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Abstract: 
 
This study examined predictors of persistence and fadeout across multiple cluster RCTs that 
evaluated a preschool mathematics curriculum. We used meta-analytic methods to explore how 
impacts on student mathematics achievement faded between post-test (i.e., endline) and one-year 
follow-up. We found that the magnitude of the impact at post-test was a strong predictor of the 
one-year follow-up impact. Contrary to popular theory, we found that intervention impacts faded 
faster when students attended sites that showed more learning in the year following the end of 
the intervention. Factors related to intervention fidelity and dosage did not strongly predict 
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fadeout patterns after considering the magnitude of the post-test effect. Results suggest that 
educational program evaluators can use immediate impacts to forecast follow-up effects. 
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Researchers and policymakers have taken an interest in early childhood educational 

(ECE) interventions because of their promised capacity to produce long-lasting changes in 

children’s developmental trajectories (Elango et al., 2016). However, recent literature reviews 

have found that ECE interventions, like educational interventions at large (Hart et al., 2024), 

often produce effects that quickly diminish in the years following the intervention (Bailey et al., 

2017). Although the field has generated compelling hypotheses that might explain why certain 

interventions and environments could produce longer-lasting effects (Abenavoli, 2019; Bailey et 

al., 2017, 2020a), we have produced few empirically supported answers. It remains unclear 

whether we can identify characteristics of interventions that are likely to produce fading or 

persisting impacts on student outcomes. 

The current study explored multiple theories regarding the fadeout and persistence of 

intervention impacts to improve our ability to predict when a program will produce more 

persistent effects. We integrated child-level data collected as part of multiple large-scale cluster-

randomized controlled trials (RCTs) of different implementations of the Building Blocks (BB) 

preschool mathematics curriculum. These four scale-up, multi-site RCTs were implemented in 

five U.S. cities, which included approximately 4,000 children attending publicly-funded 

preschool and Head Start programs in 175 schools. The studies were designed to assign schools 

to experimental groups within blocks, with schools assigned to an intervention condition 

(curriculum implementation) or business-as-usual control (preschool without BB). This design 

allowed us to generate a dataset akin to a meta-analytic dataset, in which we treated each 

blocking group (n = 41 blocks) as a unique “experiment.” 

We began by testing a simple but important question for program evaluation: Do effects 

measured at the end of the program (i.e., “endline” or “post-test”) reliably predict effects 
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measured at one-year follow-up? If fadeout occurs proportionately to the initial effect size, this 

suggests that we can generate forecasting models that rely on observed post-test effects to 

forecast later follow-up effects. Indeed, policy researchers have become concerned with 

improving forecasting models, as decision-makers often need to understand the longer-term 

effects of interventions, even when longer-term outcomes will be unavailable (Athey et al., 

2019). 

We next turned to a host of exploratory analyses that examined whether other observable 

factors could be used to explain variation in follow-up effects. Here, we examined several 

influential theories in the evaluation literature (e.g., Bailey et al., 2017; Johnson & Jackson, 

2019) about the importance of post-intervention environments for sustaining program effects. 

We also tested whether intervention fidelity and implementation factors predicted impacts at 

follow-up, allowing us to evaluate if increasing the contrast between the intervention and the 

counterfactual group could lead to longer-lasting effects over and above what would be predicted 

by the post-test effect size alone. Finally, we considered the influence of children's observed 

characteristics, testing whether the intervention may have produced more persistent effects for 

children likely to face more disadvantaged environments. 

In the next section, we review various theories that have attempted to explain when 

interventions are likely to produce persistent or fading effects. We then introduce the data taken 

from the four scale-up studies of BB, and explain the assumptions of our “meta-analytic” 

approach. In the results section, we report analyses that aggregated effects across the studies, 

using meta-regression techniques to evaluate how intervention factors forecast follow-up 

treatment impacts. Finally, we discuss the implications of these results and consider how they 

might inform intervention development. 
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Operationalizing “Fadeout” to Understand Connections Between Short- and Long-Term 

Effects 

The terms “fadeout” and “persistence” have taken on a variety of meanings in the 

educational evaluation literature (see review in Bailey et al., 2020a). In the current study, we use 

the term “fadeout” to refer to the degree to which treatment impacts following an intervention on 

a given construct. The term “persistence” describes the degree to which treatment impacts on a 

given construct remain, or even grow in magnitude, over time. Because these terms describe a 

longitudinal pattern of mean differences between a treatment and control group on a measure of 

cognitive or social-emotional development, they can also characterize various learning 

trajectories over time. For example, in ECE studies, the fadeout of initially positive intervention 

effects often occurs even though students in both the intervention and control groups continue 

learning during the post-intervention period. However, if the post-intervention learning rate of 

children in the intervention group slows down compared with the children in the control group, 

then the standardized impact estimate between the two groups narrows (Carr et al., 2024). This 

fadeout pattern, sometimes called “catch-up,” unfolds as children in formal educational settings 

progress rapidly on vertically-scaled measures of cognitive skills during early grades (e.g., Hill et 

al., 2008). Also relevant for consideration is the possibility of fading or persisting impacts 

following an intervention with an initially adverse effect. In this case, intervention persistence 

would be defined as a sustained advantage for the control group (i.e., a continued negative 

treatment effect), and fadeout would occur if the treatment group outpaced the control group in 

the post-intervention period. Little attention has been given to this issue in the current literature 

on fadeout following ECE interventions. However, some work has shown negative impacts 

following the fadeout of initial positive effects (Durkin et al., 2022). 
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Operationalizing persistence and fadeout presents several challenges that bear on our 

ability to predict how impacts for a given intervention will unfold over time. These issues also 

hold theoretical importance for widely-cited theories of skill building (e.g., Cunha & Heckman, 

2007). To illustrate, imagine we implemented a hypothetical reading program in “Setting A.” 

Our evaluation finds a positive impact of 0.50 SDs on reading achievement at post-test (i.e., 

endline), indicating a strong positive effect of the intervention on the targeted outcome. We 

follow up with participants one year after the program ended, and we observe an impact of 0.25 

SDs on reading, indicating fadeout in the intervening year. Based on these results, what should 

we forecast for a further follow-up taken two years after the intervention ended? Moreover, if we 

ran the same intervention in “Setting B” and found an initial effect of 0.20 SDs, what should we 

predict for follow-up one year later? If fadeout occurs following an absolute pattern of 0.25 SDs 

per year, as evidence from “Setting A” suggests, then we might predict an impact of 0 at a 2-year 

follow-up in “Setting A” and an impact of -0.05 SDs at a one-year follow-up in “Setting B.” 

However, if fadeout occurs proportionately, with the pattern of fadeout over time 

unfolding in relation to the magnitude of the initial effect size, we would generate wholly 

different predictions. In other words, the results from “Setting A” would suggest a 50% per year 

decay in impact, implying that the 2-year impact in “Setting A” might be ~0.13 SDs (i.e., 0.50 X 

0.25), and the one-year impact in “Setting B” might be 0.10 SDs (i.e., 0.50 X 0.20). 

Thus, if we hope to improve our ability to forecast the follow-up effects for a given 

educational evaluation, we need to better understand whether impacts relate proportionately over 

time. In the current study, we attempted to address this issue by directly testing the extent to 

which post-test impacts predict the magnitude of follow-up effects. Indeed, most models of skill 

building theorize that a stronger initial impact on skill attainment will, on average, yield a 
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stronger later impact on skill development. This assumption is implicit in any regression-based 

analysis that relates earlier skill measures to later measures (Duncan et al., 2007; Watts et al., 

2014), and it is made explicit by prominent theories of skill-building processes (e.g., Cunha & 

Heckman, 2007). However, current evidence on the fadeout of intervention impacts complicates 

these predictions (Bailey et al., 2017), calling into question whether exogenously produced 

impacts on a given skill will relate to skill impacts in later periods. 

Prominent Theories Regarding the Factors That May Explain Fadeout 

Many theories have been offered to explain why intervention effects fade or persist in the 

long term (e.g., Abenavoli, 2019; Bailey et al., 2017, 2020a). Such theories can provide program 

evaluators with useful guides to forecast how program effects may unfold after the end of an 

intervention. However, empirical research has yet to provide clear evidence evaluating many of 

the most prominent theories cited in this area. In our exploratory analyses, we examined various 

additional factors chosen to shed light on these theories and improve our understanding of the 

conditions under which intervention impacts are likely to persist. Here, we hope to provide a 

straightforward test of each of these prominent theoretical explanations for fadeout: Do 

additional observable features of units, treatments, and settings predict follow-up effects over 

and above the post-test impacts? In other words, do differences between interventions simply 

produce variation in post-test impact, which will then fade following a monotonic pattern, or do 

observable characteristics change the pattern of fadeout in important ways? 

