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Abstract 

As students are exposed to extreme temperatures with ever-increasing frequency, it is important 

to understand how such exposure affects student learning. In this paper we draw upon detailed 

student achievement data, combined with high-resolution weather records, to paint a clear 

portrait of the effect of temperature on student learning across a six-year period for students in 

Tulsa, Oklahoma. The detailed, longitudinal nature of our data allows us to estimate the effects 

of both test-day and longer-term temperature on student test performance, and to examine how 

the effects of both temperature measures vary across seasons, student background, and the 

distribution of student achievement. Our results show that test-day temperature has no significant 

effect on student test performance in fall or winter, but a clear negative effect on students’ spring 

performance, particularly in math. Second, we find that summer temperature has a positive, 

statistically significant, and substantively meaningful effect on student performance on the fall 

MAP assessment—these effects appear in both math and reading. The results also illustrate that 

90-day temperature affects math performance in winter and spring, but these estimates are 

modest in substantive magnitude. 
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Introduction 

An ever-growing body of research documents that features of the natural environment 

can play a substantial role in shaping students’ achievement and attainment outcomes. Recent 

work shows that students’ educational outcomes are affected by exposure to wildfire smoke 

(Wen & Burke 2022), industrial pollution (Persico & Venator 2021), and vehicle emissions 

(Heissel, Persico, & Simon 2022; Austin, Heutel, & Kreisman 2019). Perhaps most important in 

this line of research, though, is the evidence of local weather conditions, particularly 

temperature, affecting educational outcomes (Park 2022; Park et al. 2020; Graff Zivin, Hsiang 

and Neidell 2018; Park et al. 2021). As climate change increases the frequency with which 

students are exposed to extreme temperatures (Ricke et al. 2018; Robinson et al. 2021), it 

becomes increasingly important to understand how such exposure affects student learning. And 

while some initial progress has been made on this topic, data limitations and unmeasured 

contextual differences have posed hurdles to gaining a nuanced understanding of the impacts of 

local weather conditions on student achievement.  

In this paper we leverage detailed student achievement data combined with high-

resolution weather records to paint a clear portrait of the effect of temperature on student 

learning across a six-year period for students in Tulsa, Oklahoma. Our anonymized student 

achievement data consists of scores on the math and reading portions of the MAP Growth test for 

students enrolled in Tulsa Public Schools (TPS) between the 2014-15 and 2019-20 school years. 

During this six-year period, TPS administered the MAP test three times per school year, once in 

the fall (i.e. September), a second time in the winter (i.e. January), and a third time in the spring 

(i.e. May). Thus, our data contain up to 18 observations for each student, with these observations 

spread across meteorological seasons. We combine these achievement data with weather 

measures derived from the Oklahoma Mesonet, a network of 120 environmental monitoring 
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stations spread across Oklahoma. These stations measure and record a variety of weather 

conditions at five-minute intervals, with archived records available back to the mid-1990s (Brock 

et al. 1995; McPherson et al. 2007).   

The detailed, longitudinal nature of our data allows us to conduct a wide range of 

empirical analyses that explore multiple dimensions of the effects of temperature on student 

learning. First, we estimate the effects of both test-day temperature and long-term temperature 

exposure for students in a single empirical context, defining the latter measure as the average 

temperature over the three-month period leading up to MAP administration. This allows us to 

distinguish the short- and long-term learning effects of temperature using a design that explicitly 

accounts for students’ prior performance on the MAP assessment. Crucially, by estimating these 

effects for students within a single empirical context, we minimize the potential for unmeasured 

contextual factors, such as variation in climate control capabilities or differences in student 

acclimatization, to enter our estimates.   

Second, we exploit the tri-annual administration of the MAP assessment to estimate both 

test-day and long-term temperature effects separately for the fall, winter, and spring 

administrations. In addition to providing direct estimates of seasonal heterogeneity in 

temperature effects, these analyses also shed light on the role of acclimatization as a moderator 

of student learning, particularly for test-day temperature. In Oklahoma, both May and 

September—the months of the respective spring and fall MAP administrations—often have 

exceptionally hot days, but students are much more accustomed to the heat in September than 

they are in May. Thus, we are uniquely able to assess whether the same temperature in different 

months differentially impacts student performance.  
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Third, the richness of our data allows us to explore several potential sources of 

heterogeneity in the effects of temperature. Motivated by the presence of heterogeneous 

temperature effects in prior work (Graff Zivin et al. 2020; Park et al, 2020; Vu 2022), we 

investigate the possibility of variation in temperature effects across students of different racial or 

ethnic backgrounds, by the median income of the zip code in which students reside, and for 

students at different points of the achievement distribution. Together, the results of our analyses 

paint a vivid, multi-dimensional picture of temperature’s effect on student learning and, in doing 

so, propel our understanding of the topic forward.   

To briefly summarize our main results, we first show that test-day temperature has no 

significant effect on student MAP performance in fall or winter, but a clear negative effect on 

students’ spring MAP performance, particularly in math. Second, we find that summer 

temperature has a positive, statistically significant, and substantively meaningful effect on 

student performance on the fall MAP assessment—these effects appear in both math and reading. 

The results also illustrate that 90-day temperature affects math performance in winter and spring, 

but these estimates are modest in substantive magnitude. Finally, our analyses of heterogeneity 

show little meaningful variation by student race/ethnicity or the distribution of student 

achievement. There is some evidence of heterogeneity according to average zip code income 

and, when such variation exists, the impacts are larger among students residing in relatively less 

affluent areas than among students in zip codes with above-average income levels. In the 

concluding section we discuss the implications of these results for research, policy, and practice. 

Weather and Student Achievement 

Our work builds upon findings from a limited set of prior empirical studies examining the 

impacts of temperature, both test-day and longer-term, on student learning. The literature on test-

day temperature reaches disparate conclusions, with studies showing that test-day heat reduces 
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performance among students taking the New York Regents exam (Park 2022), Peabody math test 

(Graff Zivin, Hsiang and Neidell 2018), and college entrance exams in both China (Graff Zivin 

et al. 2020) and Vietnam (Vu 2022), but has no impact on the performance of students taking 

Brazil’s college entrance exam (Li and Patel 2021) or reading and math tests in Australia 

(Johnston et al. 2021). Studies of longer-term temperatures exhibit a similar dynamic, with long-

term heat exposure reducing performance on the Programme for International Student 

Assessment (PISA) (Park et al. 2021) and college entrance exams in South Korea (Cho 2017), 

but leaving student performance on the Peabody assessment unaffected (Graff Zivin, Hsiang and 

Neidell 2018). And analysis of Preliminary Scholastic Aptitude Test (PSAT) data shows student 

performance to be affected by temperatures during the school year, but not during the summer 

(Park et al. 2020).  

On the surface, the empirical literature linking learning and temperature seems varied and 

conflicted. However, the studies comprising this literature estimate different parameters, span 

different meteorological seasons, and are set in disparate educational and geographic contexts. 

Understanding how these differences connect to the heterogeneity observed in the empirical 

literature requires engagement with a range of conceptual considerations that span the 

physiological and behavioral realms, as well as the built environment.  

Physiologically, the literature on heat stress makes clear that prolonged exposure to an 

excessively hot environment disrupts core cognitive abilities (Taylor et al. 2016), including 

memory (Gaoua et al. 2011; Lee et al. 2015) and decision-making (Froom et al. 1993; Coehoorn 

et al. 2020). These physiological disruptions, which motivate most existing empirical work on 

temperature and learning, have the potential to inhibit students’ knowledge retention over the 

course of their school year. Following the same logic, test-day heat could likewise impede 
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students’ knowledge retrieval and application during the period in which they sit for an exam. 

