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Air pollution is one of the most pressing global public health challenges of the 21st 

century, responsible for millions of premature deaths annually and associated with an extensive 

range of chronic diseases, including respiratory, cardiovascular, and neurological disorders 

(World Health Organization, 2025a). Over the past thirty years, the scientific community has 

documented the physical health consequences of air pollution, particularly for children and 

students, resulting in several systematic reviews and meta-analyses (An et al., 2021; Clifford et 

al., 2016; Currie et al., 2014; Shah et al., 2013). However, the effects of air pollution on student 

achievement have not garnered as much attention. As educational outcomes, particularly student 

achievement, are critical to social mobility and long-term economic productivity, it is important 

to understand how air pollution may affect student achievement in addition to the physical tolls 

that it has on children and students. 

 Towards this end, I conduct a systematic review and meta-analysis of the causal effects of 

air pollution on student achievement, specifically on K-12 students as they are most at risk of the 

short and long-term effects of air pollution. Since air pollution is ubiquitous, it is critical that we 

use the most rigorous evidence in order to isolate the effects of air pollution on student 

achievement and account for a host of factors that may bias the estimates of the effects of air 

pollution, such as nonrandom assignment of pollution concentrations or environmental 

confounders that may influence both pollution levels and student achievement (e.g., school 

locations; district resources). Synthesizing the causal evidence of air pollution and student 

achievement in a systematic review and meta-analysis, I am able to answer the following 

research question: What are the effects of air pollution on K-12 student achievement? 

The rest of the article is structured as follows. I begin by providing a brief discussion on 

the composition and sources of air pollution, a summary of the consequences of air pollution on 
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physical health, particularly for young children, and how air pollution can potentially affect 

student achievement. Next, I explain my methodological approach, including eligibility criteria, 

literature search, coding of primary studies, and analytical strategy. In discussing the results, I 

pay careful attention to heterogeneity effects, how effects may vary by study characteristics, and 

publication bias. I end with a discussion of the findings and implications for policy and practice 

as well as directions for future research. 

To briefly preview the results, I find that air pollution, on average across many contexts 

and pollutants, decreases student achievement, broadly measured, by 0.022 standard deviations 

(SD). When I examine only the composite test score results, air pollution decreases student test 

scores by 0.025 SD. With respect to language and math test scores, pollution decreases language 

and math achievement by 0.026 SD and 0.014 SD respectively. The effects of air pollution seem 

to be larger for male than female students. Lastly, I also find that the meta-analytic summary 

estimates from the high-quality causal studies are slightly larger than the summary estimates 

using all available studies. Overall, the results clearly indicate that air pollution has negative 

effects on student achievement, and these effects are also practically meaningful. 

Background on Air Pollution 

Composition and Sources of Air Pollution 

 Air pollution, broadly defined, is the presence of high concentrations of one or more 

contaminants (gas, liquid, or solid) in the atmosphere that would be harmful to human health and 

ecosystems (Vallero, 2025; World Health Organization, 2025a). While air pollution is not new, 

the scale and global reach of air pollution have expanded quickly over the last several decades 

due to rapid industrialization, urbanization, population growth, and increased energy 

consumption (Pearson & Derwent, 2022). The major gaseous pollutants include carbon 



 4 

monoxide (CO), nitrogen oxides (NO and NO2, collectively known as NOx), ozone (O3), sulfur 

oxide (SO2), and volatile organize compound (VOC). NO₂ and SO₂ emitted from vehicles and 

power plants contribute to acid rain, smog formation, and secondary particulate matter, while O3 

is formed through photochemical reactions between NOx and VOC. Solid and liquid pollutants 

are known as particular matter (PM) and are categorized based on the size of the matter. PM10 are 

particles less than 10 micrometers in diameter, and PM2.5 are particles with diameters less than 

2.5 micrometers. Major contributors to PM2.5 include fossil fuel combustion, industrial 

processes, residential heating, and open burning of agricultural residues, while major 

contributors of PM10 include traffic-related sources, construction and road dust, industrial 

sources, and natural dust and soil (Vallero, 2025). In general, the smaller the particle, the more it 

is able to penetrate deeper into the respiratory system, causing more severe health effects 

(Pearson & Derwent, 2022; Vallero, 2025).  

 While exposure to air pollution is universal as over 99 percent of the global population 

lives in places where air quality exceeds the recommended WHO guidelines, the higher 

concentrations of pollutants are found in rapidly urbanizing regions of Asia, particularly in 

megacities such as Delhi and Beijing where the annual PM2.5 levels are often several times above 

international guidelines (Cheng et al., 2016; Wang et al., 2020; World Health Organization, 

2025b). Marginalized and low-income populations, even within wealthier nations and 

economies, are disproportionately affected as they often reside near highways, industrial zones, 

or contaminated sites (Bell & Ebisu, 2012; Jbaily et al., 2022). These disparities illustrate how 

air pollution is not only an ecological problem but also a profoundly social one. 

Physical Health Effects of Air Pollution 
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 The health effects of air pollutions are well-documented. Air pollution affects virtually 

every organ in the body, and the severity of the effects depends on the concentration and type of 

pollutants, exposure duration, and individual health conditions (e.g., Bates, 1995; Vallero, 2025). 

Broadly speaking, air pollution affects respiratory systems and cardiovascular systems, and it has 

neurological effects as well as reproductive and developmental effects. 

With respect to respiratory systems, air pollution can cause inflammation, reduce lung 

function, and damage airways, and children are particularly vulnerable because they spent more 

time outside and breathe faster than adults (Bates, 1995). A systematic review and meta-analysis 

finds that traffic-related air pollutants around schools, including PM2.5 and PM10, have significant 

impact on students’ respiratory systems (An et al., 2021). In particular, when concentrations are 

high, the risks of respiratory infection, asthma, and tracheitis are elevated, and allergic symptoms 

also increase (An et al., 2021). Air pollution also affects the heart and blood vessels causing a 

range of cardiovascular diseases including hypertension and atherosclerosis (Vallero, 2025). 

Even short-term exposure to high pollution levels can increase risk of hospitalization for 

cardiovascular problems. 

Additionally, and more importantly with respect to educational outcomes, air pollution 

also affects fetal development and neurological development. Pregnant women who are exposed 

to high levels of pollutants have higher risks of having preterm birth, low birth weight, and 

congenital abnormalities, which can then cause physical disability as well as intellectual and 

developmental disorders (Dutheil et al., 2021; Lopuszanska & Samardakiewicz, 2020). Air 

pollutants can also affect the brain directly, leading to cognitive decline in adults and 

neurodevelopmental delays in children (e.g., Clifford et al., 2016). In particular, Clifford and 

colleagues (2016) in their systematic review linking air pollution to cognitive functioning find 
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that air pollution is significantly associated with impairment of brain development in the young 

(and cognitive decline in the elderly).  