Post-Intervention Environments 

In recent years, significant attention has been devoted to understanding whether variation 

in the characteristics of the environments children encounter following interventions explains the 

persistence or fadeout of intervention effects (e.g., Botvin et al., 2024; McCormick et al., 2022; 
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Pearman et al., 2020). In the program evaluation literature, the concept of “dynamic 

complementarity” has been particularly influential, as an early intervention might produce larger 

long-term effects if it is followed by a subsequent high-quality learning experience that 

capitalizes on previous skill growth (see Johnson & Jackson, 2019). Relatedly, researchers have 

often hypothesized that fadeout following ECE programs occurs because children in the 

treatment group do not have sufficient opportunities to build on the knowledge they acquired 

during a given ECE program. Thus, the learning of the intervention group may slobecause early-

grade teachers spend the year teaching these children content that they had already mastered 

during the intervention (see Engel et al., 2013). This line of thinking, often called the “sustaining 

environments hypothesis,” predicts that a beneficial intervention at time 1 and at time 2 (e.g., 

pre-k and kindergarten) will positively interact, producing better long-term outcomes for children 

who received intervention at both time points. Although such predictions make intuitive sense, 

evidence for a positive interaction between a high-quality ECE intervention and subsequent 

educational quality has not been consistently observed (Bailey et al., 2020b). 

In contrast, other work suggests that early intervention effects may be more likely to 

persist when children encounter subsequent environments that lead to lower levels of learning 

(e.g., Bierman et al., 2015; Watts et al., 2023). This could happen if a lower-quality environment 

provides children in the counterfactual condition with fewer opportunities to learn the content 

provided during the earlier intervention. In other words, if fadeout is driven by control group 

catch-up, intervention effects may last longer when subsequent instruction provides control 

group children with fewer opportunities to make learning gains. 
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In the current study, we examined the influence of post-intervention learning 

environments by measuring children's learning gains in both the intervention and control groups 

following the end of the intervention. 

Intervention Quality 

Although researchers have increasingly turned to examining the subsequent environment 

when considering the longer-term effects of educational interventions, the programming quality 

during the intervention period remains an important area of concern. Advocates for ECE have 

argued that fadeout is likely to result from poor-quality programming, with higher-quality 

programs more likely to yield larger initial benefits that will last in later periods (e.g., Carolan, 

2014). 

Because fadeout is inherently concerned with the difference between a treatment and 

control group on a given outcome, this quality issue can also be understood as reflecting the 

magnitude of the contrast in experiences between the intervention and control group. Indeed, the 

best evidence for an early intervention producing large, persistent impacts likely comes from the 

Abecedarian study (for review, see Elango et al., 2016), which featured an unusually high-

quality intervention sustained over several years compared against a counterfactual condition 

that likely included few supports. In the more recent Head Start Impact Study, several post-hoc 

analyses have found that post-test intervention impacts were larger for the children who were 

most likely to stay home during the Head Start year (Kline & Walters, 2016), and another 

analysis found that impacts were larger and persisted at a higher rate when the treatment group 

was compared to children in the control group who stayed home (Zhai et al., 2014). 

Together, this work suggests that the contrast between the experiences of children in 

treatment and control group during the intervention period might shape longer-term effects. In 



PREDICTING FADEOUT IN MULTI-SITE RCTS 

12 

our study, we examined this issue by measuring the treatment and control contrast during the 

intervention year across several mathematical instructional indicators—all reflecting the 

magnitude of the change in mathematics instruction introduced by the intervention. 

Breadth of Impacts 

When attempting to forecast the long-term effects of an intervention, it seems apparent 

that one should consider the skill domain in question, including what is known about the nature 

of the typical development of said skill in the absence of intervention. Indeed, Bailey and 

colleagues (2017) argued that intervention impacts would be more likely to produce long-term 

effects if they influence malleable, fundamental skills that do not develop quickly without 

intervention. 

In the case of mathematics achievement, fadeout might be expected in the short term. 

Although preschool mathematical skills are fundamental and malleable, children who did not 

receive the intervention are poised to quickly learn early mathematics content when they first 

encounter math instruction upon entering kindergarten. However, theory also suggests that 

mathematical skill development is foundational for learning in other skill domains (e.g., 

Clements & Sarama, 2011), opening the possibility that math learning could transfer to broader 

capacities not directly taught to counterfactual children after the intervention ends. In the current 

setting, if the BB program also encouraged the development of, say, executive functioning, then 

transfer effects from executive functioning to mathematics achievement may lead to more 

observed treatment impact persistence on mathematics in the long-term (e.g., Clark et al., 2010; 

Clements et al., 2020). In the current study, we evaluate this possibility by testing whether the 

impacts of the ECE interventions on non-mathematical cognitive skills (i.e., non-targeted skills) 

lead to more persistent effects on mathematical skills at follow-up. 
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Demographic Characteristics of the Children Served 

Finally, when considering how the characteristics of other environments that children 

encounter might affect intervention fadeout and persistence, broader socioeconomic influences 

have also received substantial attention in the literature. Indeed, studies evaluating ECE 

programs often find that program impacts are larger for children who grow up in more 

disadvantaged environments (see review in Watts et al., 2023). Previous evidence leads us to 

make clear predictions regarding the role of demographic characteristics in shaping persistence 

and fadeout trajectories. Because English language learners and socioeconomically 

disadvantaged children may receive fewer high-quality post-intervention learning opportunities 

on average, more persistent impacts may be observed for these groups, consistent with findings 

from other ECE studies (Bitler et al., 2014; Duncan & Sojourner, 2013; Watts et al., 2023). 

Current Study 

The current study relies on data from four scale-up interventions of an early childhood 

mathematics curriculum. Although these evaluations differed in implementation factors and 

design elements, all four studies featured random assignment to an intervention that included the 

implementation of the BB curriculum. The curriculum was developed by Clements and Sarama 

(2008) to overhaul how mathematics is taught in public preschool programs. Previous work has 

described the curriculum extensively (Clements, Sarama, Spitler, et al., 2011). Here, we briefly 

describe some of the most salient features of the program. 

The BB curriculum used developmental research and theory to help children learn 

mathematical concepts and procedures through specific learning trajectories. These learning 

trajectories are centered on mathematical goals (e.g., counting), and students learn how to 

progress from the basic level of that goal (e.g., verbal counting) to more advanced understanding 
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(e.g., cardinality, application of counting strategies to solve problems). The BB approach 

involves significant teacher professional development, during which teachers are encouraged to 

“mathematize” children’s everyday activities and play. The curriculum depends on small group 

interactions during intentional activities, encouraging child language development and play-

based learning. It also integrates technology (i.e., the curriculum includes companion software) 

and formative assessment into classroom procedures. 

The BB curriculum has been researched extensively through multiple scale-up studies, 

and it is currently being used in several large-scale public preschool programs (e.g., Boston; New 

York City). For the current study, we synthesized data across four of these large scale-up 

evaluations: 1) the TRIAD evaluation implemented in Buffalo, NY and Boston, MA (Clements, 

Sarama, Spitler, et al., 2011); 2) the Vanderbilt Peabody College evaluation of BB from 

Tennessee (Hofer et al., 2013a; 2013b); 3) the EMERGE scale-up from San Diego, CA 

(Clements et al., 2020); and, 4) the Making Pre-K Count (MPC) scale-up implemented by 

MDRC in New York City, NY (Morris et al., 2016). Importantly, treatment effects varied 

considerably across these evaluations. The TRIAD study in Buffalo and Boston featured an 

extensive coaching and professional development model, along with the curriculum, and 

researchers reported a large experimental impact on end-of-preschool mathematics achievement. 

Clements, Sarama, Spitler, et al. (2011) observed a standardized effect of 0.71 that faded by the 

end of first grade (g = 0.28; Clements et al., 2013). A parallel evaluation conducted in Tennessee 

also found a large intervention effect at the end of preschool (d = 0.58), though this effect faded 

to non-significance in kindergarten and first grade (Hofer et al., 2013a). Finally, the evaluations 

in San Diego (Clements et al., 2020) and New York City (Morris et al., 2016) both reported 



PREDICTING FADEOUT IN MULTI-SITE RCTS 

15 

smaller, non-statistically significant effects of the program on mathematics test scores at the end 

of preschool. 