Importantly, though, individuals can become acclimated to environmental conditions after 

extended exposure (Périard, Racinais, and Sawka 2015; Castellani and Young 2016). Such 

acclimatization may, at least to some degree, insulate individuals in certain climates from 

weather impacting their learning, a dynamic that can produce geographic heterogeneity in the 

effect of temperature on student learning. A small amount of prior empirical work provides 

support for this phenomenon. For example, in South Korea, heat had a greater impact on the test 

scores of students in cities with relatively cool summers, compared to their peers residing in 

warmer locales (Cho 2017). Similarly, in the U.S. context, heat produced a disproportionately 

large reduction in performance on math and reading tests for students residing in locations with 

relatively cool average high temperatures (Roach and Whitney 2022). And recent work attributed 

the negative impacts of cold weather on Australian students’ test performance to individuals’ 

acclimatization to hot, but not cold, temperatures (Johnston et al. 2021). More generally, these 

findings illustrate the importance of considering how acclimatization, or its absence, might 

mediate the impact of temperature on student learning.  

Along with physiological reactions, weather can also induce a range of behavioral 

responses. Perhaps most relevant are the studies demonstrating that temperature affects time 

allocation decisions (Graff Zivin and Neidell 2014; Heaney et al. 2019; Fan et al. 2023), with 

individuals least likely to engage in outdoor activities when the ambient temperature is very cold 

or very hot, and most likely to find such activities appealing on pleasantly warm days. The 

literature lacks systematic evidence detailing how weather affects the time-use behavior among 

elementary and secondary school students, but it is self-evident that such effects exist.1 From 

 
1 Evidence from postsecondary contexts indicates that college students reduce study time on hot days and class 

attendance on cold days (Alberto et al. 2021). 
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snow days, to outdoor extracurricular activity cancellations, to district policies specifying the 

weather conditions that trigger indoor recess, there are myriad examples of how weather shapes 

the way that students spend their time. These factors underscore the importance of considering 

how temperature might affect student learning through the mechanism of time allocation.  

Finally, the built environment interacts with weather conditions in ways that, 

theoretically, can both mitigate and exacerbate the impact of weather on student learning. In 

terms of mitigation, the vast majority of classrooms across the country have climate control 

capabilities—heat and air conditioning—and there is evidence that these capabilities can 

significantly reduce the effects of temperature on student performance (Park et al. 2020). 

Classrooms lacking air conditioning are mostly confined to the Northeast, the Upper Midwest, 

and the Pacific Coast. A similar pattern is evident for home air conditioning, with the bulk of 

homes in the South, Southwest, and Plains states having air conditioning while most dwellings in 

the Northeast, Appalachia, Upper Midwest, Mountain West, and Pacific Coast lack cooling 

capabilities (Park et al. 2020). Other features of the built environment also have the potential to 

amplify the impacts of weather conditions. For example, the large amount of pavement and 

roofing material in developed areas contribute to the Urban Heat Island effect (Mohajerani et al. 

1997), a phenomenon in which urban areas exhibit temperatures several degrees higher than 

those observed in outlying areas (Oke 1982). On the flip side, tall buildings can amplify wind, 

resulting in lower wind chills and greater levels of discomfort during the winter (Soligo et al. 

1998). Together, the combination of physiological, behavioral, and physical considerations form 

a strong foundation for expecting the relationship between weather and student learning to vary 

across geographic contexts. 
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Weather and Learning in Tulsa, Oklahoma 

Tulsa, Oklahoma serves as the setting for our empirical inquiry into the effects of weather 

on student learning. Several features of the Tulsa context render it well-suited for this purpose. 

First, in contrast to most past studies on the topic, our focus on a single geographic context 

allows us to clearly characterize the area’s weather and climate and systematically consider how 

the climate is likely to interact with the physiological, behavioral, and physical considerations 

described in the prior section. Second, Tulsa’s weather is highly variable, both within and across 

seasons, which provides an ideal empirical context for analyzing the effects of both test-day and 

longer-term weather. Third, the school district that serves the Tulsa area, Tulsa Public Schools 

(TPS), has long administered benchmark assessments to its students at multiple points during the 

school year. Specifically, since 2014 TPS has administered the MAP Growth assessment, one of 

the most common formative assessments in school districts across the country. In TPS, 

assessment administrations occur in the fall, winter, and spring, a schedule that facilitates our 

analysis of seasonal heterogeneity in the impact of weather on student learning outcomes.  

Tulsa’s climate is characterized as moderate, with long, hot summers that tend to peak in 

late July or early August and generally mild winters. Summers average highs of 93-94 in July 

and August, with almost 75 days with a high above 90 and 11 days that hit the century mark. 

Winter is at its coldest in January and although it can get quite cold—the record low in Tulsa 

history is 16 degrees below zero—winters are generally mild. The average high in January is 

well above freezing at 49 degrees, and Tulsa typically gets less than 9 inches of snow annually. 

Spring and fall can be quite pleasant, but are characterized by their variability, with both very hot 

and cold temperatures possible in these seasons. Moreover, spring is often referred to as “tornado 

season” as April and May often bring severe thunderstorms and the associated hazards of 

tornados, hail, and damaging wind.  
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Tulsa’s climatological profile interacts in important ways with the physiological, 

behavioral, and physical considerations discussed above. Physiologically, the excessive summer 

heat could have the potential to inhibit student cognition and knowledge acquisition and 

retention, but such an impact is mitigated by three major factors. First, and most basically, school 

is not in session for much of the summer, meaning that little in the way of formal learning is 

taking place for many students. Second, during the years spanning our analysis, all schools in 

TPS had renovated air conditioning systems (Davis 2012) and the vast majority of residences 

also had cooling capabilities. These features of the built environment are likely to minimize the 

impact of excessive heat on student learning (Park et al. 2020). Third, excessive heat during the 

summer may, on the margin, spur students to substitute indoor activities for outdoor ones. Given 

the relatively large amount of free time during the summer, it is possible that the indoor activities 

involve relatively more engagement with academically oriented content and knowledge. 

Together, these considerations support scenarios where summer heat could either boost or 

depress student learning—there is no clear theoretical prediction. 

Beyond the summer, excessively hot temperatures are also possible during the fall and 

spring administrations, and we highlight two considerations relevant to these seasons. First, as 

noted above, all TPS schools and almost all student residences have air conditioning, a feature of 

the built environment that mitigates the impacts of heat. Second, even recognizing the 

importance of cooling capabilities, students are much more likely to be acclimated to heat during 

the fall MAP administration than the spring one. Thus, to the extent that temperature impacts 

manifest at all in these seasons, they are much more likely to occur in spring than in fall. 

For winter MAP administrations, many of the same considerations outlined above are 

relevant, including climate control capabilities in schools and residences. Students’ substitution 
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of indoor activities for outdoor ones during periods of cold weather is also potentially pertinent, 

although perhaps less so than in summer. Because school is in session for most of the winter, 

students have relatively less discretionary time to make these time-use tradeoffs. Again, the 

various conceptual considerations do not point to a clear expectation—the question is ultimately 

an empirical one. 

Data and Measures 

We construct our analytic dataset with records from two main sources. First, we draw 

upon administrative records from TPS. These records contain a wide range of information on the 

universe of TPS’ MAP administrations from the 2014-15 to 2019-20 school years.2 Separately 

for reading and math, and structured in a student-by-administration format, the records contain 

an anonymized unique student identifier and detailed information about the student at the time of 

the administration, including an identifier for the school they attend, their sex, racial/ethnic 

identification, disability status, and zip code of their residence. The zip code information is 

particularly important as we use it to connect students to the weather conditions they experience. 

Notably, the use of student identifiers renders these data untraceable to any one individual, 

leaving the test takers themselves anonymous. 

The records also contain information about the administration itself. In addition to the 

school year, the records indicate the season of administration (i.e. Fall, Winter, Spring), the date 

of the administration, students’ scale score and percentile on the assessment, and the amount of 

time taking the test. Our empirical analyses use students’ percentile score on the MAP 

assessment as the primary outcome variable. Together, the TPS records contain comprehensive 

information on all MAP administrations, including information on the student sitting for each 

 
2 For the 2014-15 through 2018-19 school years, TPS records contain information on the fall, winter, and spring 

administrations. For the 2019-20 school year, the records only contain information from the fall and winter 

administrations—the spring administration did not take place because of COVID. 



 11 

administration, the circumstances of the administration, and student performance on the 

assessment. 