Mechanisms Linking Air Pollution to Student Achievement 

While early research on air pollution has focused mainly on health outcomes (Bates, 

1995), a growing body of interdisciplinary research has examined its subtle but detectable effect 

on brain development, cognitive processes, and learning outcomes (An et al., 2021; Clifford et 

al., 2016; Dutheil et al., 2021). This shift reflects a broader understanding that while air pollution 

can affect well-being by inducing health issues that persist over time, but it can also affect 

student achievement in multiple ways and through multiple mechanisms. In particular, 

researchers have posited that air pollution affects student achievement through two main paths: 

1) neurobiological and cognitive mechanisms, and 2) physical and behavioral mechanisms 

(Amanzadeh et al., 2020; Austin et al., 2019; Chung et al., 2025). 

First, air pollutants directly impair brain development and function. Exposure to air 

pollutants, such as PM₂.₅ and ozone, has been associated with inflammation, reduced lung 

function, and impaired brain development, all of which can lower cognitive performance and 

academic achievement (e.g., Calderón-Garcidueñas et al., 2015). For instance, children exposed 

to high air pollutants in Poland have reduced non-verbal intelligence by age 5, even after 

adjusting for confounders (Edwards et al., 2010). Comparing cohorts of mothers and newborns 

before and after a power plant closure in Tongliang, China, Tang et al. (2014) find there are 

differences in biological and neurodevelopment for the newborns. Similarly, there are reductions 

in developmental milestones and IQ for kids borne to women exposed to higher pollutants in the 

United States (Perera et al., 2006; Perera et al., 2009). Distance of residence to the nearest major 

roads has also been linked to cognition (Harris et al., 2015). Globally, students who are exposed 
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to higher concentrations of air pollutants have worse attention and concentration, reduced growth 

in working memory, and reduced problem-solving ability (An et al., 2021). In other words, 

students who are exposed to higher concentrations of air pollution are systematically at a 

disadvantage compared to their peers who are less exposed, even before they set foot in the 

classroom.  

Second, air pollution can affect student behaviors once they are in school. To start, it can 

increase school absenteeism by worsening illnesses like asthma and other chronic respiratory and 

cardiovascular illnesses (e.g., Calderón-Garcidueñas et al., 2015). Student attendance is a 

significant determinant of academic learning and achievement, so it is worrisome that air 

pollution may induce student absences by making them sick. To this point, previous work has 

found that an increase in PM10 exposure in Utah was associated with increase elementary 

absenteeism (Random & Pope, 1992), and more recently, Currie et al. (2009) find that carbon 

monoxide exposure was associated with increased student absences in Texas. School 

absenteeism was also elevated for Chinese students who were exposed to higher levels of 

particular matter and ozone (Zhang et al., 2022). Not only would students miss classes when they 

are ill, but potentially they may also need to make up the work whilst they are still sick.  

Furthermore, recent work has also demonstrated that air pollution contributes to more 

consequential behavioral issues, including disruptive and aggressive behavior (e.g., Berman et 

al., 2019; Burkhardt et al., 2020). In particular, air pollution has been linked with a host of 

factors, such as cellular inflammation and oxidative stress, contributing to aggressive behaviors 

and criminal activities that can lead to school suspension or incarceration (e.g., Calderon-

Garciduenas et al., 2015; Hernstadt et al., 2021; Lu et al., 2018; Rammal et al., 2008). For 

instance, students in Minnesota who are exposed to high level of air pollutants, particularly CO, 
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NOx, and PM2.5, are more likely to have more violent disciplinary incidents (Rau et al., 2024). 

Using microdata in Chicago, Illinois, Hernstadt et al. (2021) find that air pollution increases 

violent crime on the downwind sides of interstate roads, and using administrative data from 

London, Bondy et al. (2020) find that air pollution has a positive relationship with overall crime 

and several major crime categories. 

Overall, prior works have demonstrated that there are several mechanisms through which 

air pollution can affect student achievement before and during their time in school.  

Study Contributions 

 While there is extensive literature on the relationship between air pollution and health 

outcomes, including multiple systematic reviews and meta-analyses, there are currently no 

systematic reviews or meta-analyses on the relationship between air pollution and student 

achievement. This work is intended to address this gap by synthesizing the literature on the link 

between air pollution and student achievement. Moreover, by focusing on causal studies, I am 

able to more firmly establish the effects of air pollution and not simply how air pollution is 

correlated with student achievement. In addition to being the first systematic review and meta-

analysis on this important topic, I am also able conduct several heterogeneity analyses, including 

how the effects may differ for male and female students and by different measures of 

achievement. In short, I make several notable contributions showing the effects of air pollution 

on student achievement across the globe. 

Data and Method 

This study is designed to examine the causal estimates of pollution on student 

achievement by conducting a systematic review and meta-analysis of the literature. To define the 

eligibility criteria, literature search, data analysis, and reporting conventions, I followed the 
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Preferred Reporting Items for Systematic Reviews and Meta-Analysis standards as defined by 

Moher et al. (2009) and Alexander (2020). This process outlined in this framework provided us 

with a reproducible method to systematically search, assess, and report on the causal evidence of 

the effects of pollution on students. Figure 1 provides a PRISMA flow diagram illustrating the 

stages of the study selection process. 

Eligibility Criteria 

Primary studies eligible for inclusion in this meta-analysis need to meet the following 

criteria: (a) the sample is comprised of PK-12 students; (b) the study reports quantitative results 

of student achievement; and (c) the study provides plausibly causal estimates of the effects of 

pollution on student achievement by employing experimental or rigorous quasi-experimental 

estimation strategies. Studies that do not provide empirical plausibly causal quantitative results 

or summarize existing evidence are not included. Some specific examples of excluded studies are 

quantitative reports that did not provide plausibly causal estimates (e.g., Chen et al., 2000), 

studies that provided collegiate outcomes (e.g., Xu et al., 2024), studies that provided health 

outcomes (e.g., Bergstra et al., 2018), or studies that summarize other studies (e.g., Gartland et 

al., 2022). 

Literature Search  

Given the topic of this systematic review and meta-analysis, I obtained primary studies 

from searching commonly used economic and general social science databases, including 

JSTOR, ERIC, WorldCat, Google Scholar, ProQuest, NBER and Taylor and Francis. I also 

searched for “grey” literature using Dissertation and Thesis Repositories in WorldCat and 

ProQuest. I engaged in an iterative process to find an inclusive search string that would capture 

the keywords associated with the research questions and provide a reasonable number of records 
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that can be screened and analyzed thoroughly. At the end of the process, I employed the 

following search string: “pollution AND (achievement OR academic OR student OR child*),” 

which returned a little over 21,000 studies using the databases listed above. Appendix Table 1 

provides the number of studies found in each database. In addition to searching databases, my 

literature search also included ancestral searches where I identified potentially eligible studies 

using the reference lists of included studies. The official search ended the first week of August 

2025. I did not limit the search on publication date, location, or language. As pollution affects 

people and students all over the world, I did not limit my search by country. As such, the 

evidence provided below represents the effects of pollution on students globally. 

