 SD). Unsur-

prisingly, since SAT scores do not appear to be correlated with gender, these differences persist 

even after controlling for SAT scores (-0.369 SD), suggesting that male and female students with 

equivalent SAT scores show substantially different course-taking and performance patterns. 

Racial/ethnic differences show complex patterns. While Asian students show similar advantages 

over White students in both 𝜃 (0.678 SD) and SAT (0.687 SD), a significant difference remains 

after controlling for SAT (0.202 SD). Black and Hispanic students show larger disadvantages in 

SAT (-0.763 SD and -0.651 SD respectively) than in 𝜃 (-0.616 SD and -0.440 SD). However, after 

controlling for SAT scores, the Black-White gap substantially narrows (-0.088 SD) and the His-

panic-White gap becomes statistically indistinguishable from zero (0.010 SD). 

Other notable findings include similar socioeconomic gaps across measures (-0.618 SD in 𝜃, -

0.633 SD in SAT) with a persistent gap even after controlling for SAT (-0.183 SD). Students with 

disabilities show larger gaps in SAT (-1.039 SD) compared to 𝜃 (-0.748 SD), with no significant 

difference after controlling for SAT. English language learners show smaller gaps in 𝜃 (-0.158 SD) 

compared to SAT (-0.389 SD) and, notably, show positive differences after controlling for SAT 

(0.121 SD), suggesting stronger course performance than their SAT scores would predict. 

<Table 7 Here> 

Discussion 
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Our findings suggest several promising directions for future research to enhance and validate tran-

script-based measures of student achievement. If estimation challenges can be overcome (Wang et 

al., 2020), random-effects differential item functioning models (Muthén & Asparouhov, 2018; 

Shear, 2018) could illuminate how course difficulty varies across educational contexts, while mul-

tidimensional IRT approaches (Reckase, 2009) might better capture domain-specific strengths. 

One could also explore the extent to which selection models (Du et al., 2022) might be applied to 

both further mitigate selection effects and model them as a formal phenomenon that can be studied 

unto itself. Perhaps most critically, research examining how 𝜃 aligns with admissions officers' 

holistic transcript evaluations could validate whether our quantitative measure captures the latent 

construct that experienced evaluators assess qualitatively. Such studies could employ forced-

choice comparisons or conjoint analyses to identify where algorithmic and human assessments 

diverge, particularly for historically marginalized groups. 

The policy implications of our findings warrant careful consideration. While 𝜃 demonstrates su-

perior predictive validity compared to GPA, its potential application in high-stakes decisions like 

college admissions, or assignment to program benefits, as in the Texas Top 10 Plan, requires ex-

treme caution. Campbell's law suggests that formalizing 𝜃 as an admissions criterion could distort 

the very behaviors it aims to measure; for example, it may exaggerate already prevalent grade 

inflation patterns (Goldhaber and Goodman Young, 2024; Tyner and Gershenson, 2020). Addition-

ally, differential access to advanced coursework means 𝜃 may reflect opportunity as much as 

achievement, though this concern applies to standardized assessments also and may be more policy 

malleable. Nevertheless, our results indicate that transcript data contain valuable information about 

student preparation beyond what standardized tests capture, suggesting careful consideration of 

how to incorporate this information while mitigating potential adverse effects. 
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Several important limitations constrain interpretation of our results. First, 𝜃 measures transcript 

strength rather than underlying ability - it cannot disentangle student capability from course avail-

ability or preference-based selection. Second, while GPA's interval-scale properties are highly 

questionable (Bond and Lang, 2013; Domingue, 2014), 𝜃's interval scaling depends on model fit, 

an area requiring further psychometric investigation. Third, non-random grade inflation may bias 

𝜃 estimates in ways that are difficult to anticipate or correct, though this phenomenon, too, is baked 

into transcript data and adjudication relies on admissions officers or codified institutional pro-

cesses, a process that may be less credible or more biased than the formalized approach used here. 

These limitations underscore the importance of triangulating evidence across multiple measures 

and employing nonparametric analyses where possible. 

Conclusion 

This paper demonstrates that IRT methods can extract more information from high school tran-

scripts than traditional GPA calculations, particularly when students systematically select courses 

based on ability. Our measure shows strong predictive validity for college outcomes while reveal-

ing different patterns of educational inequality than standardized tests. However, significant meth-

odological and practical challenges remain before such measures could be considered for high-

stakes applications. Future work should focus on understanding how transcript-based measures 

relate to expert judgment, vary across contexts, and might be made robust to strategic behavior. 

While our findings suggest promising directions for both research and practice, they also highlight 

the complexity of measuring and comparing student achievement across diverse educational set-

tings. 
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Tables 

Table 1. Descriptive Statistics Analytic Sample 

 
Mean SD 

Asian  0.04 0.20 

Black 0.30 0.46 

Hispanic 0.15 0.36 

White 0.48 0.50 

Low-Income 0.34 0.47 

SWD 0.13 0.33 

ELL 0.13 0.34 

Male 0.49 0.50 

SAT - Math 476.42 100.33 

SAT – ELA* 488.76 99.54 

GPA  2.91 0.73 

N=43,767; SAT-ELA sample size is 43,744 
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Table 2. Courses, Course GPA and Enrollment, Top 5% Courses 

