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Given the rapid adoption of machine learning methods by education researchers, and growing 
acknowledgement of their inherent risks, there is an urgent need for tailored methodological 
guidance on how to improve and evaluate the validity of inferences drawn from these methods. 
Drawing upon an integrative literature review and extending a well-known framework for 
theorizing validity in the social sciences, this article provides both an overview of threats to 
validity in supervised machine learning and plausible approaches for addressing such threats. It 
collates a list of current best practices, brings supervised learning challenges into a unified 
conceptual framework, and offers a straightforward reference guide on crucial validity 
considerations. Finally, it proposes a novel research protocol for researchers to use during project 
planning, and for reviewers and scholars to use when evaluating the validity of supervised 
machine learning applications. 
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Introduction 

Education research is currently undergoing a transformation, with scholars taking 

advantage of powerful machine learning technologies to generate novel educational insights. 

Broadly speaking, these technologies involve the use of computers to identify patterns in data 

(Samuel, 1959). This includes both supervised learning, where the goal is to identify patterns in 

labeled data (e.g., graded essays) in order to predict the labels of new data (e.g., ungraded 

essays), and unsupervised learning, where the goal is to identify potentially unknown patterns in 

data without any pre-conceived labels (e.g., clustering essays based on their content). Both 

approaches offer opportunities for education researchers. Indeed, education literature featuring 

machine learning has increased exponentially in the past decade (Mcfarland et al., 2021), with 

themed special issues indicating enthusiasm among journal editors (Mcfarland et al., 2021; 

Reardon & Stuart, 2019) and major funding organizations, including the National Science 

Foundation and the Institute of Education Sciences, promoting this line of research via themed 

competitions (NCSER, 2021).  

However, alongside the rush to explore machine learning’s potential research benefits, 

there is an urgent need to evaluate the validity of inferences drawn from machine learning 

methods. There is growing acknowledgment, for example, that supervised learning models, like 

their human counterparts, risk identifying particular patterns that promote stereotyping and the 

unfair distribution of resources (Kordzadeh & Ghasemaghaei, 2022; Van Giffen et al., 2022). For 

example, many educational outcomes from standardized test scores to college enrollment, not 

only result from a student’s motivation and intelligence but also from the quality of the 

educational opportunities provided to them—factors that are intricately related to race and 

socioeconomic status (Reardon, 2011). Thus, supervised models that are trained on real-world 



THREATS TO VALIDITY IN SUPERVISED MACHINE LEARNING 

 2 

data reflecting these realities have the capacity to exacerbate existing biases (Suresh & Guttag, 

2021). Further, algorithmic bias is not the only mechanism whereby machine learning 

applications might cause faulty inferences. There are myriad ways in which a researcher may err 

in drawing conclusions from these methods. 

Yet, despite the rapid adoption of machine learning methods by education researchers, 

and growing acknowledgement of these methods’ inherent risks, methodological guidance in the 

literature is limited. In part, this is perhaps because foundational papers in machine learning have 

been developed beyond the social sciences, rarely address education issues, and may not share 

education researchers’ validity concerns. Further, while extensive guidance is available for 

education researchers as they plan and judge the quality of randomized experiments and quasi-

experiments—from sources such as the What Works Clearinghouse (2019)—there is no such 

centralized guidance for researchers’ use of machine learning. 

Given these challenges, it makes sense to consider the standards by which our field ought 

to evaluate studies involving machine learning, studies which now cover topics across 

curriculum, pedagogy, and policy. A shared understanding of how to weigh these studies’ claims 

and evidence can aid our interpretation of their scholarly contribution and the value of their 

recommendations for educational practitioners. Furthermore, methodological guidance that is 

tailored to education researchers’ specific needs could improve the quality of machine learning-

based studies in the first place.  

This article offers a series of contributions towards these objectives, focusing specifically 

on supervised learning. The guiding framework underpinning this effort derives from Shadish et 

al.'s (2002) discussion of validity types, and associated threats to validity. For decades, social 

scientists have relied on the validity types framework to guide their thinking about valid impact 



THREATS TO VALIDITY IN SUPERVISED MACHINE LEARNING 

 3 

estimates (Campbell & Stanley, 1963; Shadish et al., 2002). In this approach, researchers 

consider inferences’ validity in terms of: (a) the constructs represented by variables (construct 

validity); (b) the strength of association between two variables (statistical validity); (c) the causal 

relationship of those variables (internal validity); and (d) the generalizability of that relationship 

(external validity).  

This article builds upon the validity types framework by considering how these four types 

of inferences pertain to instances of supervised learning. For each type, we address the following 

questions: 

• Construct validity: To what extent does a model reflect the construct it aims to predict? 

(Has the outcome of interest been appropriately defined and labeled? Do the model 

predictions align with this definition?) 

• Statistical validity: What is a model’s estimated performance, sensitivity, and 

uncertainty? (Are the performance metrics unbiased? How large is the sample on which 

performance was measured?)  

• External validity: How generalizable is the model performance? (Can the model be 

applied in the necessary circumstances while retaining its predictive ability? Is the 

model’s predictive ability consistent across sub-groups?) 

• Internal validity: To what extent are the discussed relationships between outcomes, 

predictors, and/or treatments causal? (Are there confounders of an observed correlation 

between the treatment and machine-learning based measures of the outcome? And, if 

interpreted as such, is the relationship between predictors and outcomes truly causal?) 

Drawing upon an integrative review of machine learning applications that have appeared 

in American Education Research Association (AERA) journals, this article discusses the 
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implications of each validity type for supervised learning research—identifying important threats 

to validity and offering a list of approaches to protect against such threats. The article thus 

critically interprets emerging supervised learning challenges via a unified framework already 

familiar to education researchers. Finally, the article culminates in a research protocol which can 

be used by education researchers in the planning stages of a machine learning project, as well as 

by reviewers and readers seeking to judge the validity of machine learning applications.  

Theoretical Framework 

Shadish et al. (2002, p. 34) define validity as “the approximate truth of an inference.” A 

foundational proposition of this article, therefore, is that the application of machine learning in 

education results in inferences—inferences about education, about education research, and how 

these might be improved. Consider automatic grading systems, a common educational 

application of supervised learning. To develop such a system, researchers commonly ask human 

graders to rate a series of student essays according to the essays’ quality. These graded essays 

constitute the gold-standard labeled data, which the researchers anticipate their algorithm will 

learn to predict. The gold-standard data are randomly split into a training and testing set. Using 

the training data, the model learns a relationship between predictors (in this case, certain features 

of the written essays) and ratings. The correspondence between human ratings and machine 

ratings is then assessed via the testing data, with researchers reporting the model’s performance 

metrics (see, for example, Valenti et al., 2003). Using such performance metrics, authors and 

readers then draw inferences about whether the algorithm can or should be used in educational 

practice.  

Thus, using the validity types framework, the validity of such an inference relies on 

construct validity (e.g., has “writing quality” been appropriately defined and labeled? To what 
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extent do the automatic grader’s predictions reflect the construct of “writing quality”?), external 

validity (e.g., in which populations and settings will the model’s predictions be faulty?), and 

statistical validity (e.g., is the presented performance metric an unbiased estimate of model error? 

How much uncertainty surrounds that estimate?). If the automatic grader is later used to measure 

the impact of an intervention, internal validity is also required (e.g., does the correlation reflect a 

causal relationship?). In using the validity types framework, a researcher considers each of these 

validity types in turn, probing and adjusting for corresponding threats.  

Of course, Shadish et al.’s (2002) understanding of validity is one formulation among 

many and may not even be the most common conceptualization in education research. The 

Standards for Educational and Psychological Testing (Phelps, 2011) for example, draw from a 

conceptualization of validity that is closer to Kane’s (1992)  and Messick’s (1989) scholarship 

and posit that validation is best understood “as a process of constructing and evaluating 

arguments for and against the intended interpretation of test scores and their relevance to the 

proposed use” (Phelps, 2011, p. 11). In this line of thinking, researchers should: (1) explicitly 

state the proposed interpretation of test scores; (2) identify the inferences and assumptions 

required to make a leap from the scores to the interpretation; (3) assemble all available evidence 

relevant to the inferences and assumptions; (4) evaluate the most problematic assumptions in the 

argument; and (5) continue to adjust the argument or interpretation as necessary (Kane, 2001). 