Identifying Studies for Final Inclusion 

Starting with the results returned from the search of databases and previous reviews, I 

screened for primary studies that meet all eligibility criteria, as illustrated in Figure 1. I retained a 

study if the title, abstract, or introduction mentioned that the study contained empirical results 

pertaining to pollution and student achievement or academic outcomes. In all, I screened over 

21,000 records during the search. This initially large number of studies represents the substantial 

literature on pollution and student outcomes. However, the vast majority of these studies are not 

estimating the causal effects of pollution on student achievement or academic outcomes. 

In phase two, I was left with 103 studies for full text reading. From these fully reviewed 

studies, I excluded studies that did not provide causal estimates of pollution on student 

achievement. When there are multiple reports or publications from the same study, such as a 

working paper and a peer reviewed article for the same evaluation, I kept only the most current 

publication, which is most often the published version. 
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In phase three, I emailed the authors of these reports to see if there are additional studies 

that the search has missed. From this process, I obtained five additional studies. This step 

represents additional efforts beyond the standard systematic review process to ensure that I have 

the most complete set of causal studies on the effects of pollution on student achievement. 

At the end of phase three, I was left with a sample of 28 primary studies, 16 from the 

United States and 12 from a broad range of other countries including Brazil, Chile, England, 

India, Iran, Israel, and Vietnam. This set of studies serves as the analytic sample for the meta-

analysis. 

Coding Reports  

I coded relevant information for each of the eligible studies using a coding schema 

(Appendix Table 2). For instance, I coded the following information: publication type, whether 

the study was peer reviewed, the country of origin, identification strategy, type of pollutant 

analyzed, the estimate effect, associated standard error, and sample size. I specifically note that I 

reverse coded a handful of studies that estimate the effect of a treatment, such as bus retrofitting, 

air filter, or heating-ventilation-and-air-conditioning (HVAC), on student achievement (i.e., 

Austin et al., 2019; Gilraine, 2025; Persico & Fuller, 2025). In these studies, the positive effects 

of treatment (treatment to mitigate the detrimental effects of air pollution) are coded as negative 

to represent the negative effect of air pollution. To reduce any potential coding error, I recoded 

each of the studies two to three weeks after coding them the first time. No discrepancies or 

mistakes were made between the two rounds of coding. 

Estimating the effects of air pollution. Since air pollution is everywhere, meaning that 

we are all exposed to it to some extent, it is not trivial to estimate its effects. Moreover, there are 

other factors that make it difficult to provide causal estimates of the effects of air pollution. First, 
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where people live are not randomly distributed, leading to nonrandom assignment of pollution 

concentrations. Second, environmental confounding is the second source of endogeneity where 

the factors that influence pollution may also affect outcomes, such as temperature, humidity, or 

proximity to industrial sites. Third, there are measurement errors of the concentrations of air 

pollutants that individuals are exposed to since most measures of air pollution consist of an 

inverse-distanced weighted average of several monitors that are kilometers or miles away from 

an individual, or more recently, using satellite data to estimate the concentrations of air 

pollutants. As such, it is difficult to 1) isolate the effects of air pollution, and 2) use a singular 

method to provide plausibly causal effects of air pollution. This leads to researchers needing to 

use different quasi-experimental approaches to estimate the effects of air pollution. For instance, 

Amanzadeh et al. (2020) use student fixed effects in a panel data to estimate the effect of one 

standard deviation increase of air pollution on test scores. Austin et al. (2019) use variation in the 

timing and location of bus retrofits to estimate the effect of the percent of retrofitted bus on 

language and math scores. Balakrishnan and Tsaneva (2021) use thermal inversions as an 

instrument to estimate the effect of one unit change in air pollutant concentrations on language 

and math scores. Using a spatial regression discontinuity design, Gilraine (2025) estimates the 

effect of installing air filter on test scores. The different estimates and interpretations of the 

effects of air pollution on student achievement represent an additional complication to 

synthesizing the results across the studies. I approach this complication in two different ways. 

First, in the main analysis I use the original estimates from these primary studies to provide a 

summary estimate of the general effects of air pollution on student achievement. These estimates 

represent the authors’ original intent of their work. In auxiliary analysis, I convert the estimates, 

whenever possible, so that the interpretation of each estimate is the effect of one µg/m3 unit or 
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one standard deviation unit change in the independent variable (e.g., one SD change in PM2.5) on 

a standardized measure of student achievement (e.g., SD change in math or language score). I 

note some studies do not provide enough information to make this comparison possible. For 

instance, Dang et al. (2025) and Gilraine and Zheng (2024) do not include the standard deviation 

measure of PM2.5 exposure, so I am unable to compare their unit change estimate to a standard 

deviation change. Some studies examine the effect of a treatment so it is not possible to estimate 

a one standard deviation change in pollution. Stafford (2015) estimates the effects of mold and 

ventilation treatment on test scores and Persico and Fuller (2025) estimate the effects of air 

filtration, neither of which cannot be converted to a standard deviation interpretation. Using 

these two approaches allows me to provide 1) the overall effects of air pollution (answering the 

question of does air pollution affect student achievement) and 2) the effect of one unit change or 

one standard deviation unit change in the pollutant on a standardized measure of student 

achievement (with some loss to sample size but providing a more direct interpretation, 

particularly for researchers and policymakers). 

Dependent variable. The main outcomes of interest are causal estimates of the effects of 

pollution on student achievement as well as the associated standard errors of those estimates 

(Lipsey & Wilson, 2001). From all the primary studies, there are three types of outcomes that 

have been examined: composite student test scores, language-specific test scores, and Math-

specific test scores. An example composite student test score includes exam scores of student 

performance (e.g., Ebenstein et al., 2016), and high-stake high-school matriculation exam or 

university entrance exam in Iran and Brazil respectively (Amanzadeh et al., 2020; Carneiro et al., 

2021). I consider composite test scores, language test scores, and Math test scores as student 

achievement generally in my analysis, but recognizing that these measures are different, I also 
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separate the results by their own category. Some studies also made separate estimates by gender 

and/or by particulate size (PM2.5, PM10). Whenever possible, I also conducted separate meta-

analyses using these subgroup estimates. 

For ease of interpretations, all estimates have been converted to effect sizes, or changes in 

standard deviations of each outcome. Consequently, all the meta-analytic results should be 

interpreted as effect size increases or decreases. 

Moderating variables. I coded a series of a priori moderators to examine how the effects 

of pollution on student achievement may vary by study characteristics. Specifically, I coded for 

the publication year, publication type, peer-review status, study quality, and country of origin. 