All four evaluations of the BB curriculum relied on cluster-RCT designs, in which 

schools (or preschool/Head Start centers) were clustered into blocking groups based on common 

site characteristics and then randomized to experimental groups (one study used some classroom-

level randomization—an issue we revisit below). In our analysis, we treat each block as a mini-

experiment that can be analyzed similarly to meta-analytic data. Therefore, our key dependent 

variable is the block-level standardized impact of the program on children’s mathematics scores 

at one-year follow-up (i.e., end of kindergarten), and our key independent variable is the block-

level impact of the program on post-test scores (i.e., end of preschool). Importantly, we consider 

the estimates for each block to be akin to quasi-experimental impacts of the curriculum program. 

Though the original evaluations used random assignment (with some departures described 

below), each respective block contains few schools, making the assumptions of random 

assignment tenuous for internal validity. However, the average of these block-level impacts 

should equal the unbiased average treatment effect across the multi-site trials, and our inclusion 

of child pre-test data heavily strengthens the internal validity and reliability of our estimates. 

With our approach, we attempt to address the following questions: 

1. Do initial impacts observed at post-test predict impacts at one-year follow-up? 

2. Do other observable factors, like the level of post-intervention gains for the treatment and 

control group, the impacts on other skills, treatment quality and fidelity indicators, and 

demographic characteristics of the children served, provide additional predictive validity 

for forecasting follow-up impacts over and above the post-test impact? 

Method 
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The supplementary file provides further details. Here, we attend to key study features. 

Data 

We examined patterns of fadeout using data obtained from four RCTs of the BB 

preschool mathematics curriculum intervention using integrative data analysis techniques. These 

four longitudinal evaluations were implemented across five study sites: Boston and Buffalo 

(Clements, Sarama, Spitler, et al., 2011), Tennessee (Hofer et el., 2013a), San Diego (Clements 

et al., 2020), and New York City (Morris et al., 2016). All trials were designed to examine the 

effects of BB on children’s achievement at the intervention’s end (i.e., spring of preschool) and 

at one-year follow-up (i.e., spring of kindergarten). Data were cleaned at the study level before 

merging across sites. 

Within sites, school-level randomization occurred within blocking groups in which 

schools were matched on common characteristics. This matching process differed across the 

various trials. For Buffalo and Boston, participating public schools offering pre-k services were 

ranked on elementary school achievement scores within district to create the blocks. In 

Tennessee, schools were blocked based on school type (Head Start vs. public school) and the 

number of participating classrooms within a school. In San Diego, schools were blocked by 

district and classroom care type: full- or part-day1. Finally, in New York City, schools were 

blocked by borough, school type (community-based versus school-based), and whether the 

school served predominately Hispanic children. 

We began by merging student-level data across the five sites2. We then reduced the 

sample for the current analysis in several noteworthy ways. First, study sites in Boston, Buffalo, 

San Diego, and New York City evaluated the inclusion of additional treatment components, and 

units randomized to these groups were removed. Consequently, our measured treatment impacts 
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represent the comparison of the BB program during preschool only (i.e., no intervention 

extensions into kindergarten) versus “business-as-usual” control. Note that, unlike many other 

studies often cited in the ECE fadeout literature, the control group in each of these studies still 

attended preschool. 

To make the treatment and control comparison as consistent as possible across blocks, we 

removed schools/classes assigned to a self-regulation intervention component in San Diego 

(child n = 392), schools assigned to the “follow-through” BB intervention condition in Buffalo 

and Boston (child n = 471), and children assigned to a kindergarten afterschool tutoring program 

in New York City (child n = 173).  Next, we limited the analytic sample to blocks containing 

valid observations for treatment and control group schools3. This resulted in the inclusion of 41 

blocks and 3,381 participants across 166 schools (mean of ~4 schools per block) with at least one 

valid math assessment. Among this final sample, 1,680 children were in the treatment group, and 

1,701 were in the control group. 

Measures 

Short- and Medium-Run Treatment Impacts on Math 

Our key analytic approach relies on generating block-level treatment impacts on 

children’s mathematics achievement. We begin by describing the mathematics measures 

available in the data and the transformations we used to make them comparable across the sites 

before describing how the respective impact estimates were generated. 

Children’s math performance was assessed three times: (1) at the beginning of preschool 

(pre-test); (2) at the end of preschool (post-test/endline); and (3) at the end of kindergarten (one-

year follow-up). Math achievement was measured using various assessments across the five 

sites. Although some sites collected a single measure of math performance across assessment 
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waves, others collected multiple measures. For our analyses, we prioritized measures that had 

overlap across the sites. Though the assessments were generally consistent within sites for the 

entire study period, there were several cases where the measures of math performance changed 

from one assessment to the next. Overall, the math assessments collected across sites and 

included in our analyses included: the Woodcock Johnson (III) - Applied Problems (WJ-AP; 

Woodcock et al., 2001), the Research-based Elementary Math Assessment (REMA; Clements et 

al., 2008), the Tools for Early Assessment of Mathematics (TEAM; Clements, Sarama, & Liu, 

2008; Clements, Sarama, & Wolfe, 2011b), and a measure of math performance from the Early 

Childhood Longitudinal Study-Birth Cohort (ECLS-B; Najarian et al., 2010). 

Due to the measurement differences across sites, we generated standardized mathematics 

composite scores for each site and wave using the available math tests. We followed the same 

process at pre-test, post-test, and follow-up for the math measures available within a given site 

(see Table A1 in the supplementary material for the list of measures collected across each site at 

each wave). First, we standardized each respective measure at a given timepoint by subtracting 

each child’s score from the mean within the site and dividing by the site standard deviation for 

the control group. If a given site had more than one math assessment administered at a given 

timepoint (e.g., Tennessee had both the REMA and WJ Applied Problems administered at post-

test), the two standardized scores were averaged together, and the resulting composite was re-

standardized using the site-level control group standard deviation. Thus, the final standardized 

composites of mathematics achievement removed between-site variation due to measurement 

differences across the 4 scale-up studies, but they allowed for between-block variation within a 

given site. 
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We relied on these standardized composite variables because our data did not contain 

consistent mathematics measures across all five sites. Appendix Table A2 provides correlations 

among each respective mathematics measure administered at each site. As this table reflects, 

correlations among the various pre-k post scores and kindergarten follow-up scores were quite 

high and fairly consistent across the various measures, ranging from 0.61 to 0.75. Although we 

would have preferred to have a single measure of math that could be compared across sites, our 

composite approach can be likened to most meta-analyses, as the underlying studies in a given 

meta-analysis typically do not contain a single common outcome measure. To examine whether 

our results were sensitive to the measurement particularities of any single site, we examined 

sensitivity tests that sequentially dropped each site from the analyses (results described in more 

detail below). 

Next, we used these composite mathematics measures to generate child-level treatment 

impact estimates for each respective block at post-test and one-year follow-up. To generate these 

estimates, we ran OLS regression models for each block, in which the post-test composite score 

was regressed on treatment status and controls for gender, race, ELL status, and student age at 

pre-test. Importantly, we also controlled for pre-test math composite scores. The resulting 

treatment impact estimates and standard errors were then saved for each respective block, and 

the process was repeated using the follow-up composite scores of kindergarten mathematics 

achievement. In these regressions, any missing scores on student-level controls were imputed 

using block-level means, and dummy variables were included to account for this missing data 

procedure (see Appendix Table A3 for descriptions of missing data on covariates). 

As we describe below, we used meta-analytic techniques to analyze relations between 

these block-level impact estimates, with blocks being akin to “studies” in a meta-analysis. 
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However, because the math measures were standardized at the site-level, our effect sizes were 

different than what would be included in a typical meta-analysis because they included between-

block variation within each site. Further, as mentioned above, we consider these block-level 

estimates to be akin to quasi-experimental impacts of the intervention. Indeed, we used child-

level analyses to estimate these impacts despite the fact that schools were randomly assigned, 

because so few schools were included in each block. On average, the blocks had 77 children 

observed at post-test (range of 23 to 291) and 70 at follow-up (range of 22 to 251), with roughly 

4 schools (range 2 to 29) per block (including classrooms that were randomly assigned in San 

Diego1). The average treatment impact standard error produced by these child-level regressions 

at post-test was 0.21, and it was 0.24 at follow-up. 

Because of the school-level clustering, we scaled the standard errors for each block using 

a variance inflation factor that included the observed ICC from each block. Yet, the assumption 

that school-level random assignment will produce groups equal on expectation with few schools 

randomly assigned within each block is tenuous at best, making the inclusion of the child pretest 

composite scores crucial for obtaining unbiased estimates at the block level. 