When fully implemented in measurement scenarios, this alternative approach to construct 

validity is more comprehensive than the validity types framework. While researchers using the 

validity types framework would only consider Shadish et al.’s (2002) listed threats, a researcher 

successfully implementing an argument-based validation approach would consider all necessary 

assumptions, focusing on those most relevant to the test’s proposed use. However, Kane and 
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Mesick’s conceptualization of validity speaks less to inferences other than those drawn from 

scores on tests (e.g., to inferences about causality). Further, creating a comprehensive validity 

argument is not straightforward (Kane, 1992, 2001). Thus, while an argument-based approach to 

validation may be more comprehensive and theoretically ideal in some scenarios, Shadish et al.’s 

(2002) checklist-like approach to validation—where researchers consider each threat in turn, 

checking off those that they have ruled out—is a more practical heuristic for our purposes. Thus, 

the protocol presented in the final section of the article presents such a checklist with specific 

questions to consider, related to each validity type, when planning and evaluating a study using 

supervised learning.  

Approach and Organization 

In this article, the validity types framework is used to organize and contextualize threats 

to validity in educational applications of supervised learning. The threats to validity discussion 

draws on Shadish et al.’s (2002) framework and an integrative, restricted review of supervised 

learning applications in academic journals published by AERA—the largest American 

professional society focused on education research (AERA, 2024). The review includes studies 

published in the American Educational Research Journal, Educational Researcher, Educational 

Evaluation and Policy Analysis, the Journal of Educational Behavior and Statistics, and AERA 

Open. Figure 1 provides an overview of the search and exclusion parameters. The final set of 

studies is limited to 27 articles, which either trained or used a supervised learning model to 

answer an education research question via the analysis of non-simulated educational data. An 

additional 11 methodological and/or conceptual articles were consulted and cited where relevant. 

A full list of reviewed articles can be found in Tables 1 and 2. It is important to note that the 

review is not intended as a meta-analysis, nor is it meant to test a theory or formally summarize 
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the state of the literature. Instead, the studies are used to illustrate threats to validity and current 

best practices for addressing those threats.  

In the following sections, this article discusses each validity type in turn—construct, 

external, statistical, and internal—within a supervised learning context. Each of these sections 

describes threats to validity and outlines common methodological approaches to addressing those 

threats. A summary of the validity types, alongside illustrative examples, can be found in Table 

3. Then, drawing on the identified threats and best practices, the article concludes with a 

presentation of a research protocol: a series of questions for researchers and reviewers to 

consider when conducting and evaluating supervised learning applications in education.  

Construct Validity in Supervised learning 

Often, when researchers apply supervised learning in educational contexts, it is for a 

measurement purpose; researchers have a specific construct which they aim to measure and train 

a supervised learning algorithm to do so (e.g., researchers might use an automated essay grader 

to measure essay quality). The validity of resulting conclusions thus relies on the construct 

validity of the resulting supervised learning measure. Shadish et al. (2002, p. 20) define construct 

validity as the validity of “inferences about the constructs that research operations represent.” 

For example, beyond supervised learning applications, researchers commonly operationalize 

“teaching quality” using teaching observation rubrics. In such cases, construct validity concerns 

the extent to which the observation rubric truly reflects the construct of interest (teaching 

quality).   

In studies involving supervised learning, there is often a secondary level of 

operationalization. Researchers begin with an initial operationalization of a construct using 

traditional means, then use a machine learning algorithm to replicate those measures. For 
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example, researchers may use observation rubrics to operationalize teaching quality, and then 

train an algorithm to replicate those observation scores. To make valid inferences regarding 

teaching quality in these cases, we must infer that: (a) the observation scores appropriately 

capture teaching quality; and (b) that the supervised learning algorithm has retained the 

prototypical features of teaching quality that were captured by the observation scores. Threats to 

construct validity may occur at either stage—from construct to measure, or from measure to 

supervised learning prediction. Four original threats from Shadish et al. (2002) therefore remain 

relevant: the inadequate explication of constructs; confounding constructs; mono-operation and 

mono-method bias; and participant reactivity. A related threat in supervised learning is also 

worth being made explicit: when there are errors in the gold-standard data, there will necessarily 

be errors in the final supervised learning measure. Each of these threats are discussed below.  

Inadequate Explication of Constructs  

Measurement scholars have long acknowledged that valid measurement is bolstered by a strong 

theoretical understanding of the construct being studied (Cronbach & Meehl, 1955). Thus, a 

foundational step for improving construct validity in any measurement exercise is the careful 

specification of the theoretical construct of interest. Shadish et al. (2002) consider a failure to do 

so as the “inadequate explication of constructs.” Given that the first level of operationalization in 

a supervised learning application involves turning a theoretical construct into labels within the 

gold-standard (training/testing) data, carefully specifying the construct of interest allows 

researchers to improve the quality of the gold-standard data and allows readers to assess the 

quality of model output. Researchers take two common approaches to addressing this threat, 

they: 
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• Provide a comprehensive definition of the construct of interest. For example, 

when using supervised learning to measure “authentic questioning,” Kelly et al. 

(2018, p. 452) define authentic questioning—within the context of dialogic 

instruction—as “questions for which the answers are not presupposed by the 

teacher,” and link this definition to several instructional frameworks for effective 

teaching, thereby identifying the literature to which their study speaks. 

• Acknowledge any debate or challenges in operationalizing the construct. For 

example, in predicting graduation, Bird et al. (2021, p. 3) explain the difficulty of 

defining “drop-out,” given that students often leave college for periods of time 

while intending to return. Thus, the researchers instead aim to predict 

“graduation,” where graduation is defined as completing “any college-level 

credential within 6 years” (Bird et al., 2021, p. 3). They also provide an evidence-

based justification for this definition, drawing on national time-to-completion 

data. 

Errors in Human Labels 

In the social sciences, gold-standard data are often created by researchers via hand-

labeling, according to the construct of interest. In the qualitative literature, the process of 

applying labels to data is typically referred to as coding (while “labeling” or “annotation” are 

more commonly used in machine learning; K. L. Anglin et al., 2022). Although often overlooked 

in the machine learning literature, where fallible human labels may be treated as “ground truth” 

(Geiger et al., 2020; Zheng et al., 2024), the coding process is central to determining the validity 

of supervised learning predictions. At best, a supervised learning algorithm can only learn to 

replicate human codes. However, as decades of qualitative research have demonstrated, human 
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coding is rarely a straightforward process because codes are contextual, theoretical, and 

contestable (Shaffer & Ruis, 2021). Many rigorous qualitative research practices are thus also 

applicable here. Researchers can:  

• Provide a comprehensive codebook for human labeling (as in Aulck et al., 2021; 

Kelly et al., 2018; Nystrand et al., 1997). A codebook is a set of coding 

instructions which provides a definition of each label alongside examples and 

non-examples (Shaffer & Ruis, 2021). For example, Kelly et al.’s (2018) 

codebook for labeling authentic questions is 74 pages long and provides specific 

instructions to coders about how to handle common ambiguous teacher questions, 

such as “What else?” (see Nystrand, 2004 and; Nystrand et al., 1997 for details on 

the codebook).  

• Disclose measures of agreement between multiple human labelers (as undertaken 

by Kelly et al., 2018; Liu & Cohen, 2021; Ramirez et al., 2018). A high level of 

agreement indicates that multiple labelers’ understandings of the construct’s 

definition are closely aligned (Shaffer & Ruis, 2021). Relevant metrics include 

simple agreement, Krippendorff’s Alpha , Cohen’s Kappa, and correlation 

coefficients (Krippendorff, 2004).   

• Describe human labelers’ training, knowledge, perspectives, and experience, 

allowing readers to gauge whether labelers have the necessary knowledge and 

experience to understand a construct (Shaffer & Ruis, 2021; Snow et al., 2008).  

Confounding Constructs  

Confounding is typically understood in the context of internal validity, occurring when 

the correlation between a presumed cause (Variable A) and effect (Variable B) is due to a third 
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variable that is correlated with variables A and B. The presumed causal relationship, then, is 

confounded by the extraneous variable. Shadish et al. (2002) argue, however, that the 

interpretation of constructs may also be confounded by extraneous variables. They provide the 

example of describing a sample as “unemployed;” the sample may indeed be limited primarily to 

those without jobs but may also disproportionately include victims of racial prejudice. 