These moderators were selected based on my reading of the literature and prior systematic 

reviews and meta-analyses I have conducted. Overall, due to the nature of the retained articles 

where the vast majority of the studies were peer-reviewed publications published in the last 10 

years, there are limited moderators I can employ to examine how effects vary by study 

characteristics. Specifically, I was able to examine two moderators: 1) study quality, and 2) 

country of origin (where the data were collected). 

Analytic Strategy  

Following best meta-analytic practices, I first describe the decision between fixed-effect 

and random-effects models, selecting causal estimates, and assessing risk of bias from 

differences in study quality (Borenstein et al., 2021). A fixed-effect meta-analytic approach 

assumes a true effect size across all studies whereas a random-effects model allows the real 

treatment effect to vary across populations and programs (Riley et al., 2011). Stated differently, 

the fixed-effect model assumes all studies estimate the same treatment effect where a random-

effects model assumes there are differences in the treatment effect (Borenstein et al., 2009). 
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Mechanically, the fixed-effect model assigns weights (𝑊!) to each study (i) using the inverse of 

each within-study variance (𝑉"!): 

     𝑊!,$!%&' =
(
)"!

      (1) 

In contrast, the random-effects model weights studies using both the within-study variance and 

the estimated between-study variance (𝑇*): 

     𝑊!,+,-'./ = (
)"!01

#     (2) 

Given the variation across exposure to different pollutants in different countries as well as 

variations across studies and study quality, the effects of pollution should not be expected to be 

homogenous across different populations of students. As such, conceptually I prefer the random-

effects model in the analysis. Moreover, I also rely on heterogeneity statistics to inform my 

decisions to use random-effects models. 

In terms of selecting the causal estimates, most modern studies provide several plausibly 

causal estimates to show that the results are robust to alternative specifications. However, most 

studies state their preferred specification or spend the most time discussing specific estimates. As 

such, I use the preferred estimates of the primary authors. If the primary authors did not 

explicitly state their preferred estimate or if there is no clear preference based on the discussion, 

then I use my professional judgment and select the most rigorous causal estimate based on the 

extent to which it is able to addressed internal validity issues. 

Study Quality 

Following best practices, I choose to use an inclusive approach that included all studies 

satisfying the eligibility criteria. This approach is intended to capture the range of available 

evidence of the effects of pollution on student achievement and academic outcomes. However, a 

potential challenge is that this inclusivity may introduce bias from poorly designed or low-
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quality studies. I address this potential issue by examining study quality specifically (Appendix 

Table 3). I assess the quality of each study in the spirit of what Alexander (2020) suggests, using 

a modified quality rating suggested by Lipsey and Wilson (2001). Specifically, using my 

professional judgment and expertise in quantitative causal analysis, I rated study quality on a 

scale of 1 to 5 where 1 has high risk of bias and 5 has low risk of bias. For instance, to assess the 

internal validity of studies employing fixed effects, I consider the extent to which the researchers 

explain how the fixed effects precisely address which source of bias and the extent to which the 

results are robust to different modelling specification. For regression discontinuity studies I 

would consider evidence of non-manipulation of the forcing variable, smoothness of the forcing 

variable around the threshold, covariate balance checks on either side of the threshold, 

robustness of findings across various bandwidths, and falsification tests. See Shadish et al. 

(2002) and Murnane and Willett (2010) for more information on issues of causal inference for a 

variety of quasi-experimental designs. 

I employ this quality rating through two different ways. First, in subgroup analysis, I 

limit the analysis to high-quality causal studies, studies that have ranking of four or five out of 

five. Second, I use meta-regression to examine whether study quality is associated with the effect 

estimate. 

Results 

 Table 1 provides the descriptive information and characteristics of the primary studies 

included in systematic review and meta-analysis. Primary study characteristics are provided in 

Appendix Table 4. First, my search reveals 28 causal studies examining the effects of pollution 

on student academic outcomes. These studies are conducted between 2012 and 2025. Of these 28 

studies, 22 are peer reviewed publications and 6 are working papers. The majority of these causal 
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studies, 54 percent, can be considered high-quality, studies with ratings of 4 or 5 out of 5. 

Slightly more than half, 16 of these studies, are conducted in the United States. Twelve studies 

are conducted in various countries, including Brazil, Chile, England, India, Iran, Israel, and 

Vietnam. In terms of the number of treatment estimates, there are a total of 62 total estimates of 

student achievement, consisting of 15 composite test score estimates, 22 language estimates, and 

25 math estimates. With respect to subgroup estimates, there are two general subgroups, one 

based on gender and one on the size of the particulate. Specifically, there are 12 estimates on 

female students and 12 estimates on male students. There are 23 estimates of the effects of PM2.5 

on student achievement and 4 estimates of the effects of PM10 on student achievement. 

 When I consider only the 15 high-quality causal studies, 93 percent are peer reviewed, 

and 60 percent are based in the United States. From these studies, there are 27 estimates on 

student achievement, 10 estimates each on gender, and 14 estimates on PM2.5. Overall, Table 1 

illustrates that the causal studies examining the effects of pollution on student academic 

outcomes are mostly high-quality studies, have gone through the rigorous peer review process, 

and have been conducted from all over the world. Next, I provide the meta-analytic results of the 

effects of pollution on student academic outcomes. 

 In Panel A of Table 2, I first provide the meta-analytic results when we consider all 

measures of student achievement, then by composite test scores, language, and math scores. In 

terms of student achievement, the summary estimate from 62 estimates indicates that pollution 

decreases student achievement by 0.022 standard deviation (SD) with a standard error of 0.002, 

with a lower bound of -0.025 and an upper bound of -0.018 SD. This result is statistically 

significant and clearly indicates that pollution has negative effects on student achievement. When 

I consider only the composite test score results, the summary estimate from 15 studies indicates 
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that pollution decreases student test score by 0.025 SD, with a lower bound of -0.034 and an 

upper bound of -0.017 SD. The summary estimates for language and math tests scores are 

similarly negative, with the estimate for math smaller in magnitude. Specifically, pollution 

decreases language and math achievement by 0.026 SD and 0.014 SD respectively. In the 

Discussion section, I contextualize these negative effects compare to experimental evidence on 

education interventions. 

 In Panel B of Table 2, I disaggregate the results by gender and size of the particulate. The 

summary estimate from twelve studies indicates that pollution decrease female student 

achievement by 0.024 SD and male student achievement by 0.032 SD with both results being 

statistically significant. These results suggest that pollution may have a more outsize effect on 

boys than on girls. The summary estimate on male achievement is about an 33% increase than 

the summary estimate on girls. In terms of the size of the particulate, the summary estimates on 

PM2.5 and PM10 are -0.011 SD and -0.059 SD, respectively. These results provide weak but 

suggestive evidence that PM10 may have more negative effects on student achievement than 

PM2.5. 