SCED Course Course Name Mean GPA Enrolled 

8051 Health Education 3.2 39850 

8001 Physical Education 3.6 38488 

3051 Biology 2.7 37717 

1001 English/Language Arts I (9th grade) 2.8 36703 

1002 English/Language Arts II (10th grade) 2.7 35229 

24053 Spanish II 2.9 31838 

3101 Chemistry 2.7 30062 

24052 Spanish I 3.0 29764 

1003 English/Language Arts III (11th grade) 2.5 27758 

4101 U.S. History Comprehensive 2.8 24165 

2056 Algebra II 2.6 23258 

1004 English/Language Arts IV (12th grade) 2.6 22906 

2072 Geometry 2.7 21377 

4161 Civics 2.8 21299 

4201 Economics 2.7 20140 

4051 World History Overview 2.8 16567 

24054 Spanish III 3.0 16292 

2061 Integrated Math—multi-year equivalent 2.6 16229 

2052 Algebra I 2.5 15401 

3201 Integrated Science 2.6 15222 

2110 Pre-Calculus 2.8 14225 

4103 Modern U.S. History 2.8 12898 

4001 World Geography 2.9 11903 

3159 Physical Science 2.8 11782 

22151 Career Exploration 3.5 11045 

4254 Psychology 3.0 10993 

3151 Physics 3.0 10824 

8152 Drivers Education Class & Lab 3.0 8747 

3053 Anatomy and Physiology 2.9 8343 

2064 Integrated Mathematics III 2.4 7238 

2062 Integrated Mathematics I 2.7 7072 

3001 Earth Science 2.7 6981 

1005 AP English Language and Composition 3.2 6704 

4258 Sociology 3.1 6649 

5154 Visual Arts Comprehensive 3.0 6615 

2201 Probability and Statistics 2.7 6596 

2063 Integrated Mathematics II 2.4 6381 

8005 Fitness/Conditioning Activities 3.4 5866 
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Table 3. Average Course Difficulties by Content Area and AP/IB Designation 

 

Course 

Types 

AP/IB Math- 

AP/IB 

Science-

AP/IB 

Arts- 

AP/IB 

Humani-

ties-AP/IB 

Lan-

guages-

AP/IB 
 

[1] [2] [3] [4] [5] [6] [7] 

Science 0.078 
      

 
(0.143) 

      
Arts -1.005*** 

      

 
(0.137) 

      
Sports -1.021*** 

      

 
(0.180) 

      
Humanities -0.107 

      

 
(0.126) 

      
Languages 0.059 

      

 
(0.143) 

      
AP 

 
1.395*** 1.748*** 1.588*** 0.973*** 1.297*** 0.829*** 

  
(0.137) (0.509) (0.214) (0.281) (0.194) (0.271) 

IB 
 

1.117*** 1.410*** 1.299*** 1.372*** 0.246 1.101*** 

  
(0.168) (0.517) (0.282) (0.358) (0.271) (0.273) 

Constant -0.119 -0.576*** -0.276** -0.375*** -1.259*** -0.389*** -0.247*** 

  (0.102) (0.042) (0.119) (0.086) (0.074) (0.067) (0.085) 

Observations 411 411 62 63 80 112 65 

Note: Reference category is Math in [1], Non-AP/IB in [2], and Non-AP/IB Subject Area in [3]--[7]. Esti-

mates based on meta-analytic regressions, inverse variance weighted by the standard error of the course 

difficulty. * 0.1 ** 0.05 *** 0.01 
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Table 4. SAT and 𝜽̂Alignment and Departure: Transcript Case Study 

  High SAT - High 

Theta 

High SAT - Low 

Theta 

Low SAT - High 

Theta 
Low SAT - Low Theta 

  

Math=583;ELA=595; 

Theta=2.0;N=12,477 

Math=531;ELA=552; 

Theta=-1.2;N=2,067 

Math=405;ELA=422; 

Theta=0.8;N=1,867 

Math=381;ELA=391; 

Theta=-1.6;N=12,302 

 Difficulty GPA % Taken GPA % Taken GPA % Taken GPA % Taken 

Physical Education -1.63 3.94 90% 3.42 88% 3.82 86% 3.05 86% 

Health Education -1.03 3.84 93% 2.82 91% 3.70 87% 2.50 89% 

Spanish I -0.79 3.77 59% 2.44 62% 3.59 72% 2.17 75% 

U.S. History  -0.59 3.71 46% 2.38 58% 3.36 51% 1.94 63% 

Spanish II -0.58 3.72 70% 2.28 69% 3.52 74% 2.12 74% 

ELA III (11th grade) -0.54 3.60 36% 2.03 70% 3.35 70% 1.82 83% 

ELA I (9th grade) -0.53 3.62 79% 2.25 86% 3.25 82% 1.97 87% 

ELA II (10th grade) -0.50 3.60 70% 2.16 84% 3.35 79% 1.98 88% 

Biology -0.44 3.65 83% 2.26 85% 3.20 87% 1.86 88% 

Algebra II -0.26 3.51 52% 2.04 51% 3.25 56% 1.76 52% 

Chemistry -0.16 3.52 78% 1.95 72% 3.16 70% 1.72 55% 

Pre-Calculus 0.50 3.37 55% 1.79 36% 2.92 31% 1.81 8% 

AP Psychology 0.58 3.47 25% 1.72 11% 2.99 8% 1.66 2% 

AP English Language 

and Comp. 0.82 3.54 36% 1.84 9% 3.20 8% 1.94 2% 

AP English Literature 

and Comp. 0.86 3.54 21% 1.72 5% 3.08 5% 1.77 1% 

AP U.S. History 0.87 3.48 32% 1.62 9% 2.94 6% 1.40 1% 

AP U.S. Govt and Poli-

tics 0.90 3.43 11% 1.63 4% 3.09 2% 1.70 1% 

Calculus 0.97 3.35 24% 1.88 8% 2.94 3% 2.08 0% 

AP Biology 1.03 3.48 21% 1.60 5% 3.05 3% 1.59 1% 

AP Statistics 1.18 3.42 24% 1.56 5% 2.97 2% 1.65 0% 

AP Chemistry 1.39 3.51 13% 0.90 1% 3.18 1% 1.29 0% 

AP Calculus AB 1.58 3.33 24% 1.35 4% 2.97 2% 1.88 0% 
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Note: Each group is based on the top two quintiles of standardized average Math and ELA SAT and Theta. We define quadrants as (i) highest two 

quintiles SAT and Theta; (ii) highest two quintiles SAT and lowest two quintiles of Theta; (iii) lowest two quintiles SAT and highest two quintiles 

of Theta; (iv) lowest two quintiles of SAT and Theta. Quadrants are not equally representative of high and low scoring SAT/Theta students because 

these two variables are correlated. High/high and low/low are more comprised of higher (lower) performing students, whereas high/low and 

low/high are more likely to represent the average student. In our sample, about 100 points in the SAT scale corresponds to 1 standard deviation 

meaning that high/low SAT groups are nearly 2 full standard deviation apart. 1.9 points of the Theta scale corresponds to 1 standard deviation 

meaning that high/low Theta groups are about 1.6 standard deviations apart. Courses presented are limited to those with at least 50% of students 

having taken (among students in these four quadrants), or an AP course with at least 5% participation, or a Pre-Calculus or Calculus course.  
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Table 5. Relationship between GPA, 𝜽̂, and Mean Math and ELA SAT Scores on College-
Going Behavior 