Interventions which aim to address only one aspect of unemployment (e.g., currently jobless) are 

likely to be of limited use if the other construct (e.g., discrimination) proves to be a greater 

determinant. In this case, a construct validity error would occur if only one of the constructs is 

acknowledged. 

 In supervised learning applications, when construct confounding occurs at the first level 

of operationalization (from construct to measure), confoundedness may be exacerbated at the 

second level of operationalization (from measure to machine learning prediction). Consider, for 

example, the challenge of predicting college graduation. In most colleges and universities, drop-

out occurs more frequently among Black, Hispanic, and lower income students (Bird et al., 

2021). Thus, as with the unemployment example above, drop-out is confounded by demographic 

characteristics. If demographic characteristics are included in the model, the model will likely 

identify these demographic variables as key predictors, resulting in students of color being more 

likely to be labeled as at risk for dropping out regardless of whether other associated risk-factors 

are present (Baker & Hawn, 2021). Further, even if a researcher excludes demographic variables 

from the model, the model may focus on theoretically irrelevant factors which correlate with 

demographic variables (Hovy & Spruit, 2016). This phenomenon is one of the most commonly 

discussed types of algorithmic bias in the machine learning literature, variously termed social 

bias, historical bias, societal bias, or pre-existing bias (Van Giffen et al., 2022). 
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It is worth briefly considering, however, why and when construct confounding is a 

problem for construct validity, rather than, say, an instance of effective prediction. After all, the 

aim of supervised learning is to predict an outcome by identifying existing patterns. In the 

example, the model isn’t wrong to predict that students of color are more likely to drop out; 

because of systemic factors, they are (Brown & Rodríguez, 2009). The validity error would come 

in the interpretation of the label, particularly in the researcher’s failure to acknowledge the 

relationship between race, socio-economic status, and schooling (Bradley & Renzulli, 2011) 

despite machine learning predictions for individuals being influenced by these factors.   

Importantly, construct confounding can also result from idiosyncrasies in the creation of 

training data, independent of any real-world co-occurrence of constructs. Consider one infamous 

example. In Automated Inference on Criminality using Face Images, researchers claimed 

successful use of supervised learning to draw inferences about the criminality of individuals 

from photographs of their faces (X. Wu & Zhang, 2016, p. 10). However, critics later pointed out 

that non-criminal photographs were selected from personal and professional websites, where 

people are commonly smiling, while the criminal photographs were selected from formal 

identification sources (e.g., driver’s license photos) where smiling was less common (Bergstrom 

& West, 2021; Bowyer et al., 2020). In other words, in the training data, “criminality” was 

confounded by smiling (even though smiling may not necessarily correlate with criminality 

outside of these data); it was smiles, not criminality, that the classifier could identify. Concluding 

that a classifier can identify “criminality,” rather than smiling, is therefore erroneous, as is the 

conclusion that “it is possible to infer character from features” (X. Wu & Zhang, 2016, p. 1).  

To address the threat of confounding constructs, researchers can: 
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• Limit predictors to those which are theoretically relevant. For example, in 

predicting authentic questioning, Kelly et al. (2018, p. 455) limit themselves to 

“theoretically grounded language features” such as question stems and parts of 

speech tags. A supervised learning measure is less likely to be confounded by an 

extraneous nuisance variable if the researcher restricts the model to factors which 

are theoretically relevant to the construct (Zheng et al., 2024).  

• Assess predictor importance using interpretable algorithms. For example, Lang et 

al. (2022) use data ablation techniques, systematically varying the predictors 

incorporated in their college-major classifier to determine which predictors are 

most important. If a predictor without theoretical relevance to the outcome 

surfaces, this may indicate a co-occurring, and potentially misleading, construct 

(see also Bowyer et al., 2020; X. Wu & Zhang, 2016). 

• Assess the fairness of the model using formal approaches, including statistical 

parity, separation, and differential algorithmic functioning (Barocas et al., 2023; 

Suk & Han, 2024). 

Mono-Operation and Mono-Method Bias 

All measures underrepresent constructs and contain irrelevancies (Shadish et al., 2002). 

For this reason, researchers are advised to use several measures of a given construct. Shadish et 

al. (2002) conceptualize a failure to do this as mono-operation bias (relying on a single measure), 

associated with mono-method bias (relying on a single method of measurement). For example, 

readers of a study may be suspicious if an intervention improves a construct when that construct 

is only measured using self-report. A stronger approach may be to triangulate results from both 

self-report and teacher-report. The same advice holds true when supervised learning is used to 
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measure an outcome. Construct validity will increase when there are multiple measures and 

methods of measurement, especially where these span both human and machine approaches 

(Grimmer & Stewart, 2013). To address mono-operation and mono-method bias, researchers 

commonly:  

• Replicate findings obtained with machine learning measures using non-machine 

learning based measures (as in Mozer et al., 2023; Shores & Steinberg, 2022). For 

example, in estimating the number of student-weeks spent in remote instruction 

during the COVID-19 pandemic, Shores and Steinberg (2022) triangulate text 

classification-based estimates (applied to school websites) with mobile phone 

data—with key research findings consistent across both sources. 

• Probe the sensitivity of individual predictions to multiple algorithms. For 

example, in Bird et al.’s (2021) work on graduation prediction, the authors assess 

the extent to which the relative ranking of students’ drop-out risk is consistent 

across algorithms. Instability here would indicate that a decision of whether to 

intervene with a given student—because they are in the top X percentile for 

predicted drop-out risk, for example—may depend on the specific algorithm 

employed by the college.  

Reactivity to the Machine Learning Model 

Because humans actively interpret their surroundings, and adapt their behavior in 

response, Shadish et al. (2002, p. 73) caution that “participant responses reflect not just 

treatments and measures but also participants' perceptions of the experimental situation”— 

a phenomenon known as participant reactivity. For example, psychological evaluation may cause 

participants to act or answer questions in ways they hope will be viewed as psychologically 
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healthy (Rosenberg, 1969). A similar phenomenon can occur when participants learn that they 

are being evaluated by a machine learning model; participants may attempt to game the model by 

guessing the actions that will improve their score. For example, in some automated grading 

systems, longer essays often receive higher scores (Bridgeman et al., 2012). If this becomes 

common knowledge, participants may start writing longer essays, without changing the 

underlying quality of the work (Cope & Kalantzis, 2016). To address this challenge, researchers 

can: 

• Avoid sharing information about the method of measurement with participants. For 

example, when measuring the relationship between authentic questioning and teacher-

reported student engagement, Kelly and Abruzzo (2021, p. 311) ensured that “teachers 

had no knowledge of the measures of instruction at the time of reporting.” If participants 

are unaware of assessment specifics, they are less likely to successfully manipulate their 

scores. On the other hand, when institutions use algorithms for high-stakes decision-

making, publicizing information on the predictors is also an important aspect of 

transparency and accountability (Zheng et al., 2024). 

• Aim for theoretical alignment between predictors and the construct of interest (as in 

Kelly et al., 2018). Given the conflict between transparency and participant reactivity, a 

better approach may be to ensure alignment between the predictors and the construct. In 

this way, reactivity can be directed towards more productive ends.  

• Conduct interviews and surveys with participants. It is impossible to prevent respondents 

from generating their own hypotheses regarding researcher intentions, and from changing 

their behavior accordingly. However, reactivity may at least be probed through 

interviews or surveys of participants (Shadish et al., 2002). 
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External Validity in Supervised learning 
 

Shadish et al. (2002, p. 83) conceptualize external validity within a causal evaluation 

framework, defining it as the “extent to which a causal relationship holds over variations in 

persons, settings, treatments, and outcomes.” In supervised learning, however, it is not a causal 

relationship that must hold over relevant variations but a predictive relationship. External 

validity in supervised learning may thus be conceptualized as the extent to which a model’s 

predictive ability, as estimated using the provided performance metrics, generalizes to the 

intended use cases. In a single study, this means that the performance metrics – estimated using 

the labeled testing data – must be a good estimate of the performance of the model in the 

unlabeled data. In other words, model performance must generalize from the testing data to the 

full sample of data included in the study (Yarkoni & Westfall, 2017). These data may include 

variations in people, settings, and time (Kapoor & Narayanan, 2023). Further, when models are 

made available for public use and applied to novel datasets, the scenarios may become 

increasingly diverse.  