 As discussed previously, conceptually I do not expect the effects of pollution to be 

homogenous across different populations of students, and as such, I rely on the random-effects 

meta-analysis model. However, I also present empirical evidence that the random-effects models 

are more appropriate than the fixed-effect models in the last three columns of Table 2. For each 

summary estimate, I present a set of standard heterogeneity statistics. For instance, for the main 

student achievement analysis, across these studies the true heterogeneity in effect sizes (I2) is 

98.5, suggesting that less than 1.5 percent of the total variation in effect sizes can be attributed to 

random error. The Cochrane’s Q statistics tests the null hypothesis of homogeneity across 
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studies, and PQ for student achievement is less than 0.001, indicating that there is strong 

evidence to reject the null hypothesis that the true dispersion of effect sizes is zero. These 

heterogeneity statistics present empirical evidence of heterogeneity in effect sizes, which justifies 

the use of random-effects models. I find similar evidence of heterogeneity across the different 

subgroups except for PM10, but this is due to the small sample size of four estimates. I explore 

these differences graphically below with forest plots. 

Heterogeneity of Effects 

 Figure 2 shows the forest plot of the effects of air pollution on student achievement. Each 

row represents an effect size from a primary study in the meta-analysis, plotted alphabetically by 

author order. For each row, I also provide the specific outcome (i.e., composite test score, 

language, or Math) as well as the specific pollutant associated with the outcome. For instance, 

the first estimate provides the effect of PM2.5 on composite test score from the Amanzadeh 

(2020) study, which is that pollution lowers student test score by 0.03 SD. This estimate 

contributes to 2 percent of the weight to the summary estimate. Moreover, each figure presents 

the 95% confidence interval numerically and as lines extending from the point estimates along 

with the weight that each study contributes to the summary estimate. The overall summary 

estimate across the studies for that outcome is located at the bottom of the figure. Figure 2 

clearly shows that the vast majority of the effect estimates are negative and statistically 

significant. The vast majority of estimates are between -0.20 and -0.00 SD with a couple of 

estimates that are less than -0.20 SD (more negative). These estimates, however, are imprecisely 

estimated, having large standard errors, and they each contribute a very small percent to the 

overall summary estimate. I note that dropping these imprecisely estimates does not 

substantively change any of the conclusions. Appendix Figures 1-3 present the forest plots for 
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composite test scores, language scores, and Math scores. Overall, these forest plots show 

substantial heterogeneity. 

Study quality 

Even though I have limited this systematic review and meta-analysis to just causal 

studies, there may still be concerns about the quality of the studies themselves. To address this, I 

limit the meta-analysis to only high-quality causal studies, studies that are rated at least 4 out of 5 

on the quality rating scale. As noted, using these high-quality studies reduces the overall number 

to 15 studies and 27 estimates on student achievement. Replicating the analysis in Table 2, Panel 

A of Table 3 shows the summary estimates for student achievement, composite test scores, 

language scores, and math scores. The summary estimate from 27 high-quality causal estimates 

indicates that pollution decreases student achievement by 0.029 SD with a lower bound of -0.038 

and an upper bound of -0.021 SD. Similar to the main estimates, the summary estimates for 

composite test scores, language scores, and math scores indicate pollution decrease student 

scores by 0.031 SD, 0.033 SD, and 0.022 SD respectively. The summary estimates from these 

high-quality studies are slightly larger than the summary estimates from the main analysis. For 

instance, the summary estimate changes from -0.022 SD to -0.029 SD for student achievement. 

In Panel B of Table 3, the summary estimates from the subgroup analysis remain negative and 

are comparable to the summary estimates from Panel B of Table 2. Overall, these high-quality 

studies confirm that pollution has negative effects on student achievement.  

USA results 

 As there are substantially more studies examining the effects of air pollution in the 

United States, I am able to provide meta-analytic results specifically to the United States. The 

summary estimates from Table 4 indicate that, similar to before, pollution negatively affects 
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student learning. In particular, the summary estimate from 38 U.S.-specific estimates indicate 

that pollution decreases student achievement by 0.018 SD. The summary estimates for composite 

test scores, language scores, and math scores indicate pollution decrease student scores by 0.016 

SD, 0.030 SD, and 0.013 SD respectively. 

Meta-regression results 

 While the analyses using only high-quality studies and USA-only studies can provide 

evidence for how the meta-analytic results may change when I limit the sample, another 

approach would be to use meta-regression analysis, a meta-analytic approach that uses regression 

analysis to account for available covariates. Using meta-regression will allow me to analyze how 

high-quality studies or USA-studies may change the summary estimate. Table 5 shows the meta-

regression results using a high-quality dichotomous variable where a 1 is equal to studies with 

ratings of 4 or 5 and a 0 indicates studies of ratings 3 or less (Panel A). Similarly, I use a USA 

indicator in Panel B. 

 The meta-regression results for high-quality studies suggest that high-quality causal 

studies do not find more negative effects of pollution on student achievement as the estimates on 

high-quality are statistically insignificant except for Math (Panel A of Table 5). Similarly, the 

estimates on USA studies are insignificant (Panel B). Panel C similarly shows insignificant 

relationships when we consider both high-quality studies and USA studies. Overall, these meta-

regression results are substantively similar to the meta-analytic results using only high-quality 

and USA-only studies. 

Publication Bias 

 Another concern in meta-analyses relates to potential primary studies that are not 

published because the outcomes of the studies might have biased the decision to publish or 
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distribute them. This publication bias threat would then systematically underrepresent the true 

populations of the completed studies (Banks et al., 2012). Most often, these studies are not 

published or distributed because they have non-significant findings. To explore this possibility, I 

include Appendix Figure 4 showing the contoured enhanced funnel plot for student achievement, 

which is designed to help detect publication bias. If studies are missing in the areas of non-

significance (the inner most funnel), that would suggest non-significant results are not being 

published. Asymmetry to the left or right of the center indicates that studies are systematically 

more likely to have found negative or positive results respectively.  

I note that there are many non-significant results in the analysis, which reduces the risk of 

publication bias. Stated otherwise, the possibility of non-significant findings that are not 

published or distributed is minimal. In terms of asymmetry, I observe that there are no studies 

with significant positive effect estimates (right side of zero on the x-axis). This is perfectly 

reasonable as I would not expect pollution to cause students to learn more. Given these results, I 

do not suspect that publication bias is a serious threat to the findings. 

Standardizing the Effects of Air Pollution 

 As noted in the Method section, a different way to synthesize the effects of air pollution 

is to have comparable estimates of the changes in the concentration of air pollutants. However, 

conversion of overall air pollution effects to µg/m3 unit increase or standard deviation increase 

comes with a non-trivial loss to sample size as some studies estimate the effect of a treatment 

(e.g., Austin et al., 2019) and others do not provide enough information to estimate a one unit 

increase or one standard deviation increase (e.g., Lu et al., 2021). 