 Second, we take advantage of detailed weather records archived at the Oklahoma 

Mesonet. Established in the mid-1990s, the Mesonet is a network of 120 environmental 

monitoring stations spread across the entire state of Oklahoma, with each of the state’s 77 

counties containing at least one station. For Tulsa in particular, we draw upon data from 18 

stations within 50 miles of the city. Each of these stations continually measures a variety of 

weather conditions each day, computing and recording observations at five-minute intervals that 

contain the five-minute averages for a variety of weather conditions, including temperature, wind 

speed, precipitation, dew point, and humidity, among dozens of other measurements. These five-

minute observations are used to calculate a single daily value for each monitored weather 

condition. For example, the archived daily summary of a Mesonet station’s “average air 

temperature” reports the mean of all five-minute averaged air temperature readings on a given 

date. 

We use a four-step process that leverages these detailed, high-frequency Mesonet 

records, which are available back to the mid-1990s, to construct the weather measures in our 

analyses below. First, for each of the 18 stations within 50 miles of Tulsa, we obtained the 

archived daily summary records of average daily air temperature and daily maximum air 

temperature. We pulled these station-level measures for each day from January 1, 2000 through 

the last observed date of MAP administration in the TPS records. Second, we overlayed a grid of 

one-by-one kilometer cells on the land within a 50 mile radius of Tulsa’s geographic centroid 
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and use an inverse distance weighting3 (IDW) technique that leverages the station-by-day 

measures to interpolate a value of each weather measure to each grid cell for each day. That is, 

we generate weather measures spanning the entire Tulsa metropolitan area with high spatial 

resolution. The left-hand panel of Figure 1 illustrates the location of Mesonet stations within 50 

miles of Tulsa. It also situates the region within the broader geography of Oklahoma. The right-

hand panel of the figure zooms in on that 50-mile radius, illustrating the one-by-one kilometer 

grid cells, the borders of zip codes containing at least one student residence, and the geographic 

centroid of each zip code. 

[Insert Figure 1 about here] 

 

Third, for each zip code containing at least one student residence, we extract the full set 

of interpolated daily weather measures for the grid cell containing the geographic centroid of the 

zip code. This extraction provides us with the flexibility to calculate zip code-level weather 

measures at any temporal scale. Fourth, we combine the set of student residential zip codes with 

information on each zip code’s set of MAP testing dates, which we glean from the TPS records, 

and calculate the two main weather measures used in our analysis below: 1) Average test day 

temperature, and 2) The average daily temperature over the 91 days leading up to, and including, 

the day of test administration—we refer to this as our 90-day temperature measure.  

 
3 IDW interpolation predicts the unobserved value of a variable at a spatial location in inverse proportion to its 

distance from other, known values. The IDW estimate at any given location is, accordingly, a weighted average of 

surrounding observed values where spatially closer values exert more influence over the ultimate estimate than those 

farther away (Weber and Englund 1992). In practice, we leveraged the idw function from R package gstat (Pebesma 

2004) in conjunction with other spatial data science tools (Pebesma and Bivand 2023) to interpolate zip code level 

weather predictions from archived Mesonet station data. IDW interpolation via gstat assigns weights as the absolute 

value of the difference between the desired prediction location (a grid cell) and a given observed value, with this 

difference raised to the power of –2 by default (Pebesma and Bivand 2023, Ch. 12). Prior to use in the model, our 

weather observations were linked to station longitudes and latitudes likewise obtained directly from Oklahoma 

Mesonet, thus putting their data structure in conversation with one-by-one kilometer grid cell coordinates in the 

Tulsa area. 
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As the final step in creating our analytic dataset, we merge the zip code-by-test day 

weather measures back into the TPS records of MAP administrations. The end result of this 

process is a dataset structured in a student-by-MAP administration format that contains 

information on student characteristics, performance on the MAP assessment, and measures of 

both test-day average temperature and the mean average daily temperature over roughly three 

months prior to each student MAP administration. Table 1 presents descriptive statistics for our 

dataset. The table illustrates that TPS is a racially diverse district, with about a quarter of 

students identifying as Black, a quarter white, and one-third Hispanic. And about 15 percent of 

students identify as Native American or as multiple races. The MAP administrations are about 

evenly split between the three seasons, although the proportion of spring administrations is 

somewhat lower due to the COVID pandemic precluding spring administrations in 2020. Finally, 

Table 1 illustrates that, on average, TPS students score at the 40th percentile of the national MAP 

distribution. 

Figure 2 presents the distributions of our weather measures for each of the three seasons 

of MAP administration.4 The top panel presents the distributions of average test-day temperature 

separately for the fall, winter, and spring administration. For each season, the panel depicts 

substantial variation in average test-day temperature. For example, average test-day temperatures 

during fall administrations range from just over 60 degrees to well over 80—the high 

temperature on days with an average temperature of 80 is typically in the mid- to high-90s, 

perhaps even reaching 100. The distribution of test-day temperatures for spring administrations 

is, on average, somewhat cooler than fall, but there is still clear overlap. Each of these two 

 
4 Figure 2 presents the distributions of average test-day temperature and average daily temperature for the three 

months leading up to MAP administrations in math. Although the analytic samples for reading and math MAP 

administrations differ slightly, the distributions are substantively identical.  
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seasons had MAP administrations on both hot and cold days, but the coldest days were in spring 

and the hottest ones in fall. Unsurprisingly, winter administrations have, on average, the coldest 

average temperature, but the range is substantial. Some winter administrations occur on days 

with an average temperature down in the 20s while others take place on days where the average 

temperature is well into the 60s.  

[Insert Figure 2 and Table 1 about here] 

 

The bottom panel of Figure 2 presents distributions of the mean of the average daily 

temperatures over each 90-day period leading up to fall, winter, and spring MAP administrations. 

Of the three seasonal administrations, fall has far and away the highest average temperatures in 

the three months leading up to the test, but the range is still about ten degrees—some summers 

are hotter than others. Spring and, especially, winter exhibit substantial variation in the average 

temperature over the three months prior to MAP administration. For spring, the wide range of 

temperatures simply reflects the significant variability of Oklahoma weather. For winter, 

however, it reflects both the innate variability of Oklahoma weather and variation in 

administration dates. Some winter administrations occurred as early as December while others 

took place as late as February. Thus, for some administrations, the data are capturing 

temperatures over September, October, and November—this is the relatively warmer part of the 

distribution—while for others the data are capturing temperatures in November, December, and 

January, which are much colder months. As we describe below, our empirical strategy accounts 

for variation in MAP administration dates. 

Empirical Strategy 

 We estimate the effect of weather on student MAP performance using a model of the 

form: 

𝑃𝑖𝑡𝑠 = 𝛽𝑃𝑖𝑡𝑠−1 + 𝛾𝑊𝑖𝑡𝑠 + 𝛿𝐷𝑖𝑡𝑠 + 𝜀𝑖𝑡𝑠   (1) 
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where we model the MAP percentile, P, for student i in school year t and season s as a function 

of their lagged MAP percentile, 𝑃𝑖𝑡𝑠−1, our weather measure of interest, W, and a measure of the 

number of calendar days since the prior MAP administration, D, which we specify as a fixed 

effect. Finally, 𝜀 is an i.i.d. error term. We estimate this model via ordinary least squares (OLS) 

with standard errors clustered by student. We estimate this model separately for reading and 

math and, for each of these two subjects, separately for the fall, winter, and spring MAP 

administrations. Finally, for each subject and season, we estimate the model separately for our 

two weather measures—average test-day temperature and the mean of the average daily 

temperature over the three months leading up to and through MAP administration. In addition to 

the specification in equation (1), we also estimate a variant that conditions on observable student 

characteristics, namely sex, race/ethnicity, and disability status. 

 Several features of the model presented in equation (1) warrant discussion. First, by 

specifying students’ lagged MAP percentile on the right-hand side of the model we estimate the 

effect of weather on the change in students’ MAP percentile from one administration to the next. 