Predictors of Follow-Up Impacts 

Post-Intervention Learning Gains. To measure learning gains following the end of the 

intervention, we used a different measurement process than the aforementioned process for 

generating treatment effect sizes. For these variables, we relied on a consistent math measure 

available at both the post-test and follow-up time points. REMA performance at post-test and 

follow-up was used in the Buffalo, Boston, and Tennessee sites. For the San Diego site, we 

included post-test and follow-up performance on the TEAM, while performance on the WJ-AP 

was used for the NYC site. 
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We began with a student-level measure of gains in the control group. For this measure, 

non-standardized post-test math performance was subtracted from non-standardized follow-up 

math performance for each control-group participant, and this difference was then divided by the 

average site-level control-group post-test standard deviation. This was similar to the 

standardization process for the mathematics outcome measures described above but more 

flexible as we did not center observed gains within sites. The measure of gains for the treatment 

group was similarly generated within each site by calculating the difference in non-standardized 

post-test and follow-up math performance for each treatment-group participant and dividing the 

resulting value by the site-level control-group post-test standard deviation (i.e., this ensures that 

treatment and control group gains are scaled using the same factor in each site). In our analytic 

models, this measure of gains was accompanied by a measure of average post-test math 

performance in each group to account for the likelihood that gains from post-test to follow-up 

varied by post-test performance levels. Here, we simply took the block-level mean for both the 

treatment group and control groups, respectively, on the standardized composite math scores 

described above. 

Finally, these respective treatment- and control-group measures were aggregated to the 

block level, such that each block had a unique measure of treatment gains, control gains, 

treatment post-test level, and control post-test level. To generate the measure of total post-test 

gains, we averaged the two gains measures together at the block level, ensuring that treatment 

and control group gains were equally weighted within blocks. Similarly, the total post-test level 

was created by averaging the block-level treatment- and control-group post-test level values. 

Demographic Characteristics. We examined whether two participant demographic 

characteristics, aggregated at the block level, predicted medium-run treatment impacts. This 
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included the proportion of Black, non-Hispanic participants and the proportion of English 

Language Learner participants within each block. These measures were generated by 

determining the average proportion of children that fell into the demographic characteristics 

within each block. For our analyses, these measures were rescaled to 10-percentage-point units 

to improve the interpretability of our results. 

Short-Run Impacts on Non-Math Skills. Short-run treatment impacts on measures of 

non-math skills were calculated with the same approach as was employed to calculate math 

treatment impacts. A post-test composite of non-math skills was created within site by 

standardizing, averaging, and re-standardizing performance on a variety of non-math measures 

including measures of language and literacy (e.g., Woodcock-Johnson Letter Word) and 

measures of executive function (e.g., Head-Toes-Knees-Shoulders). Supplementary Table A1 

presents the various measures of non-math cognitive skills included in each site. Additional 

information about these measures can be found in the online supplemental material. Average 

treatment impacts were estimated using the same process described above for math achievement. 

Preschool Classroom Instructional Characteristics. Classroom instructional quality 

was measured using the Classroom Observation of Early Mathematics Environment and 

Teaching (COEMET) assessment, a three-hour classroom observational measure. During the 

spring of preschool, trained observers used a series of 28 Likert-scaled items to rate the quality 

of the children’s preschool math environment4. We relied on three subscales of the COEMET, 

including the quality rating of the specific mathematics activities (SMA), the total number of 

SMAs observed, and the total time spent on math instruction during the observational period. A 

specific math activity (SMA) was defined as an activity that was conducted intentionally by the 

teacher and (a) involved several interactions with one or more students, or (b) was designed to 
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develop knowledge of math. Assessors completed a rating form for each SMA to determine the 

quality of math instruction related to that activity (e.g., “the teacher began by engaging and 

focusing children’s mathematical thinking”). Although the SMA form was completed each time 

an SMA was observed, both the total number of math activities and the total time spent on math 

were recorded once to reflect the assessors’ overall impression of the learning environment. We 

define the total number of math activities as the total number of full and mini SMAs. Mini SMAs 

were meant to capture activities that incorporated mathematical concepts but were either short in 

duration or did not include teacher involvement. Additionally, our measure of time is best 

understood as the sum of the average proportion of time spent on SMAs relative to the duration 

of classroom observation. It should be noted that while all study sites implemented some version 

of the COEMET, there were several differences in the measure across sites, which are described 

in more detail in the online supplement. 

Because the COEMET was designed to capture the teaching practices encouraged by the 

BB program, we ultimately used our three COEMET indicators (overall COEMET quality score, 

total number of math activities, and total time spent on math activities) to measure block-level 

treatment impacts on mathematics instruction. Thus, as with the measures of mathematics 

achievement, the COEMET instructional indicators were standardized to the control group SD 

within sites to account for differences in measurement across sites. We then regressed these 

standardized composites on the treatment indicator at the child level within each block to derive 

block-level treatment impacts on measures of mathematics instruction. Because this approach 

again used child-level impact estimates to examine treatment impacts on classroom-level factors, 

we revisit this choice with sensitivity analyses described below. 

Design Inconsistencies and Limitations 
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In this integrative analysis, we attempted to align the data across the five sites in a 

consistent fashion to allow for meta-regressions that would examine patterns of fadeout and 

persistence across the included studies. However, each site contained idiosyncrasies that had to 

be handled individually, including measurement and design decisions that are described in more 

detail in the supplemental file. Given these inconsistencies and design limitations, we employ a 

bevy of sensitivity tests, with the most notable test including a specification in which we exclude 

each of the five study sites, in turn, to examine whether our estimates were strongly affected by 

the design complications of a single site. 

A few important design limitations are worth noting here. First, the TRIAD study 

(implemented in Boston and Buffalo) suffered from some compromises to random assignment, 

as six schools switched treatment groups after random assignment, three schools dropped out, 

and four schools were added. In the preferred models, we use the “final” treatment designation 

for each included school (consistent with previous reports; Clements, Sarama, Spitler, et al., 

2011), though we also examined models that dropped all compromised schools, and treatment 

impacts were consistent with our preferred estimates. In Boston, study administrators were also 

later concerned that the blocks were not properly used during random assignment, as several 

blocks had uneven assignment (i.e., multiple or all schools assigned to the same condition within 

a block). The data provided by the original study administrators to the current analytic team 

includes the blocking group matches that were designated based on school-level achievement, 

which represents the intended method for pre-random assignment school matching. As we noted 

earlier, our preferred models only include blocks that contained valid observations from both 

treatment and control schools (i.e., within block variation in treatment). However, given the 

concerns over whether the blocking procedure was actually followed in Boston, we also 
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examined models that completely dropped Boston blocks from our key estimates (described in 

more detail below). 

In San Diego, different randomization procedures were followed depending on the 

number of participating classrooms within each school. Study schools with one participating 

classroom were stratified based on full-day or half-day status within each district, creating five 

randomization blocks (see Clements et al., 2020). However, randomization occurred at the 

classroom level for schools that had two participating classrooms. For the purpose of our 

analyses, we essentially ignore this discrepancy as we generate impacts at the child level with no 

additional stratification based on school. Study researchers in San Diego were also unable to 

collect individual-level demographic information for each child from the district, leaving the 

majority (76%; see Table A3) of children missing data on demographic characteristics (i.e., race, 

ethnicity, and English proficiency). For the key demographic features used in our analysis, we 

simply took the average of the non-missing observations in each block, and assessed the 

sensitivity of our findings to this issue in San Diego by dropping the San Diego site completely 

from our analyses (shown in the supplemental file). 

Finally, both San Diego and New York City administered potentially compromised pre-

tests, as study administrators were unable to finish pre-test data collection until partway through 

the fall semester of the school year. This could mean that our estimates of post-test and follow-

up treatment impacts are biased downward for these sites due to our inclusion of the pre-test as a 

covariate at the child level. In analyses described below, we also examined models that did not 

use the pre-test as a control when calculating block-level post-test and follow-up impacts. 

Analytic Plan 

Main Analyses 



PREDICTING FADEOUT IN MULTI-SITE RCTS 

26 

To test the extent to which short-run, end-of-treatment impacts persisted a year after the 

intervention ended, we executed a series of regression analyses to estimate persistence rates. 