In Table 6, I replicate Table 2 by converting all estimates from primary studies to a 

comparable one standard deviation change in the pollutant. Using 37 estimates, the summary 
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effect estimate for student achievement is that a one standard deviation change in air pollution 

causes a decrease of 0.042 SD in student achievement. Similarly, a one standard deviation 

increase in air pollution decreases composite test scores, language scores, and math scores by 

0.038 SD, 0.048 SD, and 0.035 SD respectively. In Table 7, I similarly replicate Table 2 but for a 

one µg/m3 unit increase. I find that a one µg/m3 unit increase of pollutant decreases student 

achievement by 0.011 SD.  

Limitations and Future Research 

 There are a few main limitations with research in this area. First, since air pollution is 

everywhere, the estimates on the effects of air pollution are sometimes measured in different 

ways in terms of the concentration of air pollutant exposed to children and students. Specifically, 

there are many ways to think about dosage: it could be the amount of air pollutants (µg/m3), by 

one Interquartile Range (IQR), above or below a certain threshold (e.g., 200 µg/m3), or by one 

standard deviation of the pollutant. Future research should provide multiple estimates (or 

interpretations) based on different dosage measurement. It would, for instance, be easiest for 

policymakers and the public to understand that a standard deviation increase (or a unit increase) 

of a pollutant has a range of effects on student achievement (my approach in Tables 6 and 7). 

Relatedly, measurement error is also a threat to validity to many of the primary studies 

included in this current work (and in air pollution studies generally). Specifically, there is 

difficulty in measuring exposure to air pollution as there are limited monitoring data in many 

parts of the world, the difference between indoor and outdoor exposure, and spatial and temporal 

variability in short- and long-term exposure to pollutants. Having more indoor and outdoor 

pollution monitors would make it more possible to estimate how much people are exposed to 

pollutants on a regular basis. 
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 Another limitation is that there are different components to air pollution, such as CO, 

NOx, ozone, and particulate matters. It is not always possible to simultaneously separate out the 

differential effects of each pollutant, so it is difficult to determine if there is one type or category 

of pollutants that may be more harmful than others, at least for school-age children. While I am 

able to conduct some subgroup analysis of PM2.5 and PM10, there are not enough studies to 

clearly say that one or the other is more harmful for student achievement, and there are definitely 

not enough studies of other types of pollutants to suggest if one is worse than another. I would 

note, however, that it may not be necessary to fully isolate or tease out the individual effects and 

harms to children and students if the policy solutions to fix them are similar (e.g., indoor air 

filters are designed to filter out all of these pollutants). In a similar vein, it would be very useful 

if more studies provided subgroup estimates, particularly by gender, by socioeconomic status, 

and by race/ethnicity. The subgroup analysis that I am able to conduct suggests that air pollution 

may have larger effects on boys than on girls, and it would be important to confirm this and 

examine the extent to which this type of differential effect may exist by socioeconomic status or 

by race/ethnicity. 

Discussion 

 By focusing on studies that provide plausibly causal estimates of the effects of air 

pollution on student achievement, I am able to synthesize the most rigorous evidence on this 

important issue and examine how the effects of air may differ for male and female students and 

by different measures of achievement. The majority of the primary studies include in this 

systematic review and meta-analysis can be considered high-quality causal studies, and includes 

evidence from a range of countries from Brazil, Iran, Vietnam to the United States. Overall, the 

evidence indicates that air pollution, broadly measured, negatively affects student achievement 
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globally by about 0.02 standard deviations (SD). Students who are exposed to higher 

concentrations of air pollution consistently score lower on a variety of tests than students who 

are not, and this difference is caused by air pollutants. Air pollution causes students to do worse 

on language and math tests by 0.026 SD and 0.014 SD respectively. On composite tests, the 

summary effect is about 0.025 SD. Moreover, the effects of air pollution are about 33% larger for 

boys (0.032 SD) than for girls (0.024 SD). Additionally, the summary estimates tend to be even 

larger when only the high-quality causal studies are used. Lastly, one unit and one standard 

deviation increase in air pollution decrease student achievement by 0.011 SD and 0.042 SD 

respectively. 

 While the evidence clearly indicates that air pollution is detrimental to student 

achievement, it is also important to provide some practical interpretation of these results. While a 

decrease of 0.02 SD to 0.04 SD in student achievement may seem small, it is actually practically 

meaningful and is comparable to a number of education interventions. First, a 0.042 SD decrease 

is about a 1.6 percentile point decrease in student achievement (von Hippel, 2025). Second, 

across 139 effect sizes from 49 preregistered randomized controlled trials (RCTs) of education 

interventions funded by the Department of Education, the median effect size is 0.03 SD (Kraft, 

2020). Examining education interventions in low- and middle-income countries, Evans and Yuan 

(2022) find that the 25th percentile of effect size is 0.01 SD. Examining interventions in 

disadvantaged schools specifically, Boulay et al. (2018) find that the median effect of RCTs is 

0.03 SD even when these interventions cost several thousand dollars per student. Huillery et al. 

(2025) find that a four-year mindset intervention had a 0.05 SD increase in grade point average. 

The average scores for students in districts receiving more than $8,000 per student with the 

Elementary and Secondary School Emergency Relief (ESSER) federal grants provided to K-12 
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schools in response to the Covid-19 pandemic increased by 0.047 SD and 0.055 SD in language 

and math respectively (Dewey et al., 2024). In other words, a decrease of 0.02-0.04 SD in 

student achievement represents a non-trivial effect and is on par with a median effect size in 

education interventions. 

In sum, the negative effects of air pollution on student achievement are significant and 

practically meaningful, they may have an outsize effect on male than female students, and they 

can be observed all over the world, even in wealthier countries like the United States. After I 

discuss the mechanisms through which air pollution may affect student achievement, I further 

contextualize these detrimental effects of air pollution and the implications for policy and 

practice, particularly with respect to the potential economic lost due to student achievement and 

the cost-effectiveness of interventions to mitigate the effects of air pollution. 

Potential Mechanisms of Air Pollution on Student Achievement 

 While this current work clearly establishes that air pollution undoubtedly negative affects 

student achievement, it is also important to consider the potential mechanisms through which air 

pollutants affect K-12 students. As discussed previously, there are two main mechanisms: 1) 

neurobiological and cognitive mechanisms, and 2) physical and behavioral mechanisms. 

 In terms of neurobiological and cognitive mechanisms, the health literature has 

demonstrated over and over again that air pollutants contribute to brain development and 

function (An et al., 2021; Bates, 1995; Dutheil et al., 2021; Lopuszanska & Samardakiewicz, 

2020; Vallero, 2025). Multiple systematic reviews and meta-analyses have shown that children 

and kids who are exposed to higher concentrations of air pollution are systematically affected by 

the pollutants and have worse neurobiological and cognitive development. These findings have 

direct implications for policy and practice that I will turn to in the next section. 
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 With regards to physical and behavioral mechanisms, there has also been substantial 

evidence that air pollution is associated with increased absenteeism as well as behavioral issues. 