Importantly, our analytic sample only includes MAP administrations for which the student has a 

score from the prior seasonal administration. For example, our sample only includes observations 

for the fall MAP administration if the student has a score from the spring administration in the 

prior school year. Similarly, observations of winter (spring) MAP administrations only enter our 

analytic sample if the student has an observation from the fall (winter) administration.  

Second, contrary to several prior studies on the topic (e.g., Park et al. 2020), our model 

does not contain fixed effects for any unit of time, namely school year. Our decision to omit 

school year fixed effects is motivated by the nature of the variation in our empirical setting. 

Whereas much prior work draws on samples containing a significant degree of geographic 
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dispersion, our sample is concentrated in a small geographic area. Accordingly, in our 

application a large majority of variation in temperature is temporal rather than spatial, 

particularly for our three-month temperature measure. Thus, specifying the model with a fixed 

effect for school year would absorb almost all of the variation in weather, resulting in the 

coefficient for our weather measure being estimated almost exclusively with the small amount of 

spatial variation. Of course, the omission of school year fixed effects does not imply a lack of 

concern about validity threats posed by unobserved, time-varying factors correlated with both 

weather and MAP performance. Indeed, this concern motivates our inclusion of students’ lagged 

MAP performance on the right-hand side of the model, which is a common approach for 

addressing unobserved heterogeneity.   

Third, as we noted in our discussion of Figure 2, there were some within-season 

differences in the timing of MAP administration, particularly for the winter administration. 

These differences in administration timing generated a scenario where students differed in the 

number of instructional days between MAP administrations, which could clearly affect the 

amount of progress that students make from one administration to the next. We account for these 

differences by explicitly conditioning on the number of calendar days between MAP 

administrations, represented by D in equation (1) above. 

 The coefficient of interest in the model presented in equation (1) is 𝛾, which under 

plausible assumptions represents the causal effect of weather on the change in students’ MAP 

percentile from one administration to the next. Specifically, 𝛾 can be interpreted causally as long 

as W is exogenous conditional on the contents of the model. Although not directly testable, there 

is little reason to think that either test-day weather or average weather over the three months 

leading to MAP administration would be correlated with factors shaping MAP performance, 
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particularly after conditioning on both students’ performance on the prior MAP administration 

and the number of days since that administration.  

Results 

 Table 2 presents the estimated effects of test-day temperature on student MAP 

performance. The top panel of the table presents the effects for math while the bottom panel 

presents reading effects. For each of the three seasons, the left-hand column presents results from 

the model depicted in equation (1), which does not contain observable student characteristics, 

while the right-hand column presents results from a variant containing those characteristics. The 

fact that the two sets of results are nearly identical to one another provides some indirect 

evidence in support of our main identifying assumption, that our weather measures are 

exogenous conditional on students’ lagged MAP performance and a fixed effect for the number 

of days since the prior administration. 

[Insert Table 2 and Figure 3 about here] 

 

The primary takeaway from Table 2 is that test-day temperature has no significant effect 

on student MAP performance in fall or winter, but a clear negative effect on student 

performance, particularly in math, on the spring MAP administration. Figure 3 helps convey the 

substantive magnitude of the statistical results in Table 2. Specifically, separately for math and 

reading, Figure 3 presents binned scatterplots of the relationship between average test-day 

temperature for spring MAP administrations (x-axis) and student MAP percentile (y-axis). To 

create these scatterplots, we first order the analytic sample according to test-day temperature, 

divide it into 50 equally-sized bins, and then, for each bin, plot the mean of test-day temperature 

and student MAP performance. Importantly, prior to plotting the means, both test-day 

temperature and student MAP are residualized on students’ lagged MAP performance and the 
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fixed effect for the number of days since the prior administration. Accordingly, the visual 

depictions in Figure 3 are identical to their statistical analogs in Table 2. 

Figure 3 illustrates that, in math, average student performance declines by about three 

percentiles—from about the 44th percentile to the 41st—as we move from the lower part of the 

distribution, where the average test-day temperature is about 50 degrees, to the upper reaches, 

where average test-day temperature is closer to 80 degrees. Although an effect of this size is 

considered relatively small in the scheme of educational interventions (Kraft 2020), there is clear 

value in recognizing that student test performance is perceptibly affected by a factor over which 

educational stakeholders have no influence. The bottom panel of Figure 3 illustrates a similar 

pattern for reading, albeit one more modest in magnitude. Average student performance only 

declines by about one percentile across the range of the distribution.  

An interesting feature of Table 2 is the presence of test-day temperature effects on 

students’ spring MAP performance, but not on their fall MAP performance. Such a pattern is 

particularly notable given Figure 2’s illustration that the distribution of average test-day 

temperature for fall administrations lies noticeably to the right of the spring distribution, 

although there is some overlap. Prior literature, however, suggests that this pattern could be 

explained by acclimatization. At the time of the spring MAP administration, TPS students have 

had very little recent exposure to hot temperatures, leaving them more susceptible to the 

physiological impacts of heat. By the fall MAP administration, however, students may have 

endured three straight months where high temperatures exceed 90 degrees almost every day, 

allowing them to adapt to the heat.  

[Insert Table 3 and Figure 4 about here] 
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 Table 3 presents the estimated effects of the average temperature over the 90 days leading 

up to MAP administration on student test performance, with the top panel again presenting math 

results and the bottom panel detailing the reading impacts. Within each season, the right- and 

left-hand columns present results from models with and without, respectively, student 

background characteristics. Figure 4 provides a visual complement to the statistical results in 

Table 3, presenting binned scatterplots for each set of results presented in column (1). 

 We highlight three takeaways from the results presented in Table 3 and Figure 4. First, it 

is clear that summer temperature has a statistically significant and substantively meaningful 

effect on student performance on the fall MAP assessment. Perhaps contrary to expectations, 

though, the effect is positive. That is, student performance increases as the average temperature 

over the 90 days leading up to the fall MAP administration rises, with the magnitude of the 

impact larger in reading than in math. Figure 4 illustrates that, in math, average student 

performance increases by about 3 percentiles as we move from relatively cooler summers to 

relatively hot ones. In reading, the effect is even larger, with student performance about four 

percentiles higher in the upper parts of the three-month temperature distribution, compared to 

lower parts of the distribution. Although the mechanisms driving these effects are not fully clear, 

one plausible explanation, consistent with prior literature (e.g., Graff Zivin and Neidell 2014; 

Heaney et al. 2019; Fan et al. 2023), ￼is students spending relatively more time indoors during 

hot summers and engaging in activities, such as reading, that boost performance on their fall 

MAP assessment. 

 Second, the results make clear that long-term temperature has a positive, statistically 

significant impact on student math performance in all three seasons. However, the impact on 

student scores for the spring and, especially, winter administrations are substantively modest. In 



 20 

spring, Figure 4 demonstrates that the difference in average student performance between the top 

and bottom of the three-month temperature distribution is about two percentiles. In winter, the 

difference is only about a percentile. Third, Figure 4 illustrates that, in reading, the average 

temperature over the 90 days leading up to either winter or spring has no meaningful effect on 

student MAP performance. Together, the results in Table 3 and Figure 4 illustrate that, in a 

district with recently updated climate control capabilities, long-term temperature matters most 

for student learning during the summer, a period when students typically have significant 

discretionary time. This suggests that, along with the test-day temperature impacts likely 

operating through physiological mechanisms, weather also affects student learning through 

behavioral mechanisms, specifically time allocation. 

Supplemental Analyses and Robustness Checks 

 Our main results present the average effect of temperature—both test-day and 90-day—

on student academic performance. These average impacts may mask variability in the effects of 

temperature along several dimensions. In this section, we assess the potential for heterogeneity in 

temperature impacts along three different dimensions: 1) Student race/ethnicity, 2) The 

distribution of student achievement, and 3) Average income of students’ zip code. Together, this 

series of analyses will contribute important detail to our understanding of the impact of 

temperature on student learning.  