Threats to external validity are reasons such generalizations may fail. Shadish et al (2002) 

identify interactions—when three or more variables influence each other—as the key challenge 

to external validity. In a randomized experiment, external validity is threatened if there is a 

substantial coefficient on a three-way interaction between the treatment, the outcome, and a 

certain characteristic of either the unit, treatment, outcome, or setting. In supervised learning, the 

external validity threat similarly occurs when there is three-way interaction between the 

predicted outcome, predictors, and the characteristics of samples, settings, or time points. Just as 

treatment effects often vary with study characteristics (Bloom & Michalopoulos, 2013), so too 

do predictive relationships (Kapoor & Narayanan, 2023). Thus, three types of interaction 
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effects—samples, settings, and time—are discussed in more detail below. One additional threat, 

particular to supervised learning applications, is also discussed: the failure of a model to 

generalize because it was overfit to noise in the training sample.  

Interaction Between the Predictive Relationship and Variations in the Sample 

In supervised learning, the process of estimating performance metrics implicitly assumes 

that the testing data are a random sample of the population to which the algorithm will be applied 

(Zadrozny, 2004). Yet, in many supervised learning applications, training and testing data are not 

a random sample of the population of interest and instead may have distinct characteristics—a 

phenomenon known as sample selection bias. When these characteristics moderate the 

relationship between predictors and the predicted outcome, external validity is threatened. 

Further, external validity does not only require that relationships generalize to new relevant 

populations, but also to variations within the original population (Shadish et al., 2002). In other 

words, external validity is also threatened when the model exhibits differential performance for 

one or more represented sub-groups. To address this threat, researchers commonly: 

• Select training/testing data so as to maximize alignment with the target population. Then, 

describe the source and characteristics of these data. For example, in developing 

automated approaches to measuring effective teaching, Liu and Cohen (2021) describe 

the demographic characteristics of both the teachers and students in their sample. They 

also note the limitations of their classroom sample—4th and 5th grade English language 

arts classrooms—noting that “classroom discourse may well look different in 

mathematics or in the primary grades” (Liu & Cohen, 2021, p. 606). 

• Ensure sufficient representation among population sub-groups. If there is an interaction 

between the predictive relationships within a model and model sub-groups, the model 
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must be provided with enough data to learn those interactions (Buolamwini & Gebru, 

2018). This can be addressed by over-sampling important sub-groups. In Liu and Cohen’s 

(2021) case, for example, ensuring the model’s generalizability across linguistic sub-

populations might mean over-sampling classrooms with high proportions of English 

Language Learners.  

• Evaluate the performance of the algorithm among sub-groups (as in Chen et al., 2022; 

Lang et al., 2022). In addition to presenting average performance metrics, best practice 

requires that researchers also present performance metrics within sub-groups (Mitchell et 

al., 2019). For example, Chen et al., (2022) assess the performance of an automated essay 

scoring system among struggling writers and non-struggling writers and demonstrate that 

the model is less reliable when scoring the essays of struggling writers. In other cases, 

additional subgroups might include those defined by race/ethnicity, nationality, gender, 

socio-economic status, and disability (Baker & Hawn, 2021). 

Interaction Between the Predictive Relationship and Variations in Setting 

Machine learning researchers will often transport models trained in one setting for use in 

another (Lucy et al., 2020). For example, researchers commonly apply pre-trained sentiment 

models to new data, such as applying a model trained to identify positive versus negative Yelp 

reviews to assess positive versus negative sentiment in student surveys. However, the sentiment 

of a particular word is often context-dependent, creating an interaction between the setting and 

predictive relationships in a sentiment model. To address this threat, researchers can: 

• Set aside a hold-out setting for validation. For example, Kelly et al. (2018) train their 

authentic question classifier on one set of schools, and validate the model on a hold-out 

school not used to train the classifier. If the model performs well in the hold-out setting, 
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this indicates that predictors of authentic questioning can generalize across setting 

characteristics. 

• Evaluate pre-trained models in the current setting. This may require hand-labeling a 

sample of the current data to examine the performance of a pre-trained classifier. For 

example, Lucy et al. (2020) evaluate a pre-trained named entity recognition classifier 

(designed to identify proper nouns) to assess its ability to identify names of people within 

history textbooks, finding that the performance is meaningfully lower than the 

performance on the original testing sample.  

Interaction Between the Predictive Relationship and Variations in Timing 

 In many supervised learning applications, a model is trained on past data with the 

intention of applying it to future data. However, models that perform well initially may not retain 

their performance over time (Sculley et al., 2014), a phenomenon known as drift (Gama et al., 

2004). A canonical example of model drift is the failure of Google Flu Trends. At one point, this 

model could accurately predict CDC flu prevalence estimates days ahead of the estimates’ 

release (Ginsberg et al., 2009). Later, however, the model massively overestimated flu 

prevalence. The reasons for Google Flu Trends’ failure are not known, but one hypothesis is that 

changes in Google’s search platform—for example, the incorporation of suggested search terms 

for users—dramatically changed the nature of the underlying search data (Lazer et al., 2014). As 

a result, the relationship between the predictors (search terms) and the predicted outcome (flu 

prevalence) proved unstable over time. In education contexts, policy changes might similarly 

influence the relationship between predictors and outcomes. For example, high quality teaching 

might look and sound different following the adoption of Common Core standards (Cohen et al., 

2022). In this situation, a supervised learning model trained in the pre-Common Core era may 
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not perform well in the post-Common Core period. To address this threat, researchers 

commonly: 

• Assess the correlation between model performance and time (as in Lang et al., 2022). To 

evaluate the plausibility of model drift, researchers can assess whether there is a 

substantial correlation between model performance and time in past data. If predictive 

ability holds stable over time in past data, this provides evidence that predictive ability 

will be stable in future data.  

• Monitor model performance. Just as researchers should evaluate model performance in 

new settings, they should periodically evaluate model performance in new time periods 

(Sculley et al., 2014).  

• Update model training with current data. If model performance deteriorates, researchers 

can either retrain the model or update past training data with newly collected data 

(Lwakatare et al., 2020). 

Model Overfit  

Finally, all generalizations will be invalid if the model is overfit to the training data. 

When flexible algorithms are trained on data with many variables, an algorithm can reduce error 

in the training sample by learning idiosyncratic and ungeneralizable patterns (Hastie et al., 2009). 

Indeed, using its training data, a sufficiently flexible model can reduce error to zero without 

necessarily identifying any generalizable patterns. This is why a minimum standard for rigorous 

supervised learning incorporates the training/testing split. When model performance is estimated 

on data which are independent from the training data, these performance metrics provide a more 

accurate estimate of model generalizability (Emmert-Streib & Dehmer, 2019; Yarkoni & 

Westfall, 2017).  
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Statistical Conclusion Validity in Supervised learning 

 In quantitative social science research, conclusions are drawn from statistical estimation, 

including point estimates (e.g., effect sizes), measures of uncertainty (e.g., standard errors), and 

statistical tests (e.g., null hypothesis statistical testing). Statistical conclusion validity concerns 

the appropriateness of conclusions drawn from such evidence. In supervised learning, 

conclusions are similarly drawn from statistical estimation. Most commonly, conclusions 

regarding a model’s usefulness are based on the magnitude of performance metrics (e.g., 

accuracy, precision, recall, etc.). Threats to statistical validity in supervised learning include 

situations in which we may over- or underestimate the magnitude of the performance metric or 

the degree of confidence that the performance metric warrants. Importantly, an incorrect 

understanding of performance can result in faulty decisions, including the deployment of a 

deficient model because its performance was overestimated or because confidence was 

overstated (Varoquaux, 2018). Four threats to statistical validity in supervised learning are 

discussed below: misleading or uninformative performance metrics; optimizing a model to the 

testing data; dependence between the training and testing data; and an insufficient testing data 

sample size.  

Misleading or Uninformative Performance Metrics 

Researchers can choose several performance metrics to gauge a model’s usefulness. With 

binary classifiers—for example, classifying a student as at-risk/not at risk—performance metrics 

commonly concern the relationship between true positives (TP; positive cases correctly classified 

as positive according to the gold-standard data), true negatives (TN; negative cases correctly 

classified as negative), false positives (FP; negative cases incorrectly classified as positive), and 

false negatives (FN; positive cases incorrectly classified as negative). Metrics include: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

(Note, however, that the usage of the term true here is somewhat misleading, a high rate 

of true negatives and true positives indicates only agreement with the gold standard data, which 

itself may be flawed, as discussed previously under construct validity.) 