While there is not enough causal evidence for a formal meta-analysis, there are a handful of 

recent causal studies that examine how air pollution affects attendance and student behavior. 

Chen et al. (2018) finds that a one standard deviation increase in pollutant increases the 

probability of being absent by 7%. Liu and Salvo (2018) find that the occurrence of severe PM2.5 

in China increase the probability of being absent by 0.88 percentage point, a 14% increase 

relative to the sample mean. Heissel et al. (2022) find that attending a school downwind of a 

major highway increases absence rate by 0.54 percentage points and having a behavioral incident 

by 4.10 percentage points. Similarly, Persico and Venator (2021) find that, in Florida, United 

States, students exposed to air pollution are more likely to be suspended from school and more 

likely to be absent. Using daily administrative data in California, United States, Chung et al. 

(2025) find that a 10 µg/m3 increase in daily PM2.5 leads to a 5.7% increase in full-day student 

absences and a 28% increase in office referrals in a three-day window. Moreover, these effects 

are driven by marginalized students, specifically low-income, Black, and Hispanic students in the 

California context. 

 In sum, there is substantial evidence that air pollution can and does negatively impact 

students’ neurobiological and cognitive development as well as their attendance and behaviors in 

school. Both sets of mechanisms can explain how air pollution ultimately affects student 

achievement. 

Implications for Policy and Practice 

What do we do when the air we breathe is poisoning us? Not only is air pollution an 

ecological phenomenon that negatively affects almost all of us, it also affects our youngest and 
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most vulnerable populations, children and students. The evidence on student achievement that is 

synthesized in this study along with the broader evidence of the effects of air pollution on 

physical health and neurobiological development strongly suggests that we need to meet this 

challenge head on. With respect to students and student achievement specifically, there are two 

main ways that policymakers can take actions to address this problem. 

First, policymakers and citizenries need to do more to improve the ambient air pollution 

that exists ubiquitously. Air pollution has such detrimental effects on numerous fronts, including 

education and economics, that it is difficult to think we are not doing more to reduce air pollution 

everywhere. In the Second Global Conference on Air Pollution and Health, the WHO has put 

forth the shared objective of reducing health impacts of air pollution by half by 2040 (World 

Health Organization, 2025b). Forty-seven million people from the health community have 

argued that clean air is a human right and have urgently called for bold evidence-based actions 

on air pollution (World Health Organization, 2025c). Similarly, environment ministers 

worldwide through the United Nations Environment Programme and the “Beat Pollution” 

campaign have reaffirmed political commitment to reduce all forms of pollution, including air 

pollution (UNEP, 2025).  

While these shared initiatives and commitments at the global level are critical, it is also 

important to recognize that regional and national policies can also aim to directly affect air 

pollution. For instance, the revised European Union’s Ambient Air Quality Directive (2024), in 

alignment with the WHO guidelines, has set stricter standards to ensure Europeans enjoy 

healthier air by updating air quality standards and setting target values for the major air 

pollutants including NOx, ozone, PM10, and PM2.5 (in the case of PM2.5 specifically, the goal is to 

cut the annual limit by more than half). Their previous goals and standards have resulted in 
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substantial improvement in air quality. For instance, the percent of urban population exposed to 

PM2.5 and NO2 fell between 2000 and 2023, and by 2023, less than 1% was exposed to 

concentrations above the annual limit (EEA, 2025).  

The United States through the Environmental Protection Agency (EPA) has made similar 

efforts in the past to reduce pollution throughout the country, and substantial gains were made. 

Specifically, the EPA estimated that the Clean Air Act reduced traffic emissions by 70% between 

1970 and 2015 (EPA, 2015). Based on their work and some back of the envelope calculation, 

Heissel et al. (2022) estimated that this reduction in traffic pollution has raised test scores by 0.11 

SD, which should be considered a medium effect size educational intervention (Kraft, 2020). In 

sum, we have evidence that major policy actions can and have made positive impacts on air 

pollutions and that policymakers and society at large, particularly in developed and wealthy 

nations, should continue to make these investments that would benefit their citizens at home and 

the global populations at large. 

Second, while country-level and global-level efforts are absolutely needed, policymakers 

and educators at more local level can also take actions to mitigate the detrimental effects of air 

pollutions for children and students. For instance, education policymakers can retrofit bus 

engines to reduce children exposure to high levels of air pollution from diesel emissions and 

high-emission engines. Austin et al. (2019) find that, in addition to health benefits, retrofitting 

buses (i.e., installing diesel particulate filter, diesel oxidation catalyst, flow-through filter, or a 

closed crankcase filter) taking students to school increases language and math scores by 0.009 

SD and 0.005 SD respectively, which has an estimated monetary value of $2.57 million for 

students’ lifetime earnings and represents more than 25 times the cost of retrofitting.  
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Schools can also carry out mold and ventilation improvement projects to improve air 

quality for students at school. Stafford (2015) estimated that the average mold remediation 

project ($500,000) would improve math and reading scores by 0.15 SD and 0.14 SD respectively, 

and the average ventilation improvement ($300,000) would similarly improve math and reading 

scores by 0.07 SD and 0.11 SD. These improvements would then be considered to have medium 

effect sizes in education interventions (Kraft, 2020), and the costs would be low, particularly 

when we consider that the improvements would affect thousands of students each year. For 

example, a mold remediation project costing $500,000 for a school serving 1,000 students would 

cost $500 per student (this is assuming the cost distributed over just a single year, and the cost is 

potentially a lot less if spread out over a longer period of time) and have minimal maintenance 

costs on a per student basis. 

In another study that examines the effects of air filters at a school setting, there was a gas 

leak that occurred in a wealthy Los Angeles neighborhood (California, U.S), and a gas company 

placed air filters in every classroom within five miles of the leak to remediate this problem. 

Using a spatial regression discontinuity design, Gilraine (2025) finds that installing air filters 

increased math and language scores by about 0.10-0.20 SD. Gilraine (2025) estimates that, 

assuming air filters reduce indoor particular matters by ninety percent, each µg/m3 removed was 

responsible for 0.02-0.03 SD increase in test score. More importantly, the per-year cost to install 

and maintain air filters in schools is around $1,000 per class, which is perhaps one of the most 

cost-effective educational interventions available relative to many other well-known 

interventions such as high dosage tutoring, class size reduction, and Head Start (Brewer et al., 

1999; Guryan et al., 2023; Ludwig & Phillips, 2007). It should be further noted that air filters can 
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mitigate poor indoor air quality even more for the most underprivileged or low-income students 

in high pollution areas.  