Along with his exploration of heterogeneity, this section also presents results from a 

series of alternative empirical specifications. Specifically, we estimate: 1) A specification that 

replaces the measure of lagged achievement with a student fixed effect, 2) A variant of the 

empirical model that contains measures of both test-day and long-term temperature, and 3) A 

specification that adds a school fixed effect to the model presented in equation (1). The results of 
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these analyses will shed light on the robustness of our primary results presented in Tables 2 and 

3 to alternative analytic choices. 

Heterogeneity by Student Race/Ethnicity 

 It is possible that the academic performance of students from different racial/ethnic 

backgrounds could be differentially affected by temperature, either test-day or longer-term. Such 

variability could occur because students from different racial or ethnic groups could experience 

distinctive built environments—both at home and in school—that could, in turn, generate 

different physiological or behavioral responses relevant to academic performance. To assess the 

possibility of such heterogeneity, we estimate the model in equation (1) separately for students 

from five racial or ethnic groups—Black, Hispanic, white, Native American, and students who 

identify as multiple races. We again estimate the models separately by subject, season, and 

temperature type (i.e. test-day vs. 90-day). After estimating the model for each racial/ethnic 

group for a given subject, season, and temperature measure, we conducted a test of coefficient 

equality for the temperature measure across the five racial/ethnic groups. That is, we ask whether 

we can reject the null hypothesis that the temperature coefficients for the five racial/ethnic 

groups are equal. Rejecting this null would provide evidence of statistical variation in 

temperature impacts across racial/ethnic groups. 

[Insert Tables 4 and 5 about here] 

 

 We present the results of this analysis in Tables 4 (math) and 5 (reading). In each table, 

the top panel presents results for the fall MAP administration while the middle and bottom 

panels present results for winter and spring, respectively. The left-hand side presents the 

estimated effect of test-day temperature separately for each of the five racial/ethnic groups while 

the right-hand side presents results for 90-day temperature. In addition to the coefficient 
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estimates for each racial/ethnic group, the table also presents the p-value from the test of 

coefficient equality.  

The results show that, in math, there is no signification variation across groups in the 

impact of test-day temperature. For the 90-day temperature measure, however, the results 

demonstrate statistically significant heterogeneity in the effect of temperature for the fall 

administration, with marginally significant variation apparent in winter and spring. In fall, the 

positive impact of summer heat is noticeably larger for Hispanic and, to a lesser extent, white 

students than it is for Black students and those who identify as multiple races. The winter results 

suggest small positive temperature impacts for Black and Hispanic students and null results for 

the other groups. In spring, the results demonstrate a null relationship between temperature and 

MAP performance for Hispanic students while the estimates are positive and significant for the 

four other groups. 

The reading results, presented in Table 5, only reveal significant variation in the impacts 

of temperature for test-day temperature during the spring MAP administration. Here, test-day 

heat significantly reduces the performance of white and Hispanic students, as well as those who 

identify as multiple races, but has no impact on the performance of Black or Native American 

students. In all other cases, our test of coefficient equality cannot reject the null that the 

coefficient estimates for the five racial/ethnic groups are equal to one another. 

Considered as a whole, although there are a handful of contexts in which the effects of 

temperature vary across students from different racial/ethnic backgrounds, the major story 

emerging from Tables 4 and 5 is that such variation is the exception, rather than the rule. 

Heterogeneity Across the Distribution of Student Achievement 

 Our primary results demonstrated that test-day temperature affected student performance 

on the spring MAP administration while longer-term temperature impacted students’ fall MAP 
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scores. We further explore these results by analyzing whether these effects vary for students at 

different points of the achievement distribution. To perform this analysis we estimate—

separately for each combination of season, subject, and temperature measure—a series of 

regressions where we specify the outcome as an indicator that a student’s MAP percentile is 

equal to or exceeds percentile p, with p ranging from 1 to 99 in increments of 1. Thus, for a 

given combination of season, subject, and temperature measure (e.g., test-day temperature and 

spring MAP performance in reading) we estimate 99 separate regressions. In each regression, we 

model the outcome as a function of the temperature measure, a fixed effect for a student’s 

percentile on the prior administration, and the number of days since the prior MAP 

administration. Then, for each of those regressions, we recover both the coefficient estimate for 

the temperature measure and the 95 percent confidence interval and plot those points in order 

from p=1 to p=99. That is, we plot the coefficient estimate for the temperature measure—and its 

attendant confidence interval—for the probability of scoring at or above p=1, then do the same 

for p=2 through p=99. Together, these plots shed light on whether the impacts of temperature are 

larger (or smaller) at some points of the achievement distribution than at others. 

[Insert Figure 5] 

 

 Figure 5 presents these plots. The top row of the figure presents the impact of test-day 

temperature on spring MAP performance, with math on the left and reading on the right. The 

bottom row presents the impact of 90-day temperature on fall MAP performance—math and 

reading are again on the left and right, respectively. We highlight two takeaways from the top-

row plots. First, test-day heat negatively impacts math performance across the full distribution, 

but the effects are largest the 60th percentile of the distribution. Second, the impacts in reading 

are uniformly smaller in magnitude than those in math, and are generally modest in magnitude. 
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The impacts that do exist, though, do not meaningfully differ across the achievement 

distribution. 

 Turning to the bottom row of Figure 5, which presents the impact of 90-day temperature 

on fall MAP performance, we see positive effects across the full distribution for both reading and 

math. There are differences between the two subjects, however, in the points of the distribution 

at which the impacts are relatively larger or smaller. In math, the impacts are largest between 

about the 20th and 50th percentiles of the distribution. By contrast, the reading impacts are 

relatively larger above the 50th percentile. On the whole, though, and as was the case with our 

analyses of potential heterogeneity by student race/ethnicity, the story emerging from Figure 5 is 

one of broad similarity in the impact of temperature across the achievement distribution. 

Heterogeneity by Zip Code Income 

 Motivated by the likelihood of differences in the built environment between zip codes 

with lower and higher income levels—and variability in students’ physiological or behavioral 

responses spurred by these environmental differences—we examine whether the impact of 

temperature on academic performance differs by average zip code income. We construct our 

measure of zip code income via a two-step process. First, we obtained annual IRS tax statistics at 

the zip code level from 2014 to 2020. Then, separately for each year, we used these statistics to 

calculate the adjusted gross income (AGI) per tax return filed in each zip code. We use mean 

AGI as our measure of zip code income in the analyses in this section. Using this measure, we 

estimate the model in equation (1) separately for students residing in zip codes with average 

AGIs below and above the median for all zip codes. We again estimate the models separately by 

subject, season, and temperature type (i.e. test-day vs. three-month). After estimating the model 

for each group for a given subject, season, and temperature measure, we conduct a test of 

coefficient equality for the temperature measure across the low- and high-income zip codes. 
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[Insert Table 6 about here] 

 

We present the results of this analysis in Table 6. The left-hand panel of the table 

presents math results while the right-hand panel presents reading results—each panel contains 

separate columns presenting the estimated effects for test-day and 90-day temperatures. Further, 

the top, middle, and bottom panels present results for fall, winter, and spring MAP 

administrations, respectively.  

For test-day temperature, only the results for the spring MAP administration provide any 

evidence of variability. Those results, however, suggest that the negative effect of test-day heat is 

larger for students residing in relatively less affluent zip codes. In reading, test-day temperature 

only affects the performance of students in lower-income zip codes—the estimate for students in 

relatively affluent zip codes is insignificant. In math, estimates for both lower- and higher-

income zip codes are negative and significant, but the estimate for lower-income areas is larger 

in magnitude than the one for higher-income zip codes. 

Turning to three-month temperature, the results only demonstrate significant variation by 

zip code income for the fall MAP administration in math. Again, the estimated effects are larger 

for students residing in relatively less affluent zip codes—the estimated effect for students in 

lower-income neighborhoods is about twice as large than for students in higher-income areas. 

The reading results exhibit a similar pattern, but the difference between the two sets of estimates 

does not reach statistical significance. Together, the results in Table 6 illustrate that, in most 

cases, temperature has no differential impact on the MAP performance of students in lower- and 

higher-income neighborhoods. In cases when there is a difference, though, the impacts are more 

pronounced for students in relatively lower-income zip codes, compared to their peers residing in 

more affluent areas. 
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Alternative Empirical Specifications 

The model presented in equation (1) represents our preferred approach for estimating the 

effect of temperature on student MAP performance—we discuss our rationale for that preference 

above. We recognize, however, that there are other reasonable, if flawed, specifications of an 

empirical model, and here we present results from three alternative specifications.  