 Average Graduate Earnings College Tier 2- vs 4-Year Degree 

Panel A: GPA and Theta Separately 

GPA  6291.18*** 
 

2.37*** 
 

2.85*** 
 

 (94.94) 
 

(0.03) 
 

(0.09) 
 

SAT  6128.41*** 5131.77*** 1.91*** 1.75*** 1.66*** 1.48*** 

 (94.91) (102.34) (0.02) (0.02) (0.05) (0.04) 

Theta  
 

7148.40*** 
 

2.50*** 
 

3.21*** 

  
 

(102.51) 
 

(0.04) 
 

(0.11) 

N 41286 43767 8395 

Theta = GPA  0.000 0.000 0.000 

SAT1 = SAT2  0.000 0.000 0.000 

Panel B: Theta Conditional on GPA {2.0, 2.5, 3.0, 3.5} 

Theta  28979.89*** 31.46*** 
 

123.80***  

 (3904.82) 
 

(17.44) 
 

(159.09)  
SAT  3566.13*** 

 
1.53*** 

 
1.10  

  (503.87)   (0.10)   (0.16)   

N 2015   2173   417   

Theta = SAT  0.000 
 

0.000 
 

0.001  

Panel C: Theta Conditional on Rounded GPA {1.0(0.1)4.} 

Theta  25235.01*** 21.88***  20.52***  

 (813.30)  (2.30)  (5.50)  
SAT  4209.41***  1.60***  1.36***  
  (111.68)  (0.02)  (0.04)   

N 41285   43767   8395   

Theta = SAT  0.000  0.000  0.000  
Note: Outcomes - Earnings data are from the Chetty College Report Card and represent median child 

earnings in 2014 for the 1980-1982 birth cohorts, including non-college attendees. College Tier is an 

ordinal variable from 1-5 representing highly selective, selective, non-selective, two-year, and no col-

lege. 2- vs 4-Year College Degree is an ordinal variable indicating whether a student completed a 4-

year degree, 2-year degree, No degree but some college, or no college. Degree completion is restricted 

to the 2017 graduating cohort. For both ordinal outcomes, coefficients are reported as odds ratios. Mod-

els - In Panel A, GPA and Theta scores are standardized and estimated in separate models. We then 

stack the parameter estimates with their variance/covariance matrices to test coefficient equality across 

models. The p-values report two tests: (1) whether Theta and GPA coefficients are equal, and (2) 

whether SAT coefficients differ between Models 1 and 2. In Panel B, we include GPA fixed effects for 

GPAs {2.0(0.5)3.5} following results in Figure 2. The p-value reports whether SAT and Theta coeffi-

cients are equal. In Panel C, we include GPA fixed effects for rounded GPA scores {1.0(0.1}4.0}. Ro-

bust standard errors are shown in parentheses. * 0.1 ** 0.05 *** 0.01 
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Table 6. Comparing GPA and 𝜽̂ across three simulation studies. 

 
Study 1 Study 2 Study 3 

𝜃 based on observed    

Mean bias 0.006 0.027 -0.006 

Mean RMSE 0.463 0.376 1.174 

Mean NRMSE 0.130 0.162 0.513 

Mean CCC 0.967 0.979 0.724 

Observed GPA    

Mean bias 0.104 0.181 0.168 

Mean RMSE 0.46 0.439 0.523 

Mean NRMSE 0.832 0.493 0.635 

Mean CCC 0.456 0.815 0.724 

Correlations    

Mean 𝜃 - GPA correlation 0.738 0.967 0.963 

SD 𝜃 - GPA correlation 0.046 0.004 0.007 

NRMSE compared to 𝜃    

Full data 𝜃  0.068 0.078 0.08 

Full data GPA 0.094 0.239 0.243 

Note. Bias = mean signed difference between estimate and criterion. RMSE = 

root-mean-squared difference between estimate and criterion. NRMSE = 

RMSE computed with variables standardized. CCC = concordance correlation 

coefficient (Lin, 1989). Criterion for 𝜃 based on observed data is 𝜃 based on 

full data. Criterion for observed GPA is GPA based on full data. Reported cor-

relations are for values of 𝜃 and GPA based on observed data. NRMSE com-

pared to 𝜃 = NRMSE relative to data-generating true 𝜃 value. These compari-

sons are based on the full-data 𝜃 and GPA.  
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Table 7. Standardized Differences in 𝜽̂, SAT Scores, and Theta Conditional on SAT, by 
Subgroup 

  

Theta Standardized Mean SAT Standard-

ized 

Theta | SAT 

Panel A: Gender    

 Male (vs Female) -0.413*** -0.062*** -0.369*** 

  (0.009) (0.010) (0.006) 

 Constant 0.204*** 0.031*** 0.182*** 

  (0.007) (0.006) (0.005) 

Panel B: Race/Ethnicity    

 Asian (vs White) 0.678*** 0.687*** 0.202*** 

  (0.027) (0.030) (0.020) 

 Black (vs White) -0.616*** -0.763*** -0.088*** 

  (0.010) (0.010) (0.008) 

 Hispanic (vs White) -0.440*** -0.651*** 0.010 

  (0.013) (0.012) (0.010) 

 Other (vs White) -0.244*** -0.253*** -0.069*** 

  (0.030) (0.030) (0.022) 

 Constant 0.230*** 0.306*** 0.018*** 

  (0.007) (0.007) (0.005) 

Panel C: Income    

 Low Income (vs Not) -0.618*** -0.633*** -0.183*** 

  (0.009) (0.009) (0.007) 

 Constant 0.208*** 0.214*** 0.062*** 

  (0.006) (0.006) (0.004) 