Random-effects meta-regressions were conducted in R using the “metafor” package 

(Viechtbauer, 2010). Effects were weighted using the standard weighting procedure for meta-

regression with metafor, which relies on the inverse variance-covariance matrix of the meta-

regression model (i.e., the SE of each effect is taken into account with between-study 

variability). The following model was used to estimate patterns of persistence across the four BB 

studies: 

𝐼𝑚𝑝𝑎𝑐𝑡!"# = 𝛽$# + 𝛽%𝐼𝑚𝑝𝑎𝑐𝑡&"# +		𝜀"# 

𝛽$# = 𝛾$$ + 𝜏$# 

where 𝐼𝑚𝑝𝑎𝑐𝑡!"# represents the follow-up (i.e., spring of kindergarten) impact for a given block, 

b in site s, 𝐼𝑚𝑝𝑎𝑐𝑡&"# represents the post-test (i.e., endline) impact for the same block. Here, the 

key coefficient is represented by 𝛽%, which captures the predictive relation between post-test 

impact and follow-up impact in effect size units. This can be understood as the conditional 

persistence rate between post-test and follow-up (e.g., a coefficient of “1” would suggest that a 

follow-up impact of .25 SD would be expected given a post-test impact of .25 SD). 

In this model, 𝛽$#	is allowed to vary across sites, with the cross-site average intercept, 

𝛾$$, indicating the predicted follow-up effect when a given post-test impact is zero. Thus, 𝛾$$	is 

thought to capture treatment-driven “unmeasured mediators” that lead to impacts at follow-up 

that are not captured by post-test impacts (see Hart et al., 2024 for additional discussion of these 

model parameters). We estimate the variance in 𝜏$#, which we interpret as the amount of 

variance in follow-up effects that remains once the post-test impact is taken into account. 
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We then further examined the extent to which various factors predicted follow-up 

treatment impacts on math skills beyond post-test treatment impacts on math skills. For these 

exploratory analyses, we added each block-level characteristic of interest (i.e., measures of 

learning gains for the treatment and control group, block-level demographics, impact on non-

math skills, and various COEMET factors of implementation) to the model described above. 

Results 

Descriptive Results 

Table 1 presents participant demographic characteristics across the five study sites (see 

Appendix Table A4 for differences by treatment condition). As Table 1 reflects, participant race 

varied considerably across the sites, with non-Hispanic Black students comprising 56% of the 

sample in Buffalo, 40% of the sample in Boston, 77% of the sample in Tennessee, 5% of the 

sample in San Diego, and 35% of the sample in New York City. Boston, San Diego, and New 

York City each had larger percentages of Hispanic children (40%, 48%, and 58%, respectively), 

also reflected in the percentage of students qualifying as limited English proficient. 

Table 2 presents descriptive information at the block level for the key variables included 

in our analyses. As Table 2 shows, the pre-test adjusted post-test impacts were largest for 

Buffalo (M = 0.67) and smallest for NYC (M = 0.00). Averaging across all blocks, the pre-test 

adjusted impact at post-test was 0.26 (p < 0.05) and the follow-up impact was 0.10 (p =0.15)5. 

These estimates were generated by using the random effects meta-regression model and fitting 

the post-test impact and follow-up impact, respectively, with no predictors. Not surprisingly, 

Table 2 also shows that large impacts were observed across the sites on instructional 

characteristics, including COEMET quality, time on mathematics instruction, and the number of 

math activities taught. 
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In the supplemental file, we also provide additional descriptive information at the block 

level, and include figures showing treatment and control group trajectories on the math tests 

administered for each blocking group within each site. These figures graphically represent the 

learning gains measures that we used to examine post-intervention trajectories across the various 

blocks. Several patterns are worth noting in these figures. First, the trajectories make apparent 

the need for pretest adjustments when deriving impact estimates, as the treatment and control 

groups were often at different levels on the pretest, despite the randomization of schools. Second, 

the figures generally show a steady growth rate for the control group through both pre-k and 

kindergarten, with the treatment group showing an accelerated growth rate during pre-k, 

followed by a slower growth rate during kindergarten. These general patterns are consistent with 

the idea that the intervention provided a short-term acceleration of learning for the treatment 

group, but this learning rate fell during kindergarten. 

Supplementary Table A5 provides correlations among our key variables, all aggregated to 

the block level. Of note, the unadjusted correlation between the post-test impact and follow-up 

impact was 0.56 (p <0.001), suggesting covariation between impacts at both timepoints. Also of 

note, gains in the control group had virtually no correlation with post-test impact (0.05), 

indicating that factors facilitating learning in the post-intervention period did not exert a large 

effect on the treatment group during the treatment period. In contrast, the post-intervention gains 

in the treatment group were strongly and negatively related to post-test impact magnitude (-0.58, 

p < 0.001), suggesting that treatment children who were in highly effective BB sites were more 

likely to show slower math learning rates after the intervention ended. 

Finally, in the supplemental file, we also provide a forest plot that shows post-test and 

follow-up impacts on our composite math measure for each blocking group. 
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Regression Results 

Figure 1 plots the observed block-level post-test impact estimates against the follow-up 

impact estimates, providing our key results. We observed a slope of 0.40 (SE = 0.13, p < 0.01; 

see Table 3), suggesting that, while follow-up impacts overall fade somewhat, the extent to 

which they persist is proportionate to the size of the post-test impact across the distribution of 

post-test effects. Interestingly, this basic linear pattern of impact decay between post-test and 

one-year-follow-up was evident even for the few blocking groups that had negative post-test 

impacts, suggesting that impact fadeout may also be expected when interventions produce 

negative short-run effects. Importantly, we observed that the regression line nearly crosses 

through the origin, indicating a y-intercept term near zero. This suggests that any block that 

produced a zero SD impact at post-test was also predicted to have a zero effect at follow-up. 

In Table 3, we examined the extent to which gains in the follow-up period within- and 

across- intervention groups predicted follow-up impacts when controlling for the post-test effect 

size. In other words, these models test whether post-intervention learning provides predictive 

validity for follow-up impacts over and above post-test impacts alone. As Column 2 reflects, 

total learning gain during the post-intervention period was negatively predictive of the follow-up 

effect (ß = -0.45, SE = 0.24) when controlling for the post-test impact, though this coefficient 

was imprecise and not statistically significant (p < 0.10). When the post-intervention gain 

measure was disaggregated by intervention group, we found that control group post-intervention 

gains were strongly negatively predictive of follow-up effects (ß = -0.53, SE = 0.20, p < 0.01). 

The coefficient for post-intervention treatment gains was near zero and not statistically 

significant. This pattern, consistent with the figures in the supplement, indicates that given the 

strong correspondence between the post-test impact and post-intervention gains rate in the 
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treatment group, it is the amount of post-intervention learning in the control group, unaffected by 

post-test impact, that has the most influence on the follow-up effect. 

When both treatment- and control-group gains were included in the model together 

(Column 5), control-group gains (ß = -0.91, SE = 0.27, p < 0.001) again produced a larger 

coefficient than treatment gains (ß = 0.67, SE = 0.34, p < 0.05). Here, the predictive validity of 

the post-test impact was attenuated by the post-intervention measures. However, including all of 

these predictors together did cause SEs to increase substantially, suggesting that the model is 

likely to be over-specified due to a set of highly correlated predictors. 

Table 4 presents estimates for other exploratory predictors measured at the block level6. 

Across these columns, we largely found that these characteristics were not strongly predictive of 

further follow-up effects after accounting for the post-test impact. However, several findings are 

noteworthy. First, contrary to our expectation, the impact on non-math cognitive skills, 

conditional on the post-test effect, was negatively predictive of follow-up impact (Column 1), 

though this estimate was not statistically significant (ß = -0.20, SE = 0.16). In general, we found 

little indication that effects on instruction were strongly predictive of follow-up effects after 

accounting for the post-test impact, indicating that the effect of implementation factors on later 

follow-up impact was likely fully accounted for by the intervention impact at the post-test (see 

Table A5 for the full list of correlations between each predictor and post-test impact). However, 

the impact for time spent on mathematics was negatively predictive of later follow-up impact (ß 

= -0.06, SE = 0.03, p < 0.05). Finally, we did not observe statistically significant predictions for 

the two demographic characteristics considered: percent limited English proficiency and percent 

non-Hispanic Black. 

Sensitivity Analyses 
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Several sensitivity analyses were conducted to examine the robustness of our main 

results. First, we assessed whether differences in site-level characteristics may have biased the 

observed patterns of persistence/fadeout by replacing the random effect in our main model with a 

site-level econometric fixed effect. Introducing this site fixed effect produced estimates 

consistent with our primary results, indicating that unobserved characteristics between sites did 

not appear to bias our estimates (see Table A6 and A7). Next, we removed the pre-test 

adjustments from our key variables and regression weights to account for the inconsistency in 

pre-test timing (which could deflate post-test and follow-up impact estimates). Again, results 

were largely consistent with those reported in the main text (see Table A8 and A9). 