Researchers also commonly calculate summary statistics, such as the F1 statistic and the 

area under the receiver operating characteristic curve (Manning & Schütze, 1999). When a 

supervised learning algorithm aims to predict a continuous outcome—for example, predicting a 

student’s score for a given essay response—common performance metrics include the raw error, 

mean squared error, root mean squared error, and R2.  

Conclusions regarding a model’s usefulness depend on an accurate understanding of the 

prevalence, magnitude, and types of error involved. How often, for example, does the model fail 

to identify an at-risk student? How distant is the average predicted teacher observation score 

from the gold-standard human observation score? Validity is threatened when the presented 

performance metrics omit this information. For example, accuracy does not distinguish between 

false positives and false negatives. Therefore, the accuracy of a drop-out prediction algorithm 

does not indicate how often the model fails to identify an at-risk student. If drop-out is rare, the 

model could boast high accuracy without serving its intended purpose—such as helping 
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administrators identify suitable students for intervention. Similarly, while summary metrics, such 

as F1, will appropriately penalize a model for its systematic failure to identify either positives or 

negatives, they do not provide transparent information to research consumers regarding these 

errors’ prevalence (Green & Viljoen, 2020). To improve the policy relevance of performance 

statistics, researchers can: 

• Present metric(s) which characterize the degree and types of errors (as in Arthur 

& Chang, 2024; Bird et al., 2021; Kelly et al., 2018). In binary classifiers, this 

includes precision, recall, specificity, and false positive rate. In predicting 

graduation, for example, Bird et al. (2021) present both precision (the share of 

true graduates that the model predicts will graduate) and recall (the share of 

predicted graduates who graduate). With a continuous classifier, metrics that 

clearly report the degree of error include raw error, mean squared error, and root 

mean squared error. 

• Present multiple performance metrics alongside each other. Bird et al. (2021), for 

example, provide bar charts to demonstrate that graduation recall is routinely 

higher than graduation precision.  

Model Optimized to Testing Data 

In calculating performance metrics, researchers commonly have two goals: selecting 

between competing algorithms and hyper-parameters (model selection/tuning); and estimating 

the final model’s performance (model evaluation). For final performance metrics to provide an 

unbiased estimate, however, these two functions must be completed on independent datasets. 

Otherwise, if testing data are used to support a choice between competing models, then final 

performance metrics will underestimate the true error, sometimes substantially (Hastie et al., 
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2009). Peeking repeatedly at testing statistics is akin to p-hacking; just as a quantitative 

researcher can exploit random statistical variation to inflate p-values, a machine learning 

researcher can exploit random variation in the testing data to inflate performance metrics 

(Yarkoni & Westfall, 2017). To protect against this threat, researchers commonly: 

• Split labeled data into three datasets instead of two: training, development, and 

testing. This second split between training and development data can be used for 

model tuning and algorithm selection, while the testing data are only used once, 

after the model has been finalized (see, for example, Lang et al., 2022).  

• Split labeled data into two overarching datasets, training and testing, but use k-

fold validation within the training dataset to select the algorithm and hyper-

parameters (Hastie et al., 2009). In this approach, the training dataset is divided 

into k (commonly five or ten) equally sized subsets, or "folds." The researcher 

trains the model k times, each time using k-1 folds for training and the remaining 

fold for validation, rotating through all folds as the validation set. After 

identifying the best-performing hyperparameters and model setup, the model is 

re-trained on the full training set before being validated on the hold-out testing 

dataset. See, for example, Bird et al.’s (2021) deployment of 10-fold validation.  

• Pre-register the specifics of the machine learning training process (e.g., the cross-

validation method, hyperparameters tested, etc.) as demonstrated by Cimpian and 

Timmer (2019). 

Dependence Between Training and Testing Data 

For performance metrics to be unbiased, researcher decisions must not only be 

independent of the testing data, but the testing data itself must also be independent of the training 
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data. In other words, knowing the outcome of an observation in the training dataset should not be 

useful for predicting the outcome of an observation in the testing dataset. This assumption is 

violated, if, for example, the same person produced the two observations (e.g., one student 

produced an essay in the training dataset and another essay in the testing dataset), or if there are 

duplicates in the data (e.g., tweets that have been copy-pasted or retweeted by multiple users). If 

the degree of dependence is substantial, then a model could fit to noise in the dataset. Consider 

again the example of student essays. If one strong writer has an idiosyncratic writing style, the 

model might fit to those ungeneralizable idiosyncrasies. If that same writer has observations in 

the testing dataset, the model won’t be penalized for such overfitting. To address this threat, 

researchers commonly:  

• Split data for training and testing (or cross-validation) using the uppermost level 

of a hierarchical dataset. This might mean splitting observations at the person 

level (when individuals produce multiple observations), at the classroom level 

(when students are nested within classrooms), or at the school level (when 

teachers are nested within schools). For example, in training a classifier to 

identify authentic questions from teachers, Kelly et al. (2018) employ “leave one 

teacher out validation,” so that performance metrics cannot be overinflated via 

overfitting to individual teacher idiosyncrasies in the training data. 

Insufficient Validation Sample Size 

When researchers calculate performance metrics, these are point estimates derived from a 

sample (the testing data), with the purpose of generalizing to a population to which the model 

will subsequently be applied. Like all point estimates, these statistics should not be interpreted as 

the truth, but rather as the best estimate of an unknown population parameter (Savoy, 1997). 
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Thus, just as quantitative evaluation researchers present standard errors and confidence intervals 

regarding treatment effect estimates, machine learning researchers should present confidence 

intervals surrounding performance metrics (Mitchell et al., 2019). Presenting confidence 

intervals would force researchers to acknowledge that high performance in the testing data, 

particularly in a small testing data set, may be due to a lucky draw. Presenting confidence 

intervals might also encourage researchers to increase the size of their testing datasets, thereby 

increasing the statistical validity of their estimates. Approaches to confidence interval estimation 

include:  

• Estimating a binomial proportion interval. In the case of binary predictions, researchers 

may estimate a confidence interval by calculating a binomial proportion interval: 𝑝̂ 	±

𝑧@!"($%!")
'

, where 𝑝̂ is an estimated proportion-based performance metric (such as 

accuracy, recall, or precision), 𝑧	is a critical value for a desired level of confidence, and n 

is the size of the data on which the metric is estimated. Consider this approach in the 

context of Bird et al.’s (2021) work, for example. With an n of approximately 11,220 

graduates (33,000 students in the testing sample * a graduation rate of .34), and a recall 

of 0.75, the estimated confidence interval surrounding recall for one of Bird et al.’s 

(2021) prediction models would be approximately ±0.008.	If there were instead just 100 

students in the testing sample (with an expected 34 graduates), the confidence interval 

surrounding recall would have been approximately ±0.15. 

• Bootstrapping the testing sample. For a given sample of n observations in a testing data 

set, 𝑋 = {𝑥$, 𝑥(, 𝑥), … 𝑥'}, researchers generate a set of bootstrap samples 𝑋∗+ =

{𝑥$∗, 𝑥(∗, 𝑥)∗, … , 𝑥,∗ , … 𝑥'∗}	for 𝑖 through B, using random sampling with replacement from 

X. Each bootstrap sample contains 𝑛 members of the sample X, with some appearing 
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zero times, some once, some twice, etc. Within each bootstrapped sample, the researcher 

calculates the appropriate performance statistics (Savoy, 1997). The standard deviation of 

the resulting distribution is the bootstrapped standard error, and a 95% confidence 

interval can be obtained by assessing which two values 95% of the bootstrapped 

estimates fall between. 

Internal Validity in Supervised learning 

Internally valid studies can help determine the extent to which an educational program 

has a positive impact on students, making it a top priority among governmental and funding 

agencies (What Works Clearinghouse, 2019). Contemporary education researchers are thus often 

highly attuned to methods that increase causal rigor. However, the growth of machine learning in 

education is somewhat at odds with a prioritization of internal validity. While an algorithm will 

identify the combination of variables that best predicts the outcome of interest, there is no 

consideration of whether those variables are confounders of, or contributors to, the outcome. 