Panel D: SWD    

 SWD (vs Not) -0.748*** -1.039*** -0.010 

  (0.010) (0.011) (0.010) 

 Constant 0.095*** 0.132*** 0.001 

  (0.005) (0.005) (0.004) 

Panel E: ELL    

 ELL (vs Not) -0.158*** -0.389*** 0.121*** 

  (0.013) (0.013) (0.010) 

 Constant 0.021*** 0.051*** -0.016*** 

   (0.005) (0.005) (0.004) 

 N 43767 43767 43767 

Note: OLS regression coefficients reported; all models include graduating year fixed effects. Robust 

standard errors are shown in parentheses. Panels A--E represent separate sets of regression models to 

avoid controlling for group-specific factors separate from the subgroups under investigation (e.g., to avoid 

controlling for socioeconomic status in regressions testing for differences by race/ethnicity). * 0.1 ** 0.05 

*** 0.01 
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Figures 

Can Figure 1. Example Partial Credit Model Item Characteristic Curve for an Item with 

Four Response Categories 

 

Note: Figure depicts an example Item Characteristic Curve for the Partial Credit Model (Masters, 1982). 

The curves depict on the y-axis the modeled probability of responding in each of four ordered response 

categories, P1-P4, according to the estimated parameters of the model for a single item. The model’s 

threshold parameters are the points at which the curves for each adjacent pair of categories cross.  The x-

axis is the person ability continuum 𝜃, such that probabilities of responding in each category for a given 

value of 𝜃 can be computed.
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Figure 2. Meta-Analytic Average Difficulty by Course 

 

 

Note: Courses sorted by difficulty. Every 10th course name is labeled. AP and IB courses are bold and 

have three-dot symbol adjacent to course name. Course name colors indicate content: math is colored 

light blue, science is colored dark blue, computer courses colored lavender, humanities colored tan, arts or 

sports colored orange, languages colored maroon, and business colored green.  
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Figure 3. GPA-𝜽̂Relationship 

 

(a)  (b) (c) 

 

Note: Panel (a) shows the variation in Theta for 4 student-level GPAs – 2.0 (N=515), 2.5 

(N=332), 3.0 (N=912), and 3.5 (N=414). For each GPA level, we split Theta into three terciles, 

showing substantial variation in true ability (Theta) even among students who achieve the same 

GPA. Panel (b) shows the difference in course-level participation rates between Tercile 3 and 

Tercile 1 Theta students for each course and GPA score as a function of course difficulty. The 

thin lines are raw data, medium lines are lowess lines estimated with a 0.05 bandwidth, and the 

thick lines are quadratic fits. Positive slopes indicate that Tercile 3 students are more likely to 

take high difficulty courses than Tercile 1 students among students with the same GPA. This con-

sistent pattern across all GPA levels shows that higher-ability students systematically (albeit 

modestly) select into more challenging courses regardless of their GPA level. Given equivalent 

GPA levels between tercile groups (high-low theta), this suggests that selection into more diffi-

cult courses reduces GPA for Tercile 3 students. This result is confirmed in Panel (c), which 

shows how course selection patterns contribute to final GPAs. Starting from any point on the dif-

ficulty scale, taking additional difficult courses tends to lower cumulative GPA. While Tercile 3 

(higher ability) students maintain higher GPAs through easier courses, their systematic selection 

into more difficult courses ultimately brings their GPAs in line with Tercile 1 students, explain-

ing the variation in Theta within GPA bands shown in Panel (a). 
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Figure 4. 𝜽̂-SAT Relationship 

 

Note: Scatter Plot of 2000 randomly selected students’ standardized Theta and Mean Math & 

ELA SAT scores; fitted line based on full sample. Histograms of the two measurements are 

shown alongside the Y- and X-axes.  

Adjusted R2 = 0.51; Implied Correlation of 0.71

100-point increase in SAT associated with 1.28-logit increase in theta
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Figure 5. Comparing Observed GPA and 𝜽̂ from 28 Selected Courses to Equivalents from 
200 Courses without Missingness 

 

Note: Red line = identity line. Blue curve = generalized additive model-based smoothed curve. 

X-axis is based upon computing GPA or estimating 𝜃 using simulated responses to all 200 

courses in simulation. Y-axis is based upon computing GPA/estimating 𝜃 from 28 courses se-

lected from 200 total via ability-based selection mechanism. Study 1: no range restriction on 

course difficulty, includes “core” of 8 courses of which each examinee takes five. Study 2: range 

restriction on course difficulty, includes same core as study 1. Study 3: range restriction on 

course difficulty, with no core. 
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Figure 6. Ordinal Gaps for Various Subgroups in the 𝜽̂and SAT Metrics 

 

Note: AUC estimated via Rocfit following (Ho, 2009 and Reardon & Ho, 2012) and converted to 

a V-statistic. AUC is interpreted as the probability that a randomly selected student in group g1 

(e.g., male) in Theta or SAT metric scores higher than randomly selected student in group g2 

(e.g., female). V-statistic can be interpreted as standardized mean difference between the groups 

of students under assumption of respective normality. The difference in the two AUCs is con-

ducted using the Delong, et al. (1988) test and the p-value of that test is reported in each figure 

panel title. .  
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Technical Appendices 

Appendix A: IRT Model Fit Results 

Model Results 

The model converged after 516 iterations. Here, we present several pieces of information summa-

rizing the results of model fitting in terms of the measurement precision of 𝜃 as well as the appro-

priateness of the model for the data. 

Person and item reliability 

One of the most important considerations when using student-level scores in quantitative research 

is the reliability of the scores – the proportion of variance in the scores attributable to “true” un-

derlying variance in the construct of measurement, rather than random measurement error. The 

notion of reliability has its roots in classical test theory (CTT) and is often described in reference 

to the canonical CTT formula 𝑋 = 𝑇 + 𝐸, referring to observed scores (X) being the sum of the 

true score T and an uncorrelated random error E. Reliability in CTT, given the conceptual defini-

tion above, would be equal to 1 − 𝜎𝐸
2/𝜎𝑥

2 . While this cannot be computed directly given that the 

terms in 𝑋 = 𝑇 + 𝐸 are unknowable, many approaches to estimating reliability exist (Cronbach, 

1951; Guttman, 1945; etc.). 