We also assessed the extent to which design complications may have impacted our results 

by examining our main analyses with each site sequentially excluded. Overall, the estimates 

remained relatively consistent in magnitude and significance across each series of regressions 

(the post-test slope coefficient ranged from 0.28 to 0.54; it was marginally significant (p < 0.10) 

when NYC was dropped), indicating that the noted issues with randomization, blocking, and pre-

test data collection at various sites did not substantially affect our findings (Tables A10 and 

A11). Notably, dropping the Boston site, which had the most substantial issues with the block 

variables, had a negligible effect on our key result. We also examined models that dropped 

schools from Boston and Buffalo that either switched treatment groups or were added after initial 

random assignment (Tables A12 and A13). Again, effects were similar to our main results. 

Tables A14 and A15 examine the extent to which our estimate of the conditional 

persistence rate was influenced by blocks that produced negative impacts at post-test. Dropping 

these negative post-test impacts limited our model to 31 blocks. However, the conditional 

persistence rate between post-test and follow-up impact remained similar: 0.34 (p < 0.10). 
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In Tables A16 and A17, we present results that used the robust variance estimator to 

further adjust estimates for the site-based clustering of the data (i.e., the 41 block estimates were 

derived from 5 sites). Although this estimation technique is common for clustered data in meta-

analyses, with only 5 sites in our data for clustering, it is likely the case that we do not have 

enough higher-order units to draw unbiased standard errors. With this adjustment applied, the SE 

for post-test impact increased from 0.13 to 0.17, and the estimate was no longer statistically 

significant with no other controls in the model. 

Because we generated child-level impact estimates for classroom-level measures of 

COEMET-based variables, we also included a sensitivity test in which we took the average 

scores on each variable for both the treatment and control group and then calculated the 

difference in these scores at the block level. These simple “difference” variables were used in 

Table A18. Here, we again observed largely null effects for these measures. The coefficient for 

time spent on math was negative in direction, but not statistically significant. 

Finally, we included several additional tests to examine the influence of pre-test 

differences on our forecasting results, and we found little evidence that our key models were 

heavily influenced by endogenous differences between children that were present at pre-test. 

Indeed, pre-test “impacts” (i.e., treatment and control differences on the pre-test at the block-

level) were not predictive of follow-up effects, and we also found that our key results were 

consistent when controlling for pre-test impacts. We also examined the effect of differential 

attrition on our results by excluding any block that had a differential attrition rate higher than 10 

percentage points (i.e., the difference in the probability of leaving the sample between treatment 

and control was higher than 10 p.p.), and again found no indication that differential attrition 

heavily influenced findings here. 
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Discussion 

The current paper used an integrative analysis of four scale-up studies of the Building 

Blocks early mathematics curricular intervention for preschool-aged children to examine specific 

hypotheses regarding our ability to forecast follow-up effects following the end of an 

intervention. Although the field of ECE research has become intensely focused on understanding 

the conditions under which intervention effects are likely to persist or fade, few studies have 

generated empirically-supported findings that could improve the field’s ability to predict and 

interpret follow-up impacts following the end of an intervention. Across five sites, we observed 

an average treatment impact of 0.26 SDs at the end of preschool, and this impact fell to 0.10 by 

the end of kindergarten. As predicted, this average pattern of persistence reflected a proportional 

relation between post-test impacts and follow-up impacts at the block level. The post-test impact 

was a strong predictor of follow-up impact one year later, with a slope term of 0.40, suggesting a 

conditional persistence rate of approximately 40%. In this model, we observed a y-intercept near 

zero, indicating that follow-up impacts were not observed for blocks that did not also produce 

short-term impacts. 

We then attempted to predict the remaining heterogeneity in follow-up impacts with a 

variety of block-aggregated measures designed to assess prominent theories regarding fadeout. 

These factors included treatment impacts on non-math skills, math learning in the post-

intervention period, and the fidelity/quality of treatment experience. Despite the large number of 

schools and children included in the current study, estimates were generally imprecise, and only 

a few were statistically significant. Among these additional predictors, we found that the amount 

of math learning by children in the control group after the intervention ended was the single best 

predictor of follow-up impacts after controlling for the post-test effect (more control group 
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learning predicted faster fadeout relative to the treatment group fadeout, which was largely 

proportionate to the post-test impact). Below, we interpret estimates in terms of their effect sizes, 

but it should be noted that a large degree of uncertainty was associated with these estimates. 

Forecasting Follow-Up Effects Using Short-Term Effects 

Our results suggest that if program evaluators hope to forecast the follow-up effects of 

their interventions, their post-test effect sizes on the same outcomes likely provide the best place 

to start. This may seem intuitive, and to some degree, this ~40% persistence rate by one-year 

follow-up is implied in other meta-analyses (e.g., Li et al., 2020). However, most previous work 

did not align measures and impacts over time in a way that would allow for the examination of 

the rank-order stability of impacts at follow-up. As we described above, understanding these 

relations is a critical step to improving our forecasting capabilities when longer-term follow-up is 

not possible. 

However, generalizations to other evaluation settings should be made with caution. When 

drawing comparisons to other evaluations, it should be noted that our study included a relatively 

narrow comparison between the treatment and control groups when compared with broader 

evaluations that test multi-faceted educational programs versus a control condition (e.g., the 

Head Start Impact Study, a state pre-k evaluation). Here, we evaluated the impact of an intensive 

curricular intervention on the same construct (mathematics achievement) over time, with pre-k 

business-as-usual control groups and a follow-up period extended to only one year. Future 

studies should seek to replicate these findings in other intervention settings featuring different 

contrasts between treatment and control groups. Indeed, one could imagine these results differing 

for interventions targeting other developmental periods or skills. Yet, it should be noticed that a 

recent meta-analysis of highly diverse educational interventions targeting cognitive and social-
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emotional skills found a strikingly similar relation between post-test impacts and one-year 

follow-up effects for both cognitive and social-emotional skills when compared to the one-year 

persistence rate reported here (Hart et al., 2024). 

Perhaps surprisingly, we found that the general model of impact decay was also valid for 

the few blocks that produced negative post-test impacts on mathematics achievement, suggesting 

that unintended negative effects also faded substantially in the year following the intervention. 

Importantly, we found that our overall pattern of results was robust to the inclusion or exclusion 

of blocks that had negative post-test effects, but the consistency of this pattern is notable given 

that theoretical considerations of fadeout have largely centered on the pattern of diminishing 

impacts following positive short-term boosts to achievement (e.g., Bailey et al., 2017). However, 

the pattern of findings makes sense in light of explanations of skill development that posit the 

importance of many dynamic factors that are not immediately affected by the intervention, but 

are likely to help push (or pull) children back toward their previous trajectories in the years 

following the treatment (e.g., Bailey et al., 2016). 

For prominent theories of skill building in the evaluation literature (Cunha & Heckman, 

2007), our results should be seen as providing partially confirmatory evidence. On the one hand, 

larger skill impacts at time 1 did lead to larger skill impacts at time 2, suggesting some transfer 

of skill attainment in mathematics achievement after the intervention ended. Moreover, the null 

effect observed for the y-intercept in our model suggested that, in the case of the Building Blocks 

intervention, positive follow-up impacts were only observed for blocks that also produced 

positive effects at the end of the intervention. This again suggests that any longer-term 

intervention effects were likely due to math gains made during the initial intervention period, 

rather than effects on unobserved factors. 
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On the other hand, our results also provide sobering evidence against theories of skill 

building positing a very high self-productivity of early math skills, as the slope term observed for 

the post-test impact size was far below 1. This provides further evidence that non-experimental 

studies reporting links between skills over time likely overestimate the potential long-term 

effects of skill-focused interventions (see Bailey et al., 2018). 

Additional Predictors of Follow-Up Impact 

First, we found small associations between persistence conditional on post-test impacts 

and implementation quality. This may not seem surprising, as implementation quality is expected 

to improve student learning during the intervention period. Thus, the end-of-treatment impact 

measure will likely capture this influence. However, we found that blocks with the largest 

treatment-control contrast in time on mathematics generally showed less persistence than 

predicted based on their end-of-treatment impacts. Although this effect was not large, it might 

indicate that blocks that produced the largest treatment-induced gain in time on mathematics also 

include students in the control group who have received less math instruction and are thus likely 

to respond strongly to greater math instruction in kindergarten. Thus, for these children, 

kindergarten mathematics instruction likely acts as a substitute for preschool math instruction. 

This finding underscores the importance of considering what kinds of instruction students in the 

counterfactual receive—not just during but after the end of treatment. 