First, we present results from a specification that models student MAP performance 

solely as a function of a temperature measure—either test-day or 90-day—and a student fixed 

effect. The student fixed effect addresses validity threats from time-invariant factors correlated 

with both the temperature measure and student MAP performance, thereby performing a function 

similar to that of lagged MAP percentile in equation (1). However, the student fixed effects 

approach does not exploit the seasonal administration of the MAP assessment as effectively as 

our preferred empirical strategy. Because we estimate the model separately by season, there is a 

full calendar year between MAP administrations. Our longer-term temperature measure, by 

contrast, is a 90-day measure, meaning that roughly 275 days of weather could, in theory, affect 

student learning but are not reflected in our temperature measure. Further, this approach does not 

account for the varying administration dates within season, or for differences in timing between 

administrations. With these caveats in mind, the results from a model containing a student fixed 

effect still provide a useful point of comparison to our primary results. 

Second, we present results from a variant of the specification in equation (1) in which the 

model contains both temperature measures, test-day and 90-day temperature. If the measures are 

indeed exogenous, a key identifying assumption in our analysis, then the coefficient estimates 

should not be materially changed through simultaneous inclusion of the measures. Third, we 

present results from a variant of equation (1) where we include a school fixed effect in the 

model. In doing so, we leverage within-school variation in weather exposure to estimate the 
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effect of temperature on student MAP performance. This within-school variation is both 

temporal in nature—variation occurring across years—and spatial, due to differences in students’ 

residential locations. Together, these two analyses provide important robustness checks for our 

primary results. 

[Insert Tables 7 & 8 about here] 

 

We present the results of these three alternative specifications in Tables 7 (test-day 

temperature) and 8 (90-day temperature). In each table, the left-hand panel presents results from 

the fall MAP administration while the middle and right-hand panels present results from the 

winter and spring administrations, respectively. The three alternative specifications described 

above are presented in the top, middle, and bottom panels.  

We highlight three main takeaways from these results. First, the two major substantive 

findings from our primary results—positive impacts of summer heat on fall MAP performance 

and negative impacts of test-day temperature on a student’s spring MAP percentile—are also 

apparent in the results of each alternative specification, providing further confidence in these 

impacts. Second, the results from almost all alternative specifications in Table 7 show a 

significant, negative impact of test-day heat on a student’s fall MAP percentile.5 Although our 

primary results return insignificant estimates of the impact of test-day temperature on fall MAP 

performance, the consistency of the alternative results raise the prospect that the impacts of test-

day heat play out in both the spring and fall. Third, in addition to the aforementioned positive 

impacts of summer heat, all three alternative specifications for the 90-day temperature results 

show a positive and statistically significant effect of warmer temperatures on spring math 

 
5 The exception is the reading result from the specification containing a school fixed effect—this estimate is positive 

and statistically significant. 
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performance. This finding is consistent with our primary results, further instilling confidence in a 

statistically significant, if substantively modest, impact.  

Considered as a whole, the results from the alternative empirical specifications are 

remarkably similar in sign and significance to our preferred estimates presented in Tables 2 and 

3 above. 

Discussion and Conclusion 

 As our changing climate exposes students to extreme temperatures with increasing 

frequency, it becomes ever more important to gain further understanding of how such exposure 

affects student learning. In this paper we use detailed data from MAP administrations over a six-

year period in Tulsa, Oklahoma, combined with high-resolution temperature records, to paint a 

clear portrait of the effect of temperature on student learning. Exploiting the tri-annual MAP 

administration—TPS administers the assessment in fall, winter, and spring—our study is 

uniquely able to shed light on how the effects of temperature on student learning vary across 

seasons. Moreover, the richness of our data allows us to gain insight about heterogeneity on the 

basis of a student’s racial or ethnic background, the average income of the zip code in which they 

reside, and by their place in the distribution of student achievement. 

 These analyses produced a few main takeaways. First, we show that test-day temperature 

has no significant effect on student MAP performance in fall or winter, but a clear negative 

effect on students’ spring MAP performance, particularly in math. Second, summer temperature 

has a positive, statistically significant, and substantively meaningful effect on student 

performance on the fall MAP assessment—these effects appear in both math and reading. The 

results also illustrate that 90-day temperature affects math performance in winter and spring, but 

these estimates are modest in substantive magnitude. Third, our analyses of heterogeneity show 

little meaningful variation by student race/ethnicity or the distribution of student achievement. 
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There is some evidence of heterogeneity according to average zip code income and, when such 

variation exists, the impacts are larger among students residing in relatively less affluent areas 

than among students in zip codes with above-average income levels. Together, these findings 

have implications for research, policy, and practice. 

 The existing research literature identifies two main mechanisms through which the 

effects of temperature operate—physiological reactions and behavioral responses. Further, these 

mechanisms interact with the built environment in ways that shape those responses. For this 

study, the most important feature of schools’ built environment is climate control, primarily air 

conditioning, but also heat. In contrast to many prior studies with samples spanning a broad 

geography, and thus broad variation in climate control capabilities, our focus on a single 

educational context minimizes variation on this front. The HVAC systems in all TPS schools 

were renovated shortly before our study period. Of course, there are likely differences in the 

physical characteristics of students’ home environments, but variability in the built schooling 

environment is unlikely to explain the estimated effects. 

 Similar considerations apply to acclimatization. In studies that draw their samples from 

different geographic or climatological contexts, heterogeneity in the effects of temperature on 

student learning could be attributable to differences in acclimatization across those contexts. In 

our study, the compact geography minimizes the potential for differences in student 

acclimatization for any given MAP administration. Although students almost certainly differ in 

their degree of acclimatization across administrations, the within-administration variability is 

likely to be relatively small. 

 So, if the estimated effects are unlikely shaped by physical differences in students’ 

educational environment or within-administration variation in acclimatization, what are the 
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likely explanations for the results described above? Although data limitations prevent us from 

identifying the mechanisms at play with certainty, we discuss a couple candidate explanations. 

The positive effect of summer heat on fall MAP performance is consistent with a behavioral 

response where the uncomfortably hot temperatures induce students to spend relatively more 

time indoors engaging in activities that, on the margin, improve performance on the fall MAP 

administration. Data limitations prevent us from observing students’ specific activities or time 

use, but such questions would be a natural topic for future inquiry. More generally, future 

research would do well to explore how weather shapes students’ educationally-relevant time use, 

both in and out of formal schooling settings. 

 We find it notable that 90-day temperature meaningfully matters for fall MAP 

performance, but has either modest or no effects on winter or spring MAP scores. Such a pattern 

could be explained by the imbalance in students’ discretionary time across these periods. 

Students typically have a relatively large amount of flexibility in their time use during the 90 

days preceding the fall MAP administration, relative to the winter and spring administrations. It 

is perhaps unsurprising, then, that effects of longer-term temperatures are disproportionately 

apparent during periods when students have relatively more control over their time use. 

Consequently, building on the suggestions for future research discussed above, additional work 

would do well to examine how the effect of weather on student time use varies across the school 

year.   

 Our finding that test-day heat reduces students’ performance on the spring MAP 

administration is consistent with research showing that hot temperatures can disrupt core 

cognitive abilities (Taylor et al. 2016), including memory (Gaoua et al. 2011; Lee et al. 2015) 

and decision-making (Froom et al. 1993; Coehoorn et al. 2020). These functions have obvious 
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implications for test performance. Notably, though, evidence of negative effects of test-day heat 

on fall MAP performance—an administration for which temperatures are often hotter than in 

spring—is somewhat less consistent. Such a pattern is consistent with students being less 

acclimated to heat during the spring administration than during the fall one. More generally, this 

combination of findings suggest that student academic performance is most likely to be notably 

affected when test-day weather differs substantially from the conditions to which students have 

become acclimated. 