 The CTT conceptualization implies a constant error term that is the same for all individuals, but 

in IRT measurement precision, quantified as the standard error of 𝜃, changes for different values 

of 𝜃 and, in our case, as a function of how many and which courses a student took (more courses, 

and the difficulty of those courses being closer to the student’s ability, will produce a smaller 

standard error). Still, it is critically important to know that when we order students by 𝜃, we are 

ordering them on a variable that is not overly error-laden; an excess of measurement error can lead 

to lower power to detect group-level differences, as well as create false positives in multiple re-

gression (Shear & Zumbo, 2013). To that end, we report what Chalmers (2012) refers to as the 

empirical reliability of 𝜃, 𝑟𝑥𝑥, calculated as: 

𝑟𝑥𝑥 = 1 −
𝑆𝐸𝑀̅̅ ̅̅ ̅̅ 2

𝜎
𝜃̂
2 + 𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅

=
𝜎𝜃̂

2

𝜎
𝜃̂
2 + 𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅

 
(A2) 
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where 𝜎𝜃̂
2 is the variance of 𝜃 and 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  is the mean standard error of 𝜃. This is very similar to the 

CTT conceptualization of reliability; to get the equivalent of E, we marginalize over the many 

unique values of the standard error. For our measurement model and population, 𝑟𝑥𝑥 is equal to 

0.948, indicating that ~95% of the variance in 𝜃 is not attributable to random measurement error. 

Given that 0.7 is often cited as a minimum reliability to use scores from an instrument in research 

(Bandalos, 2018), our measure more than exceeds common standards for reliability.  

Part of our analysis of the results of this model fitting exercise below involves ordering courses by 

their difficulty (average threshold) below. Just as score reliability is important when using scores, 

so too is the reliability of the difficulties quite important when one wants to order items by their 

difficulty. To that end, we also report the reliability of our threshold parameters, representing the 

proportion of variance in the item parameters not attributable to error. Here, empirical reliability 

is 0.879, again indicating that error is not adding an undue amount of noise into our analyses of 

course difficulty below. However, as detailed below, we use an inverse variance-weighted mean 

threshold to represent course difficulty for the purpose of ordering courses, based upon the obser-

vation that thresholds are estimated with widely varying error variances as a function of course-

specific grade distributions and sample sizes. 

Person and item-side parameter distributions 

One of the most common ways of making sense of the relationship between item difficulty and 

person ability when using Rasch-type IRT models is a plot often referred to as a Wright Map (these 

are described in detail in e.g. Bond & Fox, 2015; Wilson, 2023). A Wright Map plots item diffi-

culties as individual points, and the 𝜃 distribution as a histogram, on opposite sides of the same 

axis representing the logit scale (recall that ability and difficulty estimates are on a common scale). 

A Wright Map is not feasible for the main model used in this study because of the number of 

courses in the model (742 producing 2549 total threshold parameters). We therefore present a 

slightly modified Wright Map below in Figure A1. Here, we present parallel plots of the 𝜃 distri-

bution and the distribution of threshold parameters, color-coded by threshold. This figure indicates 

two key findings underscoring the plausibility of the measurement model. First, the spread of the 

two distributions is similar, indicating that there are courses in which even students who struggle 

the most academically are quite likely to earn at least a C, and courses in which all but the most 

academically successful struggle to earn an A. Second, the color-coding of the threshold 
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parameters indicates that the thresholds are generally ordered as expected in the aggregate (that is, 

first thresholds are generally easier to pass than second thresholds, which are in turn easier than 

the third); this is not guaranteed by the model itself (Andrich, 2005), but is desirable for the task 

of ordering and interpreting the difficulties of items.  

That said, 45.3% of the courses used in our analytic sample did have at least one disordered thresh-

old, meaning that 𝜏𝑖1 > 𝜏𝑖2 ,𝜏𝑖2 > 𝜏𝑖3, or 𝜏𝑖3 > 𝜏𝑖4. It is important to emphasize that a disordered 

threshold does not typically indicate that the higher grade in that course is, in fact, easier to achieve 

than the lower grade. Rather, disordered thresholds are often a result of responses in one of the 

categories for which there is a disordered threshold being very infrequent. To illustrate how a dis-

ordered threshold can result from low response frequencies in a middle category, we present Figure 

A2. This shows the ICC for one of the courses in our model that had disordered thresholds. As is 

the case for most disordered thresholds, the disordering is a function of low frequency of the sec-

ond-lowest response category (a course grade of D). In fact, when one limits the inspection of 

threshold ordering to just 𝜏𝑖2 through 𝜏𝑖4, the percentage of courses with a disordered threshold is 

just 11.0%. Given our intent to represent the data as an external reader would see it via the PCM, 

we opted not to recode any course grades, and to proceed with some disordering of the first thresh-

old. Ultimately, we note the existence of these disordered thresholds, but do not consider them 

problematic for measurement, in line with Adams et al. (2012). 

Figure A1. Score and Item Parameter Distributions. 
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Model-data fit 

When using Rasch-type models, it is quite important to ensure that the model is appropriate for 

the data, a task typically approached at the item level via item fit statistics (Bond & Fox, 2015; Wu 

& Adams, 2013). We investigated model-data fit from two angles. First, we computed and re-

viewed the mean-square fit statistic known as information-weighted fit, or “infit” in the Rasch 

tradition. Briefly, infit is a fit statistic based upon mean squared standardized residuals of item 

responses, with an expected value of 1 where values above 1 indicate under-fit to the measurement 

model (i.e. poor fit) and values below 1 indicate over-fit to the model (i.e. data that are too pre-

dictable and do not contribute much information to the model). Values above 1.5 are generally 

considered concerning (Linacre, 2002), while values below 1, no matter how low, are generally 

not considered an issue in secondary data analysis where it does not make sense or is not possible 

to add or remove items; such items are inefficient from a measurement perspective but not consid-

ered problematic (Wright & Linacre, 1994). Of the 742 courses, only 19 had infit values above 

1.5, indicating that the model is generally appropriate for the data. An unweighted version of infit 

that is more sensitive to outliers, “outfit” (for outright or outlier-sensitive fit), was also computed, 

with 47 courses producing values above 1.5. In short, the data appear to fit the PCM well. 