In contrast to the predictions made by theories of dynamic complementarity (e.g., 

Johnson & Jackson, 2019), we found that blocks characterized by more learning in the post-

intervention period across the treatment and control groups showed smaller follow-up treatment 

impacts. Disaggregating this “total” gains measure showed that learning gains by the control 

group in the post-intervention period were a strong negative predictor of follow-up impact. The 
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relatively weak prediction for post-intervention learning gains made by the treatment group was 

likely explained by the strong association between treatment gains and post-test impact 

magnitude, indicating that blocks with large treatment impacts were unlikely to produce high 

levels of treatment group learning following the intervention. Because of this strong association, 

the prediction for treatment group gains was minimal when accounting for post-test impact. 

Some features of the post-intervention instructional environment may contribute to this 

negative correlation between post-test impact magnitude and treatment group learning. The idea 

that, in absolute terms, growth might slow following a period of quick learning, follows from 

empirical regularities, such as the “deceleration” of score growth on vertically scaled 

achievement tests (e.g., Student, 2022) and downward sloping learning curves (a point made 

related to fadeout by Campbell and Frey, 1970), along with the theoretical regularity that 

forgetting is paradoxically common following a period of rapid learning (Wixted, 2004). Indeed, 

a previous analysis of some of the sites included in this analysis found higher forgetting rates for 

students in the treatment group than for students in the control group in the year following the 

intervention (Kang et al., 2019). 

Thus, we caution against a simplistic interpretation of this result as implying that an 

accelerated kindergarten curriculum would eliminate fadeout. This interpretation is challenged 

by our finding that environments with faster post-intervention gains showed weaker persistence, 

but also by other work showing that more advanced instructional content offerings in 

kindergarten do not explain differences in fadeout and persistence (Jenkins et al., 2018). 

Although counterintuitive, we believe these findings hold important implications for our 

understanding of fadeout and persistence. First, they provide corroboration that post-intervention 

contexts are relevant for understanding fadeout dynamics. However, most recent work in this 
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area has theorized that early childhood intervention impacts will only persist if they are followed 

by higher-quality learning experiences (e.g., McCormick et al., 2022). Our results suggest, 

instead, that high-quality learning opportunities following an early intervention might lead to 

more fadeout if these learning opportunities are extended with equal likelihood to children in the 

treatment and control groups, which should be the case given children’s randomization to 

conditions. Thus, any educational policy that will encourage learning by children in the control 

group, while socially desirable, might also lead to less persistent impacts for a given early 

intervention. 

For educational policy, our results suggest that program developers should find settings 

where children are unlikely to receive similar learning opportunities to those offered by the 

intervention once the intervention ends. For example, targeting districts with low rates of 

subsequent growth (e.g., as estimated using administrative and NAEP data by Reardon, 2019) 

may plausibly generate more persistent impacts. Yet, when preschool programs are taken to 

scale, all children become “treated,” and the key policy issue then involves promoting the highest 

learning rate possible for children during and after preschool. Our study is only applicable to the 

learning environments that were present in the kindergarten settings included in our data. We 

acknowledge the possibility that high-quality learning environments could be developed that 

would tailor instruction sufficiently well to students’ individual learning trajectories in a way that 

maximizes the learning rate of each child, and ensures that early program impacts persist at 

higher rates. Of course, it is difficult to determine what the features of such “high-quality” 

environments might be. For example, some might consider teaching to be “high-quality” if it 

involves a suite of characteristics, such as a warm learning environment, positive teacher-student 

interactions, play-based activities, and child activity choice. However, the same instruction may 
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also have limited goals that address only material that treatment children have already learned 

(e.g., Engel et al., 2013). Common in the U.S., such teaching also might not include small group 

instruction or formative assessments, leading to a leveling of what is (or can be) learned (e.g., 

Black & William, 1998; Clements et al., 2023b). 

Limitations 

This analysis was intended to explore some of the processes hypothesized to underlie the 

persistence and fadeout of effective ECE interventions with the hope of improving our ability to 

forecast impacts in educational evaluation studies. However, for several reasons, our work does 

not provide a definitive test of any particular theory. The first limitation, as noted above, is that 

estimates of the associations between hypothesized moderators and kindergarten impacts were 

imprecise and are consistent with estimates much larger and much smaller than what we report. 

Unfortunately, analyses of block-level heterogeneity require very large numbers of blocks to 

obtain precise estimates (Weiss et al., 2017). 

Second, the generalizability of these findings is limited. Although the children and 

settings under study are quite diverse within the U.S. context, the intervention under study is an 

ECE math intervention in all cases. Interventions targeting skills at different ages may show 

different patterns of persistence and fadeout. We hope that future work will use this analysis as a 

prototype for studying theories of persistence and fadeout as applied to different interventions. 

Third, the estimates for moderators reported in this analysis are not causally identified 

and vary in the extent to which they are plausibly causal estimates (for review, see Rohrer & 

Arslan, 2021). On the one hand, control and treatment group learning in the post-intervention 

period are clearly causally related to persistence: A hypothetical intervention that affected one of 

these would affect persistence. On the other extreme, to our finding that larger impacts on non-
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math skills negatively predicted follow-up math impacts, we are skeptical that a supplementary 

intervention that improved both children’s math and non-math skills would show more fadeout 

than those included in the current study. Rather, the association between block-level impacts on 

non-math skills and fadeout more likely reflects something about the contexts in which the 

intervention positively impacted non-math skills. Future work that can identify exogenous 

variation in instructional features, for example, would be necessary to answer whether impacts 

on non-math skills would cause more fadeout or more persistence. 

Finally, although our data were drawn from several scale-up cluster RCTs, each 

intervention study included design idiosyncrasies and limitations, including the use of 

inconsistent measures, that made it difficult to align data perfectly across the sites. These issues 

were reviewed above, and we found that results were generally robust to models that sequentially 

dropped observations from each respective site. Still, we are careful to label our study as “quasi-

experimental,” because we relied on child-level analyses within each block that likely depended 

heavily on pretest adjustments to make children comparable. Combined with the design issues 

reviewed above, including some departures from random assignment, our results should be 

replicated in other samples with rigorous experimental or quasi-experimental designs before 

drawing strong conclusions. 

Conclusion 

Our work suggests that post-test impacts are a strong predictor of one-year follow-up 

impacts across scale-up studies for an early childhood mathematics intervention. We found that 

impacts faded, on average, by about 60% of the initial post-test magnitude over one year, and 

that greater post-intervention learning in the control group additionally predicted more fadeout. 

Our work suggests that policies designed to improve post-intervention instructional quality may 
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lead to more fadeout if these policies also benefit the learning of children in the control group. 

Future work should seek to understand tradeoffs between boosting post-intervention learning and 

maximizing intervention impact by varying features of treatments, settings, and post-intervention 

redundancy. 
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Notes 

1 In San Diego, 10 classrooms were randomized instead of schools within the designated 

blocking groups. These classes are treated like “schools” in our analyses, and we do not include 

any further blocking variables at the school level for these classrooms. 

2 An analysis of end-of-preschool (i.e., endline) variation across the treatment sites was pre-

registered (https://osf.io/dm697), with the plan of using a fixed intercept random coefficient 

model analysis. Initial results were presented at the 2020 Association for Public Policy Analysis 

and Management conference, and most hypothesized moderation effects were null. This analysis 

was largely exploratory in nature, and the pre-registration plan was simply a way to document 

our planned analyses before running models. A draft reporting these results is currently in 

progress. The current analyses of fadeout and persistence of follow-up effects were not pre-

registered and are also considered exploratory. 

3 This exclusion restriction essentially dropped blocks that had no variation in our key treatment 

assignment due to schools dropping out of the study or switching assignments (an issue that was 

limited in scope, but we discuss it in more detail below). 

4 NYC used an abbreviated version of COEMET that contained a reduced number of Likert scale 

items (see Morris et al., 2016 for more information). To produce a measure of instructional 

quality that was consistent across study sites, we restricted all COEMET instructional quality 

ratings to the common items available in NYC and the other sites. 