 Through its simultaneous exploration of both test-day and longer-term temperature, 

coupled with its analysis of heterogeneity on the basis of season, student background, and other 

dimensions, this paper meaningfully advances our understanding of how temperature affects 

student learning. In doing so, it contributes to ever-growing literature documenting how features 

of the natural environment play a substantial role in shaping students’ educational outcomes. 

Along with answering several important questions, however, it also raises many others. For 

example, it does little to address how other meteorological phenomena—precipitation, humidity, 

and wind are just three examples—might affect student learning. And, as we note above, our data 

are limited in their ability to shed light on the specific behaviors or mechanisms generating the 

effects. Finally, we have no way of knowing whether our results are specific to the TPS context, 

or whether they have broader applicability. Given scholars’ increasing recognition of the 

importance of the natural environment for students’ educational outcomes, such issues will likely 

be addressed as the literature continues to evolve. 
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Tables and Figures 

 

 

Figure 1. Map of Tulsa Public School District and Mesonet Stations within 50 Miles 
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Table 1. Descriptive statistics           

Characteristic N Mean Std. Dev. Min. Max. 

Female 339,034 0.492 0.500 0 1 

Male 339,034 0.508  0.500  0 1 

Asian 339,034 0.014 0.118 0 1 

Black 339,034 0.239 0.426 0 1 

Hispanic 339,034 0.348 0.476 0 1 

American Indian/Alaska Native 339,034 0.051 0.219 0 1 

Multiple Races 339,034 0.100 0.301 0 1 

Pacific Islander 339,034 0.006 0.077 0 1 

White 339,034 0.242 0.428 0 1 

Disability 339,034 0.172  0.377  0 1 

Kindergarten 339,034 0.144  0.351  0 1 

Grade 1 339,034 0.147 0.354 0 1 

Grade 2 339,034 0.150 0.357 0 1 

Grade 3 339,034 0.166 0.372 0 1 

Grade 4 339,034 0.070 0.255 0 1 

Grade 5 339,034 0.065 0.246 0 1 

Grade 6 339,034 0.060  0.237  0 1 

Grade 7 339,034 0.050 0.219 0 1 

Grade 8 339,034 0.048 0.214 0 1 

Grade 9 339,034 0.048 0.214 0 1 

Grade 10 339,034 0.043 0.203 0 1 

Grade 11 339,034 0.007 0.081 0 1 

Grade 12 339,034 0.003 0.051  0 1 

Fall administration 339,034 0.361 0.480 0 1 

Spring administration 339,034 0.281  0.450  0 1 

Winter administration 339,034 0.357  0.479  0 1 

MAP Percentile 339,030 40.212 28.881 1 99 

Average 90-day Temperature 337,764 61.735 13.571 37.473 81.701 

Test Day Temperature 337,764 61.426  15.669  21.971 87.916 
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Figure 2. Distribution of Average Test-Day Temperature and 90-Day Temperature, by 

Season 
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Table 2. Effect of Average Test-Day Temperature on Change in Student MAP Percentile From Prior 

MAP Administration, by Season and Subject 

 MAP Administration 

 Fall Winter Spring 

 (1) (2) (1) (2) (1) (2) 

 Math 

Average Test-Day  -0.015 -0.016 0.002 -0.0001 -0.096*** -0.093*** 

Temperature (0.014) (0.014) (0.005) (0.005) (0.009) (0.009) 

       

N 71,642 71,642 112,490 112,490 89,033 89,033 

Observable student chars  X  X  X 

 Reading 

Average Test-Day  0.006 0.009 -0.009* -0.008 -0.037*** -0.036*** 

Temperature (0.015) (0.014) (0.005) (0.005) (0.010) (0.010) 

       

N 72,069 72,069 113,411 113,411 89,567 89,567 

Observable student chars  X  X  X 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below 

coefficient estimate Each coefficient from a separate regression estimated via OLS predicting student MAP 

percentile. In addition to the measure of average test-day temperature, all regressions contain a measure of 

student's MAP percentile in the same subject from the prior administration and fixed effects for the number 

of days since the prior MAP administration. Regressions in column (2) for each season also contain 

measures of student sex, race/ethnicity, and disability status. 
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Table 3. Effect of Average 90-Day Temperature on Change in Student MAP Percentile From Prior 

MAP Administration, by Season and Subject 

 MAP Administration 

 Fall Winter Spring 

 (1) (2) (1) (2) (1) (2) 

 Math 

Average 90-Day 0.864*** 0.801*** 0.061*** 0.060*** 0.181*** 0.188*** 

Temperature (0.085) (0.083) (0.020) (0.020) (0.028) (0.028) 

       

N 71,642 71,642 112,490 112,490 89,033 89,033 

Observable student chars  X  X  X 

 Reading 

Average 90-Day 1.117*** 1.052*** -0.041** -0.038* -0.029 -0.030 

Temperature (0.078) (0.076) (0.020) (0.020) (0.029) (0.029) 

       

N 72,069 72,069 113,411 113,411 89,567 89,567 

Observable student chars  X  X  X 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below 

coefficient estimate Each coefficient from a separate regression estimated via OLS predicting student MAP 

percentile. In addition to the measure of average 90-day temperature, all regressions contain a measure of 

student's MAP percentile in the same subject from the prior administration and fixed effects for the number 

of days since the prior MAP administration. Regressions in column (2) for each season also contain 

measures of student sex, race/ethnicity, and disability status. 
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Figure 3. Binned Scatterplot of Average Test-Day Temperature and Spring MAP 

Percentile, by Subject 

 
 
 

 
 
Note: Binned scatterplots created by: 1) Ordering the analytic sample according to test-day temperature, 2) Dividing 

it into 50 equally-sized bins, and 3) Plotting the mean of test-day temperature and student MAP performance. Prior 

to plotting the binned means, both test-day temperature and student MAP percentile are residualized on students’ 

lagged MAP performance and the fixed effect for the number of days since the prior administration. Accordingly, 

the visual depictions in the figure are identical to their statistical analogs in Table 2.
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Figure 4. Binned Scatterplot of Average 90-Day Temperature and Student MAP Percentile, by Season and Subject 
 
 

 
 
 

 
 
Note: Binned scatterplots created by: 1) Ordering the analytic sample according to 90-day temperature, 2) Dividing it into 50 equally-sized bins, and 3) Plotting the mean of 90-

day temperature and student MAP performance. Prior to plotting the binned means, both 90-day temperature and student MAP percentile are residualized on students’ lagged MAP 

performance and the fixed effect for the number of days since the prior administration. Accordingly, the visual depictions in the figure are identical to their statistical analogs in 

Table 3. 
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Table 4. Effect of Average Temperature on Change in MAP Math Percentile From Prior MAP Administration, by Race/Ethnicity and Season 

Math 

Test Day Temperature 90-Day Temperature 

Black Hispanic 

Native 

American Multiple White Black Hispanic 

Native 

American Multiple White 

 Fall 

Average Temperature -0.026 -0.027 -0.032 -0.069 0.044 0.414*** 1.021*** 0.877** 0.553** 0.848*** 

 (0.027) (0.023) (0.066) (0.047) (0.030) (0.152) (0.131) (0.376) (0.266) (0.166) 

            

p: Test of equality 0.230 0.064 

N 16,799 25,870 3,556 7,096 16,914 16,799 25,870 3,556 7,096 16,914 

 Winter 

Average Temperature 0.013 -0.003 0.023 -0.031* -0.007 0.070* 0.096*** -0.090 0.007 -0.025 

 (0.011) (0.009) (0.026) (0.018) (0.012) (0.038) (0.034) (0.094) (0.066) (0.043) 

            

p: Test of equality 0.214 0.090 

N 26,263 39,928 5,553 11,283 27,198 26,263 39,928 5,553 11,283 27,198 

 Spring 

Average Temperature -0.079*** -0.117*** -0.093** -0.088*** -0.091*** 0.214*** 0.068 0.249** 0.314*** 0.262*** 

 (0.018) (0.015) (0.042) (0.029) (0.019) (0.056) (0.047) (0.127) (0.091) (0.055) 