Further, there is no guarantee that the individual variables that are given the greatest weight in 

the model are the same variables that are most predictive of the outcome—only that the 

combination of variables is maximally predictive (Mullainathan & Spiess, 2017). Quite simply, 

supervised learning algorithms are optimized for prediction rather than causal inference; while 

experiments and quasi-experiments are designed to estimate the impact of A on B, supervised 

learning methods are designed to estimate predictions of B from A (Mullainathan & Spiess, 

2017).  

Nevertheless, prediction can be used in the service of causal inference. Three common 

scenarios were identified from the reviewed literature. First, supervised learning algorithms may 

be used to measure outcomes or characterize treatments in an evaluation framework (as in K. 
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Anglin, 2024; Harper et al., 2021; Mozer et al., 2023). Second, supervised learning algorithms 

may be used to build causal theory, particularly surrounding moderators, or to estimate 

heterogeneous treatment effects (as in Master et al., 2022; Pietsch et al., 2023; Suk & Han, 

2024). Third, supervised learning algorithms are increasingly being used to identify and control 

for confounds (as in Gormley Jr et al., 2023; Jabbari et al., 2023; Keller, 2020).  

In the first case, where supervised learning is used to measure treatments or outcomes, 

the same threats to internal validity that might occur with any evaluation apply, including 

ambiguous temporal precedence, selection, history, maturation, regression, attrition, testing, 

instrumentation, and the additive and interactive effects of these (Shadish et al., 2002). While a 

comprehensive overview of these threats is beyond the scope of this paper, readers may look to 

the Registry of Educational Effectiveness (Spybrook et al., 2019) and the What Works 

Clearinghouse (2019) protocols. This section highlights threats relevant to the second and third 

cases.  

Instability and Selection Bias in Predictor Importance 

Machine learning algorithms are adept at identifying non-linear and interactive patterns 

in data (Hastie et al., 2009). They are thus especially useful for identifying heterogeneity in 

phenomena; researchers may use supervised learning to predict an outcome (e.g., graduation) 

and then observe the variables which are most predictive—such as the largest coefficients in a 

penalized regression, or the first branches in a regression tree—to build causal theory around the 

variables that increase or decrease the outcome. If there are important interactive and non-linear 

relations—for example, if men in STEM majors are at the greatest risk of dropping out, or if a 

precipitous, rather than linear, drop in GPA causes students to leave school—supervised learning 

models can efficiently identify these patterns, helping researchers to build inductive theory 
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(Choudhury et al., 2018). However, there are challenges in this approach. First, the most 

important predictor in a given model is not necessarily the most important available predictor of 

the outcome. Due to the flexibility of many supervised learning algorithms, slight variations in 

training data can cause notable changes in predictor importance, even while model performance 

remains unchanged (Keller, 2020; Mullainathan & Spiess, 2017). For this reason, the variables 

identified as highly predictive using flexible and adaptive algorithms like regression trees and 

gradient boosting, are less stable than those identified using ordinary least squares regression 

(Mullainathan & Spiess, 2017).  

Furthermore, as with any analysis of patterns in observational data, a variable may be a 

stable and significant predictor of an outcome without necessarily having a causal impact on it. 

The identified predictor may simply be a correlate of another, unobserved, variable—the true 

determinant. For example, a hypothetical supervised learning model may find that undergraduate 

students in a particular major are more likely to graduate. This may be due to their experiences in 

the major (i.e., a causal relationship), or because of the type of student who decides to pursue the 

major (i.e., selection bias). The model will not distinguish between these two possibilities. To 

address these threats when building theory, researchers may:  

• Acknowledge that findings regarding predictor importance are correlational and 

exploratory (as in Lang et al., 2022; and Master et al., 2022).  

• Use supervised learning to identify potentially important predictors, then assess the 

predictor-outcome relationship in a separate hold-out dataset, addressing the challenge of 

predictor instability. This is the approach taken by Master et al. (2022) when identifying 

potential moderators of principal coaching effects—training a causal forest on one 

portion of the data, then using a hold-out dataset to assess moderator importance. 
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• Assess average predictor importance across many models (as in González Canché, 2023; 

Master et al., 2022). In an ensemble approach to supervised learning, a researcher trains 

many models on random subsets of the data—combining many regression trees into a 

forest, for example. Final predictions then result from aggregation across the models. Just 

as predictions are more stable in ensemble models, predictor importance is also more 

stable when aggregating across several models (Elith et al., 2008).  

Unobserved Confounders in Models Predicting Treatment Selection 

Finally, a common application of supervised learning in causal research is to aid the 

identification and control of confounders. For example, researchers commonly use regression 

trees to predict treatment take-up (McCaffrey et al., 2004). The resulting predicted probability 

scores are then used in a propensity score framework to control for selection. Empirical evidence 

from the within-study comparison literature suggests that—given the same set of potential 

covariates—machine learning approaches to propensity score estimation can reduce bias when 

compared with logistic regression approaches (K. L. Anglin et al., 2023). However, as with any 

matching or weighting approach, the algorithm’s success at eliminating selection bias depends 

upon the quality of available data (Cook et al., 2008). Supervised learning cannot address the 

problem of unobserved confounders. To address the threat of unobserved confounders, 

researchers commonly:  

• Present evidence of similarity between the treatment and comparison group, 

following propensity score weighting (as in Gormley Jr et al., 2023; Im et al., 

2016; Sales et al., 2018). While discernable balance on observable characteristics 

does not guarantee balance on unobservable characteristics, discernable 

imbalance does increase selection bias concerns.  
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• Collect data on hypothesized predictors of treatment take-up. Selection bias is 

often substantially reduced when researchers control for pre-treatment outcome 

measures and for variables that are theorized to influence selection, such as 

motivation or preferences (Keller, 2020; Marcus et al., 2012; Pohl et al., 2009; 

Wong et al., 2017). On the other hand, exclusively controlling for demographic 

covariates rarely produces unbiased treatment effects (Wong et al., 2017). 

Research Protocol 

<Insert Table 4 about here.>  
 

Drawing on the threats and best practices described above, the research protocol 

presented in Table 4 provides an initial starting point for improving and assessing the validity of 

inferences drawn from machine learning applications. Like the validity types framework, the 

protocol emphasizes proactive design decisions. By considering threats during the planning 

stages of a study, researchers may preemptively address them: a sentiment often captured by the 

adage, “You can’t fix with analysis what you’ve bungled by design” (Light et al., 1990). 

Researchers can best address construct validity by identifying the construct of interest upfront 

and selecting training data that best reflect that construct. They can best address external validity 

by ensuring that the training and testing sample and setting match the context(s) where the model 

will likely be applied, and by ensuring the adequate representation of population subgroups. 

They can best address statistical validity by selecting the most informative performance metrics 

and ensuring an adequate sample size in the testing data. And they can best address internal 

validity by selecting an appropriate design, and by collecting data on the most relevant 

confounders. The protocol provided in Table 4 prompts researchers to consider these facets in 

the early stages of a study. 
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The validity of supervised learning applications may also be increased post-hoc (i.e., after 

model training) through comprehensive reporting and transparency (Gebru et al., 2021; Mitchell 

et al., 2019). In the machine learning literature, the push for increased transparency has involved 

the increased adoption of standardized documentation to accompany public use training datasets 

(Gebru et al., 2021) and pre-trained models (Mitchell et al., 2019). Although studies applying 

supervised learning in educational contexts rarely release their training data or models, this 

approach is nonetheless instructive. To judge the validity of inferences drawn from supervised 

learning, critical readers require comprehensive information. To this end, the questions in Table 

4 may serve as a prompt for future study authors when deciding which information to include in 

a manuscript.  

Discussion and Limitations 

This article draws a parallel between Shadish et al.’s (2002) validity typology and the 

inferences drawn from supervised learning in educational contexts. It provides a holistic 

overview of threats to validity, alongside example approaches for addressing those threats. The 

article’s aim is to improve the validity of supervised learning applications in education research. 

Naturally, however, its limitations reflect both the limitations of the original typology, and of 

typological approaches more generally.  

First, catalogues of validity types and threats serve as heuristics for researchers (Mark, 

1986). That is, these threats represent cognitive shortcuts (Reichardt, 1985). A catalog of various 

threats allows us to evaluate the validity of inferences more easily than we otherwise might 

(Mark, 1986), particularly given the heavy cognitive lift required to evaluate the validity of 

inferences derived using unfamiliar methods. However, such shortcuts may also serve as 

blinders, allowing unlisted threats to go unacknowledged (Reichardt, 1985). Further, typologies 
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suffer from an inherent arbitrariness. Critics have pointed out that “definitions of validity and 

threats to validity have varied over time, are sometimes incongruous, and are not always easy to 

differentiate” (Reichardt, 2019, p. 27). As Mark writes, “A validity typology is not a foolproof, 

logistically consistent, mutually exclusive set of categories. It is a device, an aid.” Even if 

distinctions between validity types and threats remain up for debate, therefore, attempts to collate 

and organize them can still prove valuable.  