However, traditional Rasch fit statistics have been criticized as being sample size-dependent (Mül-

ler, 2020; Wu & Adams, 2013), and their practical significance is not always clear, especially in 

Figure A2. Example Partial Credit Model Item Characteristic Curve for an Item with Disordered Thresh-

olds Due to Low Response Frequency 
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our dataset where different courses were taken by widely differing numbers of students and the 

number of items is far larger than one would find on a typical educational test. To validate our 

claim from our outfit analysis that item fit is generally acceptable, we also use a plausible values 

imputation-based fit analysis (Chalmers & Ng, 2017 introduce and outline this approach; for brev-

ity, we refer readers to this paper) to assess the practical significance of whatever item misfit does 

exist in our data. The analysis is based on the Yen’s 𝑄1 fit statistic (Yen, 1981), with plausible 

values imputations used to account for measurement error in 𝜃. As implemented in mirt, this pro-

cedure produces a key measure of the practical significance of item misfit, an item-specific root 

mean square error of approximation (RMSEA) value. Following prior work using RMSEA to as-

sess item-level practical significance of misfit (Oliveri & Von Davier, 2011), we consider a value 

of 0.1 or higher to be cause for concern. By this measure, just 23 courses misfit the model at a 

practically significant level (and only 26 misfit at the more stringent cutoff of 0.05), indicating that 

misfit is likely negligible for the purposes of analyzing item parameters and 𝜃s.  

Sensitivity to population and modeling choices 

To devise the approach outlined above, several times we had to choose between two (or more) 

approaches to a question with no clear answer. Specifically, we note the choices to (1) take the 

mean score from multiple course attempts, (2) exclude students with no SAT score from the model 

fitting process, and (3) use the somewhat more restrictive PCM instead of the more flexible Gen-

eralized Partial Credit Model (Muraki, 1992) or Graded Response Model (Samejima, 1969). As a 

sensitivity check, we fit these alternate IRT models and changed our rule for multiple courses to 

keep only the highest grade. We also ran our main model including students without SAT scores. 

We did so to assess the extent to which these choices impacted the 𝜃 scores that we analyze in the 

main study. We found Pearson correlations between all sets of 𝜃 that were above 0.98, indicating 

that even if we had made different choices in our measurement procedure, we likely would have 

arrived at very similar results. The more complex generalized PCM and Graded Response Model 

also produced very unstable (i.e. large standard errors) discrimination parameters for many of the 

courses (mainly those with lower enrollment), calling into question the value of the more flexible 

models. 
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Appendix B: Grade Inflation  

Figure B1. Average School-Level GPA in Calculus Courses and Average Theta, by Math 

SAT Scores  

 

Note: This figure presents school-level variation in Calculus performance and estimated student 

ability. Each panel plots outcomes against Math SAT scores for two groups of schools - those 

with the highest (blue) and lowest (orange) residual variation in Calculus GPA after controlling 

for Math SAT, with markers representing individual schools. The left panel shows mean Calculus 

GPA by school, while the right panel displays mean estimated 𝜃 (latent transcript strength) for 

the same schools. The systematic gap between high- and low-residual schools at similar Math 

SAT levels raises the possibility of institutional variation in grading standards that is not ex-

plained by differences in student ability as measured by the SAT. This pattern persists, though 

moderates, when examining 𝜃.  
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Estimation Procedure for Course-Level Grade Inflation 

We estimate course-level grade inflation using a leave-one-out procedure that prevents each 

school's own grading practices from influencing its estimated inflation measure. For each school j 

and course c combination, we estimate the following regression using data from all schools except 

school j: 

𝑦𝑖𝑠𝑐 = 𝛽0 + 𝛽1𝑆𝐴𝑇𝑖
𝐸𝐿𝐴 + 𝛽2𝑆𝐴𝑇𝑖

𝑀𝐴𝑇𝐻 + 𝜀𝑖𝑠𝑐 

where: 

• 𝑦𝑖𝑠𝑐 is the course grade for student i in school s and course c 

• 𝑆𝐴𝑇𝑖
𝐸𝐿𝐴 and 𝑆𝐴𝑇𝑖

𝑀𝐴𝑇𝐻 are the student's SAT verbal and mathematics scores 

• 𝜀𝑖𝑠𝑐 is the error term 

For each student i in school j and course c, we then compute: 

1) The predicted grade: ŷ𝑖𝑗𝑐 = 𝛽̂0 + 𝛽̂1𝑆𝐴𝑇𝑖
𝐸𝐿𝐴 + 𝛽̂2𝑆𝐴𝑇𝑖

𝑀𝐴𝑇𝐻 

2) The inflation measure: 𝛾𝑖𝑗𝑐 = 𝑦𝑖𝑗𝑐 − ŷ𝑖𝑗𝑐 

3) This approach yields a school-course specific measure of grade inflation that: 

a) Controls for student preparation as measured by SAT scores 

b) Avoids mechanical correlation with a school's own grading practices through the leave-

one-out design 

c) Allows for course-specific relationships between student preparation and expected perfor-

mance 

The resulting 𝛾𝑖𝑗𝑐 represents the degree to which grades in course c at school j deviate from what 

would be predicted based on student SAT scores, using the relationship between SAT scores and 

grades established at other schools. 

We then examine how our estimated measure of grade inflation or a student’s mean SAT score 

more strongly relates to latent transcript strength (𝜃) through a series of regressions, adding addi-

tional fixed effects (results in Table A1). The base specification is: 

𝜃𝑖 = 𝛼 + 𝛽1𝐼𝑖 + 𝛽2𝑆𝑖 + 𝛾𝑐 + 𝜀𝑖  

where 𝜃𝑖 is the standardized Theta score for student i, 𝐼𝑖 is their standardized grade inflation expo-

sure, 𝑆𝑖 is the mean SAT score, and 𝛾𝑐 is graduation cohort year fixed effect. We estimate models 

with inflation alone and then add in the SAT score (Table A1, columns [1] and [2]).  