            

p: Test of equality 0.587 0.031 

N 21,331 30,941 4,469 8,764 21,784 21,331 30,941 4,469 8,764 21,784 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below coefficient estimate. Each coefficient from a 

separate regression estimated via OLS predicting student MAP percentile. In addition to the measure of average temperature, all regressions contain a 

measure of student's MAP percentile in the same subject from the prior administration and fixed effects for the number of days since the prior MAP 

administration. 
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Table 5. Effect of Average Temperature on Change in MAP Reading Percentile From Prior MAP Administration, by Race/Ethnicity and Season 

Reading 

Test Day Temperature 90-Day Temperature 

Black Hispanic 

Native 

American Multiple White Black Hispanic 

Native 

American Multiple White 

 Fall 

Average Temperature -0.020 0.006 -0.064 0.078 0.039 0.967*** 0.991*** 1.007*** 1.362*** 1.168*** 

 (0.030) (0.024) (0.068) (0.047) (0.029) (0.157) (0.126) (0.368) (0.254) (0.158) 

            

p: Test of equality 0.261 0.646 

N 17,085 25,810 3,576 7,142 17,037 17,085 25,810 3,576 7,142 17,037 

 Winter 

Average Temperature -0.012 -0.009 0.009 0.003 -0.017 -0.029 -0.025 -0.136 0.037 -0.130*** 

 (0.011) (0.009) (0.025) (0.018) (0.011) (0.040) (0.034) (0.093) (0.067) (0.042) 

            

p: Test of equality 0.814 0.125 

N 26,656 40,140 5,577 11,389 27,362 26,656 40,140 5,577 11,389 27,362 

 Spring 

Average Temperature 0.015 -0.060*** 0.006 -0.060* -0.052*** -0.026 -0.077 -0.027 0.049 -0.028 

 (0.020) (0.016) (0.044) (0.032) (0.020) (0.060) (0.048) (0.134) (0.096) (0.057) 

            

p: Test of equality 0.028 0.816 

N 21,637 30,965 4,486 8,826 21,894 21,637 30,965 4,486 8,826 21,894 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below coefficient estimate. Each coefficient from a 

separate regression estimated via OLS predicting student MAP percentile. In addition to the measure of average temperature, all regressions contain a 

measure of student's MAP percentile in the same subject from the prior administration and fixed effects for the number of days since the prior MAP 

administration. 
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Figure 5. Estimated Effect of Temperature on the Distribution of MAP Performance, by Temperature Measure, MAP Administration, and 

Subject 
 

 

 

Notes: Each panel of the figure plots point estimates (solid line) and 95% confidence intervals (dashed lines) of the effect of test-day temperature (top row) or 90-day temperature 

(bottom row) on the probability that that students’ MAP percentile exceeds the value on the x-axis, where x ranges from 1 to 99 in increments of 1. This results in 99 total 

regressions. In each regression, we model the outcome as a function of the temperature measure, a fixed effect for a student’s percentile on the prior administration, and the number 

of days since the prior MAP administration. 
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Table 6. Effect of Average Temperature on Change in MAP Percentile From Prior MAP Administration, by Zip 

Code Income, Temperature Measure, Subject, and Season 

  

Math Reading 

Test Day 90-Day Test Day 90-Day 

Below 

Median 

Income 

Above 

Median 

Income 

Below 

Median 

Income 

Above 

Median 

Income 

Below 

Median 

Income 

Above 

Median 

Income 

Below 

Median 

Income 

Above 

Median 

Income 

 Fall 

Average Temperature -0.030 -0.0003 0.946*** 0.531*** 0.013 0.014 1.110*** 0.942*** 

 (0.019) (0.020) (0.110) (0.115) (0.022) (0.020) (0.108) (0.111) 

          
p: Test of equality 0.290 0.014 0.988 0.284 

N 36,282 35,265 36,282 35,265 36,571 35,400 36,571 35,400 

 Winter 

Average Temperature -0.004 0.0001 0.044 0.028 -0.017** -0.006 -0.051* -0.069** 

 (0.008) (0.008) (0.028) (0.029) (0.008) (0.008) (0.028) (0.029) 

          
p: Test of equality 0.709 0.692 0.300 0.649 

N 56,452 55,581 56,452 55,581 57,229 56,024 57,229 56,024 

 Spring 

Average Temperature -0.116*** -0.077*** 0.187*** 0.170*** -0.053*** -0.018 -0.072* -0.049 

 (0.013) (0.013) (0.039) (0.040) (0.014) (0.014) (0.040) (0.041) 

          
p: Test of equality 0.037 0.762 0.078 0.697 

N 44,727 44,192 44,727 44,192 45,293 44,160 45,293 44,160 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below coefficient 

estimate. Each coefficient from a separate regression estimated via OLS predicting student MAP percentile. In addition to 

the measure of average temperature, all regressions contain a measure of student's MAP percentile in the same subject from 

the prior administration and fixed effects for the number of days since the prior MAP administration. 
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Table 7. Effect of Average Test-Day Temperature on Change in Student MAP Percentile, by 

Alternative Specification, Season, and Subject 

 MAP Test Percentile 

 Fall Winter Spring 

 Math Reading Math Reading Math Reading 

 Student Fixed Effect 

Test-day Temperature -0.114*** -0.032** 0.056*** -0.024*** -0.119*** -0.120*** 

 (0.014) (0.014) (0.006) (0.006) (0.009) (0.009) 

       

N 71,643 72,070 112,490 113,434 89,033 89,033 

 Both Temperature Measures 

Test-day Temperature -0.072*** -0.116*** -0.001 -0.006 -0.102*** -0.037*** 

 (0.015) (0.016) (0.006) (0.006) (0.009) (0.010) 

       
N 71,642 72,069 112,490 113,411 89,033 89,567 

 Lag & School Fixed Effect 

Test-day Temperature -0.071*** 0.046*** -0.009 -0.015*** -0.079*** -0.029*** 

 (0.014) (0.015) (0.006) (0.005) (0.009) (0.010) 

       
N 71,642 72,069 112,490 113,411 89,033 89,567 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below 

coefficient estimate. Each coefficient from a separate regression estimated via OLS predicting student MAP 

percentile. In addition to the measure of average test-day temperature, all regressions in the "Both 

Temperature Measure" and "Lag & School Fixed Effects" panels contain a measure of student's MAP 

percentile in the same subject from the prior administration and fixed effects for the number of days since 

the prior MAP administration. 
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Table 8. Effect of Average 90-Day Temperature on Student MAP Percentile, by Alternative 

Specification, Season, and Subject 

 MAP Test Percentile 

 Fall Winter Spring 

 Math Reading Math Reading Math Reading 

 Student Fixed Effect 

90-Day Temperature 0.869*** 1.204*** -0.104*** -0.148*** 0.433*** 0.297*** 

 (0.069) (0.064) (0.007) (0.008) (0.025) (0.025) 

       

N 71,643 72,070 112,490 113,434 89,033 89,567 

 Both Temperature Measures 

90-Day Temperature 0.998*** 1.402*** 0.061*** -0.033 0.212*** -0.020 

 (0.083) (0.087) (0.020) (0.022) (0.028) (0.029) 

       
N 71,642 72,069 112,490 113,411 89,033 89,567 

 Lag & School FE 

90-Day Temperature 0.647*** 1.015*** 0.009 -0.090*** 0.163*** 0.010 

 (0.078) (0.077) (0.020) (0.021) (0.029) (0.029) 

       
N 71,642 72,069 112,490 113,411 89,033 89,567 

NOTE: *p<0.10, **p<0.05, ***p<0.01. Robust standard error clustered by student in parentheses below 

coefficient estimate. Each coefficient from a separate regression estimated via OLS predicting student MAP 

percentile. In addition to the measure of average 90-day temperature, all regressions in the "Both 

Temperature Measure" and "Lag & School Fixed Effects" panels contain a measure of student's MAP 

percentile in the same subject from the prior administration and fixed effects for the number of days since 

the prior MAP administration. 

       

       

       

       

 