Second, any list of threats will necessarily be incomplete. Indeed, the number of threats 

identified by Shadish et al. (2002) tripled between 1957 and 1979 (Campbell, 1957; Cook & 

Campbell, 1979). The threats identified in this article are thus not expected to be comprehensive. 

Although machine learning applications in education are increasing quickly, the literature base is 

still relatively young; new challenges will likely be identified as the field develops. Similarly, 

best practices are also likely to grow and evolve, meaning that the approaches discussed above 

and in the protocol for addressing threats should be considered as examples rather than as a 

comprehensive list of requirements.  

Third, Shadish et al. (2002) may themselves take issue with the application of their 

validity typology to supervised learning applications. These authors have long argued that 

internal validity is the sine qua non of research; in their view, internal validity must be 

prioritized before assessments regarding other validity types are deemed appropriate (Campbell 

& Stanley, 1963). On the other hand, overemphasizing internal validity at the cost of other 

validity types has been heavily critiqued in discussions of the original validity typology (Albright 

& Malloy, 2000; Cronbach, 1982; Reichardt, 2019). This article is thus not the first to advocate 

for expanding the validity typology to include non-causal research (Huck & Sandler, 1979; 

McMillan, 2000; Onwuegbuzie, 2000).  
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Finally, as noted earlier, Shadish et al.’s (2002) understanding of validity is only one 

formulation among many and is not without its limitations. One key drawback of the framework, 

when applied to supervised learning, is the relatively limited focus it places on consequences and 

value implications (Kane, 2001; Messick, 1989). Shadish et al.’s (2002) threats to validity focus 

on the causes of faulty inferences, encouraging researchers to rule out these threats and improve 

their inferences. However, comparatively less attention is given to the consequences of these 

inferences. As Kane (2001) points out, even accurate inferences are not sufficient to argue for 

test use; a medical test which can accurately predict an untreatable disease may still cause harm 

if applied without purpose, particularly if there are side effects. Similarly, even an accurate 

supervised learning model may have unintended consequences when applied in practice (Barocas 

et al., 2023; see Lee et al., 2021 for an example of negative consequences resulting from a 

machine learning measure in higher education). Further, Shadish et al. (2002) only provide 

limited discussions of trust and transparency issues, key issues in supervised learning given that 

training datasets are rarely described and commonly underrepresent key demographic groups 

(Buolamwini & Gebru, 2018). For these reasons, the validity typology and associated checklists 

presented here cannot serve as the final conceptualization of machine learning validity in 

education research. Instead, they offer a practical form of scaffolding while best-practice in the 

field develops.  

Conclusion 

Given the exponential rise of machine learning applications in education research, we are 

at a critical disciplinary juncture. Machine learning is equally capable of generating valuable 

insights and faulty inferences. This article aims to increase the likelihood of the former by 

providing education researchers with a straightforward reference guide to validity considerations. 
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Although machine learning technologies are quick to adapt and evolve, the most important 

questions concerning valid inferences are age-old: Does the measured construct align with the 

construct’s theoretical definition? Does the sample genuinely reflect the populations of interest? 

Are the statistics unbiased? Do the correlations reflect causation? This article encourages 

researchers to pay close attention to these facets of supervised learning applications, increasing 

their rigor even as they employ cutting-edge algorithms.   
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Figure 1 
 
Search Protocol and Inclusion Criteria for Integrative Review 
 

 
Note. *Records were excluded if no key words were found in the main text, excluding 
bibliographies and author biographies. **Count includes unsupervised learning applications 
(n=8), and conceptual or methodological articles focused on machine learning but lacking non-
simulated education data (n=11). Figure adapted from PRISMA diagram (Page et al., 2021). 
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Table 1 
 
Applied Articles Reviewed 
 
Journal Authors Title Year 
AERA Open González Canché, M. S. The geography of mathematical (dis)advantage: An application of 

multilevel simultaneous autoregressive (MSAR) models to public 
data in education research 

2023 

AERA Open Gormley, W. T., Jr., 
Amadon, S., Magnuson, K., 
Claessens, A., & Hummel-
Price, D. 

Universal pre-K and college enrollment: Is there a link? 2023 

AERA Open Lang, D., Wang, A., Dalal, 
N., Paepcke, A., & Stevens, 
M. L. 

Forecasting undergraduate majors: A natural language approach 2022 

AERA Open Bird, K. A., Castleman, B. 
L., Mabel, Z., & Song, Y. 

Bringing transparency to predictive analytics: A systematic 
comparison of predictive modeling methods in higher education 

2021 

AERA Open Rosenberg, J. M., Borchers, 
C., Dyer, E. B., Anderson, 
D., & Fischer, C. 

Understanding public sentiment about educational reforms: The 
Next Generation Science Standards on Twitter 

2021 

AERA Open Lucy, L., Demszky, D., 
Bromley, P., & Jurafsky, D. 

Content analysis of textbooks via natural language processing: 
Findings on gender, race, and ethnicity in Texas US history 
textbooks 

2020 

AERA Open Cimpian, J. R., & Timmer, J. 
D. 

Large-scale estimates of LGBQ-heterosexual disparities in the 
presence of potentially mischievous responders: A preregistered 
replication and comparison of methods 

2019 

AERA Open Ramirez, G., Hooper, S. Y., 
Kersting, N. B., Ferguson, 
R., & Yeager, D. 

Teacher math anxiety relates to adolescent students' math 
achievement 

2018 

AERA Open Page, L. C., & Gehlbach, H. How an artificially intelligent virtual assistant helps students 
navigate the road to college 

2017 

AERJ Chen, D., Hebert, M., & 
Wilson, J. 

Examining human and automated ratings of elementary students' 
writing quality: A multivariate generalizability theory application 

2022 
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EEPA Jabbari, J., Chun, Y., Huang, 
W., & Roll, S. 

Disaggregating the effects of STEM education and apprenticeships 
on economic mobility: Evidence from the LaunchCode program 

2023* 

EEPA Pietsch, M., Aydin, B., & 
Gümüş, S. 

Putting the instructional leadership–student achievement relation in 
context: A meta-analytical big data study across cultures and time 

2023* 

EEPA Anglin, K. The role of state education regulation: Evidence from the Texas 
Districts of Innovation statute 

2023 

EEPA Chi, O. L., & Lenard, M. A. Can a commercial screening tool help select better teachers? 2023 
EEPA Demszky, D., Liu, J., Hill, H. 

C., Jurafsky, D., & Piech, C. 
Can automated feedback improve teachers' uptake of student ideas? 
Evidence from a randomized controlled trial in a large-scale online 
course 

2023 

EEPA Master, B. K., Schwartz, H., 
Unlu, F., Schweig, J., 
Mariano, L. T., Coe, J., 
Wang, E. L., Phillips, B., & 
Berglund, T. 

Developing school leaders: Findings from a randomized control trial 
study of the Executive Development Program and paired coaching 

2022 

EEPA Lee, J. C., Dell, M., 
González Canché, M. S., 
Monday, A., & Klafehn, A. 

The hidden costs of corroboration: Estimating the effects of 
financial aid verification on college enrollment 

2021 

EEPA Liu, J., & Cohen, J. Measuring teaching practices at scale: A novel application of text-
as-data methods 

2021 

ER Kelly, S., & Abruzzo, E. Using lesson-specific teacher reports of student engagement to 
investigate innovations in curriculum and instruction 

2021 

ER Kelly, S., Olney, A. M., 
Donnelly, P., Nystrand, M., 
& D’Mello, S. K. 

Automatically measuring question authenticity in real-world 
classrooms 

2018 

JEBS Arthur, D., & Chang, H.-H. DINA-BAG: A bagging algorithm for DINA model parameter 
estimation in small samples 

2024* 

JEBS Mozer, R., Miratrix, L., 
Relyea, J. E., & Kim, J. S. 