Then, we include school fixed effects (Table A1, columns [3] and [4]) to test whether the relative 

influence of grade inflation is changed when controlling for between school differences. Then, we 

include school-by-course fixed effects (Table A1, columns [5] and [6]) to test whether the relative 

influence of grade inflation is changed when controlling for between school-by-course differences.  

The results reveal several key findings: 



60 

1. Grade inflation consistently predicts Theta with coefficients ranging from 0.348 to 0.392 

standard deviations 

2. SAT scores show stronger predictive power, with coefficients between 0.694 and 0.735 

standard deviations 

3. Semi-partial correlations indicate that SAT scores explain more unique variance in Theta 

than grade inflation (0.321-0.432 vs 0.137-0.218) 

4. The relationship between grade inflation and Theta remains robust across all specifications, 

including our most stringent model with school-by-course fixed effects, suggesting that 

cross school and cross school-course grading practices are not responsible for the influence 

of grade inflation on theta.  

This analysis provides evidence that grade inflation is likely to have some influence on latent tran-

script strength, an independent measure of student ability via the SAT more closely tracks the 

quality of a student’s coursetaking history.  
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Table B1. College Outcomes for Top/Bottom Quintiles of Theta / SAT Distribution 

 

Average Graduate 

Earnings 
College Tier 

2- vs 4-Year 

Degree 

Panel A: Residual Theta Groups from Figure 3 and Table 4  

θq45, SATq12 11667.20*** 4.34*** 
 

3.82*** 
 

 
(395.40) 

 
(0.19) 

 
(0.42) 

 
θ q12, SAT q45 6896.50*** 2.39*** 

 
1.92*** 

 

 
(359.96) 

 
(0.11) 

 
(0.17) 

 
θq45, SATq45 27565.59*** 18.88*** 20.75*** 

 
(189.32) 

 
(0.56) 

 
(1.45) 

 
N 27333   28635   5523   

θq45, SAT q12 = θq12, SAT q45 0.000 
 

0.000 
 

0.000 
 

θq45, SAT q12 = θq45, SAT q45 0.000 
 

0.000 
 

0.000 
 

Note: Outcomes - Earnings data are from the Chetty College Report Card and represent me-

dian child earnings in 2014 for the 1980-1982 birth cohorts, including non-college attendees. 

College Tier is an ordinal variable from 1-5 representing highly selective, selective, non-selec-

tive, two-year, and no college. 2- vs 4-Year College Degree is an ordinal variable indicating 

whether a student completed a 4-year degree, 2-year degree, No degree but some college, or no 

college. Degree completion is restricted to the 2017 graduating cohort. For both ordinal out-

comes, coefficients are reported as odds ratios. Models - In Panel A, we use students identified 

from Table 4, with the bottom quintile Theta and SAT students as the reference group. The p-

values report whether the high Theta/low SAT group is different from the low Theta/high SAT 

and high Theta/high SAT groups, respectively. Robust standard errors are shown in parenthe-

ses. 
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Table C1. Relationship between Grade Inflation and 𝜽̂ 

 
[1] [2] [3] [4] [5] [6] 

Inflation (Std.) 0.362*** 0.364*** 0.353*** 0.348*** 0.392*** 0.384*** 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Mean SAT (Std.) 
 

0.718*** 
 

0.735*** 
 

0.694*** 

  
(0.001) 

 
(0.001) 

 
(0.001) 

N 1076252 1076252 1076252 1076252 1073812 1073812 

Inflation Semi-Partial Correlation 0.187 0.139 0.182 0.137 0.218 0.166 

SAT Semi-Partial Correlation    0.432   0.387   0.321 

Grad Year FE X X X X X X 

School FE 
  

X X X X 

School*SCED FE         X X 

Note: All outcomes are standardized Theta scores. Models [1]-[2] include graduate year fixed effects, models [3]-[4] 

add school fixed effects, and models [5]-[6] include school-by-SCED course fixed effects (e.g., pre-calculus courses in 

specific schools). Robust standard errors are shown in parentheses. * 0.1 ** 0.05 *** 0.01  
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Appendix D: Simulation Study Details 

This appendix provides the details of the three simulations studies used to explore the performance 

of our IRT-based approach under non-random selection. As noted in the main body, to evaluate 

how student course selection patterns might affect our 𝜃  estimates, we conduct three simulation 

studies varying in their data generating processes. The simulation generated item responses for 

1,000 students across 200 courses (items) with four ordinal response categories (0-3, correspond-

ing to grades D through A). True student ability (θ) was drawn from a normal distribution 

𝜃~𝑁(0, 2), chosen to approximate the empirically observed ability distribution in our real data 

(𝜃~𝑁(0, 2.7)). 

For each course, three threshold parameters were generated by first drawing random values from 

U(0.5,1.5) and taking their cumulative sum. These thresholds were then centered by subtracting 

their mean and shifted by a random uniform draw from U(-3,1) to create variation in overall course 

difficulty. The final thresholds were multiplied by -1 to maintain the convention that higher 𝜃 

values correspond to higher probability of better grades. 

Course difficulties were calculated as the mean of their three threshold parameters, and step pa-

rameters were derived as the difference between each threshold and the course's mean difficulty. 

Response probabilities were then generated following the Partial Credit Model, where the log-odds 

of achieving each successive grade level is determined by the difference between student ability 

and the sum of the course difficulty and relevant step parameters. Random uniform draws were 

used to convert these probabilities into discrete grade responses. 

To simulate realistic course-taking patterns, we retained only 28 courses per student, selected based 

on the proximity between student ability and course difficulty. Specifically, for each student, we 

identified the 1.5 × 28 courses with difficulty levels closest to their ability level, then randomly 

selected 28 of these courses to create the final response matrix – a probabilistic but strong selection 

mechanism. 