5 This estimate does not directly correspond to the overall block-level average shown in Table 2, 

but was generated from a meta-regression that weights estimates based on precision. The average 

post-test and follow-up impacts without pre-test adjustments were 0.26 and 0.14, respectively. 

https://osf.io/dm697


PREDICTING FADEOUT IN MULTI-SITE RCTS 

43 

6 COEMET-related moderators (impacts on math instructional time, number of math activities, 

and overall COEMET quality score) were examined using data from only 40 blocks. One block 

was excluded from these exploratory analyses due to missing data on math instructional quality 

items, which impacted within-block treatment-control variation. 
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Figure 1 
Empirical association between post-test and follow-up impacts across sites 

 
 
Note. This figure directly corresponds to the model results shown in Column 2 of Table 3. Each 
marker represents a different block, with the marker size weighted by 1/se2 of the follow-up 
impact estimate. The gray dashed line represents the regression line that would be observed with 
100% conditional persistence between posttest and follow-up. The black line represents the 
observed relation (i.e., B = 0.40, SE = .13). 
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Table 1       
Child-Level Descriptives Statistics Across Study Sites   
  Buffalo Boston Tennessee San Diego NYC Full Sample 

  M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 
Female 0.51 0.49 0.55 0.54 0.52 0.53 
Black- Non Hispanic 0.56 0.40 0.77 0.05 0.35 0.49 
White- Non Hispanic 0.26 0.11 0.10 0.24 0.03 0.11 
Ethnicity- Other 0.03 0.09 0.04 0.23 0.04 0.05 
Hispanic 0.15 0.40 0.09 0.48 0.58 0.35 
Limited Eng Prof. 0.06 0.35 0.10 0.44 0.10 0.13 
Age at Pre-K Entry (years) 4.25 (0.31) 4.64 (0.31) 4.45 (0.31) 4.39 (0.40) 4.30 (0.29) 4.37 (0.34) 
Age at Pre-K Post (years) 4.92 (0.30) 5.31 (0.32) 5.05 (0.31) 4.99 (0.33) 4.83 (0.30) 4.95 (0.33) 
Observations (Children) 521 174 771 699 1216 3381 
Note. Means and standard deviations (in parentheses) are presented separately for each study site. Descriptive information for 
the entire sample (n = 3,381) is provided in the final column. Note that the TN site had substantial missing data on child 
demographic characteristics (discussed further in the text; see supplementary file).  
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Table 2 
Block Level Descriptive Statistics Across Study Sites               
 All Sites  Buffalo  Boston  Tennessee  San Diego  NYC 
  M SD  M SD   M SD   M SD   M SD   M SD 
Post-Test Impacts (Adj. for Pre-Test) 0.28 0.38  0.67 0.26  0.41 0.25   0.41 0.41   0.32 0.43   0.00 0.22  
Follow-Up Impacts (Adj. for Pre-Test) 0.09 0.31  0.33 0.24  0.01 0.63   0.08 0.31   0.21 0.11   -0.01 0.27  
Post-Test Impacts (No Pre-Test Adj.) 0.30 0.37  0.55 0.42  0.21 0.68   0.51 0.28   0.21 0.30   0.12 0.25  
Follow-Up Impacts (No Pre-Test Adj.) 0.11 0.32  0.23 0.37  -0.09 0.88   0.09 0.17   0.12 0.30   0.12 0.23  
Total Gains Between Prek-Post and K 1.29 0.19  1.26 0.17  1.32 0.16  1.26 0.09  0.98 0.22  1.40 0.14 
Control Group Gains Between Prek-Post 
and K 1.41 0.23 

 
1.45 0.21  1.49 0.13  1.49 0.15  1.01 0.32  1.44 0.14 

Treatment Group Gains Between Prek-Post 
and K 1.17 0.24 

 
1.07 0.18  1.14 0.21  1.04 0.16  0.94 0.20  1.36 0.18 

Total Post-Test Level 0.19 0.31  -0.04 0.36  0.03 0.24  0.00 0.15  0.22 0.63  0.02 0.21 
Control Group Post-Test Level 0.05 0.34  -0.31 0.45  -0.08 0.37   -0.25 0.24   0.12 0.67   -0.04 0.22  
Treatment Group Post-Test Level 0.34 0.37  0.24 0.37  0.13 0.46   0.25 0.16   0.32 0.61   0.08 0.27  
Non-Math Cognitive Impacts (Prek) 0.02 0.33  -0.05 0.25  -0.21 0.12   0.06 0.42   0.05 0.33   0.09 0.30  
Impact on Overall COEMET Quality Score 
(Prek) 0.52 1.22 

 
0.05 1.07  0.22 1.00   0.92 1.08   0.86 0.97   0.10 0.65  

Impact on Math Instructional Time (Prek) 1.71 2.15  0.92 0.70  1.68 1.32   1.36 0.76   0.42 0.23   0.72 0.46  
Impact on Number of Math Activities (Prek) 1.08 1.01  0.84 1.16  0.76 0.90   1.10 0.67   0.63 0.58   0.76 0.71  
Limited English Proficiency  0.15 0.16  0.05 0.09  0.30 0.15   0.11 0.10   0.42 0.23   0.10 0.07  
Black-Non Hispanic 0.46 0.30  0.59 0.29  0.42 0.11   0.74 0.23   0.06 0.03   0.36 0.24  
Observations 41   6     4     10     5     16   
Note. Means and standard deviations are presented for each study site. All values are presented at the block level (n = 41). Post-test and follow-up impacts were derived from 
child-level analyses in which our standardized composites of math achievement were regressed on an indicator for treatment status, child demographic controls, and the pre-k 
entry pre-test score. The post-test and follow-up impacts without pre-test adjustment were derived with no controls included in the models. The gains estimates were taken by 
calculating the non-standardized difference between the kindergarten math score and end-of-pre-k math score. This difference was then divided by the end-of-pre-k math score 
standard deviation in the control group to derive a common scale across sites. The post-test-level variables provide block-level estimates of the standardized post-test composite 
across sites. The non-math cognitive impacts, impact on overall COEMET quality score, impact on math instructional time, and impact on number of math activities variables 
were derived from child-level regression models that regressed each respective score on the treatment indicator, demographic controls, and pretest.   
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Table 3      
Block-Level Predictors of Follow-Up Impact           

  (1) (2) (3) (4) (5) 
Post-Test Impacts (Adj for Pre-Test) 0.40** 0.39** 0.44*** 0.41** 0.36+ 

 (0.13) (0.12) (0.12) (0.16) (0.21) 
Total Post-Test Level  -0.16    

  (0.14)    

Total Gains Between Pre-K Post and K  -0.45+    
  (0.24)    

Control Group Post-Test Level   -0.22+  -0.61* 

   (0.13)  (0.26) 
Control Group Gains Between Pre-K Post and K   -0.53**  -0.91*** 

   (0.20)  (0.27) 
Treatment Group Post-Test Level    -0.01 0.50+ 

    (0.15) (0.28) 
Treatment Group Gains Between Pre-K Post and K    0.02 0.67* 

    (0.30) (0.34) 
Constant 0.01 0.60+ 0.71** -0.02 0.34 

 (0.06) (0.32) (0.27) (0.39) (0.34) 
N (City / Study Blocks) 5 / 41 5 / 41 5 / 41 5 / 41 5 / 41 
𝜏 (site) 0.06 0.00 0.00 0.08 0.00 

Note. + p < 0.1 *p < 0.05. **p < 0.01. ***p < 0.001. Standard errors are provided in parentheses. All models are run at the block level (n=41) and control for 
children's pre-test assessment. Average effect sizes were estimated using a random effects meta-analytic model that included a random effect for study site and 
weights. The tau represents between study variation in effects (interpreted in standard deviation units). 
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Table 4       
Block-Level Exploratory Predictors of Follow-Up Impact        

  (1) (2) (3) (4) (5) (6) 
Post-Test Impacts (Adj for Pre-test) 0.47*** 0.42** 0.47*** 0.43** 0.44*** 0.46*** 

 (0.14) (0.14) (0.12) (0.14) (0.12) (0.13) 
Non-Math Cognitive Impacts (Pre-K; Adj. for Pre-Test) -0.20      

 (0.16)      
Impact on Overall COEMET Quality Score (Pre-K)  -0.01     

  (0.04)     
Impact on Math Instructional Time (Pre-K)   -0.06*    

   (0.03)    
Impact on Number of Math Activities (Pre-K)    -0.02   

    (0.05)   
Limited English Proficiency (10%)     0.03  

     (0.02)  
Black-Non Hispanic (10%)      -0.02 

      (0.01) 
Constant -0.01 0.01 0.07 0.02 -0.06 0.07 

 (0.07) (0.06) (0.06) (0.07) (0.07) (0.07) 

N (Site / Study Blocks) 5 / 41 5 / 40 5 / 40 5 / 40 5 / 41 5 / 41 
𝜏 (Site) 0.08 0.07 0.00 0.06 0.00 0.00 

Note. + p < 0.1 *p < 0.05. **p < 0.01. ***p < 0.001. Standard errors are provided in parentheses. All models are run at the block level (n=41) and control for 
children's pre-test assessment. Average effect sizes were estimated using a random effects meta-analytic model that included a random effect for study site and 
meta-analytic weights. The tau represents between study variation in effects (interpreted in standard deviation units). Both Limited English Proficiency and 
Black Non-Hispanic variables were rescaled to 10 percentage point units. 

 