Combining human and automated scoring methods in experimental 
assessments of writing: A case study tutorial 

2023 

JEBS Si, Y., Little, R. J., Mo, Y., 
& Sedransk, N. 

A case study of nonresponse bias analysis in educational assessment 
surveys 

2023 

JEBS Suk, Y., Kim, J.-S., & Kang, 
H. 

Hybridizing machine learning methods and finite mixture models 
for estimating heterogeneous treatment effects in latent classes 

2021 
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JEBS Wu, E., & Gagnon-Bartsch, 
J. A. 

Design-based covariate adjustments in paired experiments 2021 

JEBS Sales, A. C., Hansen, B. B., 
& Rowan, B. 

Rebar: Reinforcing a matching estimator with predictions from 
high-dimensional covariates 

2018 

JEBS Strobl, C., Wickelmaier, F., 
& Zeileis, A. 

Accounting for individual differences in Bradley-Terry models by 
means of recursive partitioning 

2011 

Note. * Indicates OnlineFirst at time of search.  
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Table 2 
 
Conceptual/Methodological Articles Reviewed 
 
Journal Authors Title Year 
AERA Open McFarland, D. A., Khanna, S., 

Domingue, B. W., & Pardos, Z. 
A. 

Education data science: Past, present, future 2021 

AERA Open Doroudi, S. The bias-variance tradeoff: How data science can inform 
educational debates 

2020 

AERA Open Cope, B., & Kalantzis, M. Big data comes to school: Implications for learning, 
assessment, and research 

2016 

JEBS Rothacher, Y., & Strobl, C. Identifying informative predictor variables with random 
forests 

2024* 

JEBS Suk, Y., & Han, K. T. A psychometric framework for evaluating fairness in 
algorithmic decision making: Differential algorithmic 
functioning 

2024* 

JEBS Doran, H. A collection of numerical recipes useful for building scalable 
psychometric applications 

2023 

JEBS Li, X., Xu, H., Zhang, J., & 
Chang, H. 

Deep reinforcement learning for adaptive learning systems 2023 

JEBS Pang, B., Nijkamp, E., & Wu, Y. 
N. 

Deep learning with TensorFlow: A review 2020 

JEBS Hao, J., & Ho, T. K. Machine learning made easy: A review of Scikit-learn 
package in Python programming language 

2019 

JEBS Von Davier, M., Khorramdel, L., 
He, Q., Shin, H. J., & Chen, H. 

Developments in psychometric population models for 
technology-based large-scale assessments: An overview of 
challenges and opportunities 

2019 

JEBS Slater, S., Joksimović, S., 
Kovanovic, V., Baker, R. S., & 
Gasevic, D. 

Tools for educational data mining: A review 2017 

Note. * Indicates OnlineFirst at time of search.  
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Table 3 
 
Summary of Validity Types 
 
 
Validity Type Definition Example from Literature 
Construct Validity Validity of inferences regarding 

the extent to which a model 
reflects the construct it is aimed 
at predicting 

Kelly et al. (2018) develop a machine-learning based measure of “authentic 
questioning” (the construct of interest). The construct validity of this 
measure depends on the extent to which: (a) their gold-standard human 
labels of authentic questions are aligned with the provided definition of the 
construct; and (b) the machine learning algorithm has retained the 
prototypical features of authentic questioning.  
 
Steps they take to address construct validity include providing the reader 
with a definition and example of authentic questioning, linking their 
construct definition to the wider literature, training human coders to use the 
provided codebook, reporting measures of agreement between coders, and 
limiting the machine learning model to theoretically relevant predictors.  

External Validity Validity of inferences regarding 
the generalizability of model 
performance 

Liu and Cohen (2021) aim to develop generalizable, automated measures of 
effective teaching, including training a supervised learning model to 
identify open-ended questions. The external validity of this model depends 
on the extent to which the predictive validity of the model generalizes 
beyond the training data—to the population of teachers for whom they hope 
the model will be useful.  
 
Steps they take to address external validity include maximizing alignment 
between the sample and target population, describing the source of their 
training and testing data (including the representation of important 
subgroups), and testing the performance of their model on hold-out data.  

Statistical Validity Validity of inferences regarding 
the estimated performance, 

Bird et al. (2021) train a classifier aimed at predicting graduation and use an 
independent testing dataset to estimate the performance of the model. The 
statistical validity of their study depends on the valid estimation of model 
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sensitivity, and uncertainty 
surrounding a model 
 

error and an appropriate understanding of the degree of confidence that 
those estimates warrant.  
 
Steps they take to address statistical validity include presenting multiple 
performance metrics (accuracy, precision, recall, and F1 score among 
others), using a large testing dataset of over 33,000 students, and assessing 
the sensitivity of inferences to model parameters. 

Internal Validity Validity of inferences regarding 
causal relationships between 
predictors, treatments, and 
outcomes 

Master et al. (2022) train a causal forest to identify heterogeneous effects in 
a principal professional development program. If the aim of this analysis is 
theory generation, then the internal validity of findings regarding potential 
moderators depends on whether the identified predictors actually produce 
the observed heterogeneity.  
 
The authors are careful not to overstate causal claims with their findings but 
take several steps to address instability in predictor importance (increasing 
readers’ confidence that the authors have identified the most important 
measured moderators). These steps include using an ensemble model and 
testing the predictive ability of the identified characteristics in a hold-out 
sample.  
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Table 4 

Summary Protocol for Machine Learning Applications in Education 

Questions  CV EV SV IV 
What are the key research questions and hypotheses? 
 

X X X X 

What role do machine learning models play in the study? 
 

X X X X 

Define the construct(s) you aim to measure with a machine learning 
model and link the conceptualization to prior literature. 
 

X    

To what extent is there slippage between the construct of interest and 
the labels in the data? If the labels assigned to the data differ from the 
construct of interest, describe how. 
 

X    

If gold-standard data involve labels assigned by human coders, what 
were the specific instructions and materials provided to the labeler(s)? 
 

X    

Describe the labelers’ training and experience. 
 

X    

How will you measure inter-rater agreement? 
 

X    

Describe the predictors you will allow your model to consider. 
 

X    

Which of these are likely correlates of a confounding construct? 
 

X    

How, if at all, will you observe predictor importance? 
 

X    

Will there be more than one measure of the construct of interest? If so, 
is at least one of these measures not reliant on machine learning? 
 

X    

Do your participants have the means and/or motivation to game the 
model? 
 

X    

If so, how do you plan to probe participants’ reaction to the model? 
 

X    

If participants were to game the model, would this behavior be positive, 
negative, or neutral for student learning? 
 

X    

What is the target population for your model? 
 

 X   

Describe the source of your training and testing dataset. To what extent 
is there theoretical alignment and misalignment between the target 
population and the sample population? 
 

 X   



THREATS TO VALIDITY IN SUPERVISED MACHINE LEARNING 

 59 

Describe your proposed sample with respect to sub-groups (e.g., what 
proportion of your population has an individualized educational plan)? 
 

 X   

For which sub-groups will you report performance statistics? 
 

 X   

If you will be using a pre-trained model, how will you validate the 
model in its current setting? 
 

 X   

Over what time period will your model be employed? Is the full period 
represented in your training and testing data? 
 

 X   

To what extent do you expect the predictive capability of the model’s 
features to change during the model’s employment period? 
 

 X   

Can you empirically assess model drift by assessing changes in 
performance over time? 
 

 X   

What are the most relevant performance metrics? 
 

  X  

What is the size of your labeled data set? 
 

  X  

What is the intended training/development/testing ratio? 
 

  X  

What is the count of true positives and true negatives in the testing data? 
 

  X  

Records may be unintentionally recorded twice. How will you assess 
your data for possible duplicates? 
 

  X  

If the data are nested, describe the nesting structure and the level at 
which you will split your data for training/testing? 
 

  X  

How will you protect against the temptation to peek at your testing 
data? 
 

  X  

How will you report uncertainty around your performance metrics? 
 

  X  

What, if any, causal inferences are embedded within the research 
question?  
 

   X 

What design features are included in the study to address threats to 
internal validity (e.g., selection bias, time-varying confounders)? See 
the Registry for Educational Effectiveness studies for in-depth guiding 
questions relevant to your chosen research design (Anderson et al., 
2019). 
 

   X 
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Note. An X indicates the most relevant validity type to which the question speaks. CV = 
Construct Validity, EV = External Validity, SV = Statistical Validity, IV = Internal Validity.  
 