The studies vary in the distribution of course difficulty relative to 𝜃 and the mechanism by which 

courses are selected at the student level. In all cases, the average course difficulty is lower than the 

average 𝜃, reflecting the distributions found when we fit the model to real data. These simulations 

are intended to outline the extent to which key aspects of the course selection process influence 𝜃, 

but are simplified relative to our real data analysis in ways that facilitate faster model estimation, 

such as the smaller sample size and items being on a four-point scale instead of five. Given the 

non-trivial amount of time needed to run each replication of each study, we run 50 replications per 

condition. 

Item difficulty distributions and thresholds 

In study 1, the item difficulty distribution is 𝑈(-5, 5), representing an effectively unrestricted dif-

ficulty range in which all students can select into courses close to their 𝜃. In study 2 and 3, it is 

𝑈(-3, 1), meaning that the courses are on average slightly easy compared to the mean 𝜃, and that 

there is range restriction for very high and low 𝜃 students selecting into courses adjacent to their 
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𝜃. In all cases, courses are scored on a 0-3 scale. The thresholds are spaced from one another via 

random magnitudes drawn from the 𝑈(0.5, 1.5) distribution. 

Course selection mechanism 

In all three studies, each student is simulated as having taken 28 courses of the 200 total. Scores 

in all courses are simulated according to each examinee’s 𝜃 and the item’s threshold parameters, 

after which selection is applied by which 172 of the scores are converted to missing values. The 

selection mechanisms are as follows. 

For studies 1 and 2, a “core” of 8 courses is chosen at random from the 10th through 60th percentile 

of course difficulty. Every student is then selected into five of these eight courses at random. The 

remaining 23 courses for each student are the 23 courses whose difficulty is closest (based on 

absolute difference) to that student’s 𝜃 (representing an extremely strong/deterministic selection 

mechanism). For study 3, the first step is skipped – there is no core. Each student just takes the 28 

courses whose difficulty is closest to their 𝜃. All scenarios therefore represent a level of selection 

that is as extreme as possible. 

Evaluation 

For each study, we compare the extent to which (a) 𝜃 based on the 28 non-randomly selected 

courses recovers 𝜃 based on all 200 courses to (b) the extent to which GPA from the 28 courses 

recovers GPA from all 200. For each study, we compute and report several comparison statistics, 

as follows.  

Bias 

Bias is the mean signed difference between an estimate of a “gold standard” value and that gold 

standard value. It tells us the extent to which the estimate is systematically too high or too low 

across the entire distribution of observed values. For a replication i of a condition c, bias for 𝜃 

estimates is computed as: 

𝑏𝑖𝑎𝑠𝜃𝑐𝑖 =
∑ 𝜃𝑝,𝑜𝑏𝑠 − 𝜃𝑝,𝑓𝑢𝑙𝑙

𝑛
𝑝=1

𝑛
 

 

(B1) 

where p indexes students, n is the number of students in the replication (in this case 1000), 𝜃𝑝,𝑜𝑏𝑠 

is student p’s estimated 𝜃 based on 28 selected courses, and 𝜃𝑝,𝑓𝑢𝑙𝑙 is their estimated 𝜃 based on 

all 200 courses. Analogously, bias for GPA is computed as follows: 

𝑏𝑖𝑎𝑠𝐺𝑃𝐴𝑐𝑖 =
∑ 𝐺𝑃𝐴𝑝,𝑜𝑏𝑠 − 𝐺𝑃𝐴𝑝,𝑓𝑢𝑙𝑙

𝑛
𝑝=1

𝑛
 

 

(B2) 

We report the mean of these two measures of bias for the 50 replications of each simulation con-

dition. 

Root-mean-square error 

Root-mean-square error (RMSE) is the square root of the average squared difference between an 

estimate and its gold standard. It tells us how far off an estimate is from its gold standard in absolute 
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terms across the entire distribution of observed values. Carrying forward the subscripts from equa-

tions B1 and B2, RMSE for 𝜃 and GPA are: 

𝑅𝑀𝑆𝐸𝜃𝑐𝑖 = √
∑ (𝜃𝑝,𝑜𝑏𝑠 − 𝜃𝑝,𝑓𝑢𝑙𝑙)

2𝑛
𝑝=1

𝑛
 

 

(B3) 

𝑅𝑀𝑆𝐸𝐺𝑃𝐴𝑐𝑖 = √
∑ (𝐺𝑃𝐴𝑝,𝑜𝑏𝑠 − 𝐺𝑃𝐴𝑝,𝑓𝑢𝑙𝑙)

2𝑛
𝑝=1

𝑛
 

 

(B4) 

Like bias, we report the mean RMSE for both 𝜃 and GPA for the 50 replications of each condition.  

Normalized root-mean-square error 

Normalized RMSE (NRMSE) divides the RMSE by the standard deviation of the observations, 

facilitating comparison of the RMSEs for 𝜃 and GPA that are otherwise on different scales. This is 

also reported as a mean across 50 replications for each condition. 

Concordance correlation coefficient 

The concordance correlation coefficient (CCC) is a measure of agreement between two variables 

that accounts for both their Pearson correlation and the differences in the first and second moments 

of their distributions. It accounts for both precision and accuracy in comparing the variables. We 

report the CCC for 𝜃 based on the 28 non-randomly selected courses with 𝜃 based on all 200 

courses, and the CCC for GPA based on selected and full courses as well. We report the means of 

these two CCCs across all 50 replications of each condition. 

Correlations between observed scores 

We also report mean Pearson correlations between the “observed” 𝜃 and GPA (i.e. based on 28 

courses), and the standard deviation of these correlations, across the 50 replications of each con-

dition. 

Recovery of data-generating 𝜃 

Finally, we report the extent to which the standardized “full” (all 200 courses) 𝜃 and GPA recover 

the standardized data-generating 𝜃. Here, we report the NRMSE, but instead of comparing an es-

timate from 28 courses to an estimate from 200, we compared the estimate from 200 to the true 

data-generating 𝜃. We produce this comparison for both 𝜃 based on 200 courses and GPA based 

on 200 courses, with all variables standardized. This represents the extent to which these two ap-

proaches to scoring students’ transcripts differ in their representation of the underlying data-gen-

erating measure of transcript quality, free of selection issues.   
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