In conclusion, air pollution affects almost all of us from the moment we are born, all 

through our formative years, even to our old age. We absolutely need to do more at the local 

level, national level, and global level to combat this issue that not only affects our physical health 

and our neurobiological development but also our learning and achievement. The evidence 

synthesized here clearly indicates that air pollution negatively impacts student achievement, but 

more importantly, there are direct and cost-effective actions that can be taken to mitigate these 

detrimental effects.  
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Tables and Figures 
 
Table 1. Descriptive information on the primary studies by study characteristics 
 Full sample 

of causal studies 
High-quality  
causal studies 

Study characteristics   
Publication year 2012-2025 2016-2025 
Publication type 22 articles  

6 working papers 
12 articles 

3 working papers 
Peer review 89% 93% 
High-quality 54% 100% 
USA-based 57% 60% 
Other countries 
(# of studies) 

Brazil (2), Chile (3), 
England, India, Iran (2), 

Israel (2), Vietnam 

Brazil, England, India, 
Iran, Israel, Vietnam 

Number of treatment estimates   
Student achievement 62 27 

Composite test scores 15 9 
Language 22 9 
Math 25 9 

   
Subgroup estimates   

Female students 12 10 
Male students 12 10 
PM2.5 23 14 
PM10 4 2 

   
Number of studies 28 15 

Note. High-quality studies include studies with scores of 4 or 5 out of 5 based on my rating. Student achievement 
include estimates on any composite test score, language, or Math. PM2.5 and PM10 are two pollutants most studied. 
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Table 2. Meta-analytic results of the effect of air pollution on student achievement 
Outcomes Main effect estimates  Heterogeneity of study effects 
 N Effect 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound 

 I2 Q PQ 

Panel A: Main analysis 
Student 
achievement 

62 -0.022 0.002 -0.025 -0.018  98.468 3981.053 <.001 

Composite 
test score 

15 -0.025 0.004 -0.034 -0.017  99.596 3463.780 <.001 

Language 22 -0.026 0.004 -0.034 -0.018  88.210 178.114 <.001 
Math 25 -0.014 0.002 -0.017 -0.010  83.913 149.186 <.001 

Panel B: Subgroup analysis 
Female 
achievement 

12 -0.024 0.004 -0.031 -0.016  98.788 907.783 <.001 

Male 
achievement 

12 -0.032 0.005 -0.042 -0.022  99.131 1265.573 <.001 

PM2.5 23 -0.019 0.003 -0.024 -0.014  98.949 2093.627 <.001 
PM10 4 -0.059 0.009 -0.078 -0.041  34.698 4.594 0.204 

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N 
reflects the number of effect sizes.  
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Table 3. Meta-analytic results of the effect of air pollution on student achievement with high-quality causal studies 
Outcomes Main effect estimates  Heterogeneity of study effects 
 N Effect 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound 

 I2 Q PQ 

Panel A: Main analysis 
Student 
achievement 

27 -0.029 0.004 -0.038 -0.021  96.728 794.548 <.001 

Composite 
test score 

9 -0.031 0.008 -0.046 -0.016  98.343 482.697 <.001 

Language 9 -0.033 0.006 -0.045 -0.020  85.758 56.172 <.001 
Math 9 -0.022 0.004 -0.029 -0.015  53.253 17.113 0.029 

Panel B: Subgroup analysis 
Female 
achievement 

10 -0.025 0.006 -0.038 -0.013  96.279 241.864 <.001 

Male 
achievement 

10 -0.033 0.008 -0.049 -0.017  96.637 267.589 <.001 

PM2.5 14 -0.021 0.004 -0.030 -0.013  94.494 236.107 <.001 
PM10 2 -0.050 0.009 -0.067 -0.033  13.099 1.151 0.283 

Note. Student achievement, composite test score, language, and Math scores are measured in standard deviations 
units. N reflects the number of effect sizes. High-quality causal studies have ratings of 4 or 5 out of 5 on the quality 
rating scale. 
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Table 4. Meta-analytic results of the effect of air pollution on student achievement in the United States 
Outcomes Main effect estimates  Heterogeneity of study effects 
 N Effect 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound 

 I2 Q PQ 

Panel A: Main analysis 
Student 
achievement 

38 -0.018 0.002 -0.021 -0.014  93.020 530.101 <.001 

Composite 
test score 

7 -0.016 0.006 -0.028 -0.004  97.444 234.780 <.001 

Language 14 -0.030 0.006 -0.042 -0.018  89.649 125.592 <.001 
Math 17 -0.013 0.002 -0.017 -0.009  86.317 116.930 <.001 

Panel B: Subgroup analysis 
Female 
achievement 

4 -0.026 0.002 -0.030 -0.022  5.804 3.185 0.364 

Male 
achievement 

4 -0.033 0.003 -0.039 -0.026  16.197 3.580 0.311 

PM2.5 14 -0.018 0.003 -0.024 -0.012  91.894 160.371 <.001 
PM10 4 -0.059 0.009 -0.078 -0.041  34.698 4.594 0.204 

Note. Student achievement, composite test score, language, and Math scores are measured in standard deviations 
units. N reflects the number of effect sizes.  
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Table 5. Meta-regression results 
 (1) (2) (3) (4) 
 Student 

achievement 
Composite test 

score 
Language Math 

Panel A: High Quality Studies 
High quality -0.009 -0.007 -0.010 -0.016** 
 (0.006) (0.014) (0.013) (0.004) 
Constant -0.019** -0.024* -0.024* -0.007** 
 (0.004) (0.010) (0.009) (0.002) 
N 62 15 22 25 

Panel B: USA Studies 
USA 0.006 0.017 -0.006 0.004 
 (0.006) (0.012) (0.014) (0.008) 
Constant -0.027** -0.036** -0.025* -0.019** 
 (0.005) (0.008) (0.011) (0.006) 
N 62 15 22 25 

Panel C: USA and High Quality Studies 
High quality -0.010 -0.008 -0.009 -0.014** 
 (0.006) (0.013) (0.014) (0.005) 
USA 0.007 0.018 -0.004 0.002 
 (0.006) (0.013) (0.014) (0.005) 
Constant -0.023** -0.032* -0.022+ -0.010+ 
 (0.005) (0.011) (0.012) (0.005) 
N 62 15 22 25 

Note. Standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01 
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Table 6. Meta-analytic results of the effect of one standard deviation increase of air pollution on student achievement 
Outcomes Main effect estimates  Heterogeneity of study effects 
 N Effect 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound 

 I2 Q PQ 

Panel A: Main analysis 
Student 
achievement 

37 -0.042 0.005 -0.052 -0.032  98.222 2025.144 <.001 

Composite 
test score 

11 -0.038 0.007 -0.051 -0.026  99.273 1374.632 <.001 

Language 13 -0.048 0.009 -0.065 -0.030  84.633 78.088 <.001 
Math 13 -0.035 0.008 -0.052 -0.019  72.871 44.233 <.001 

Panel B: Subgroup analysis 
Female 
achievement 

8 -0.039 0.008 -0.055 -0.023  98.626 509.420 <.001 

Male 
achievement 

8 -0.065 0.006 -0.077 -0.053  96.662 209.689 <.001 

PM2.5 18 -0.044 0.006 -0.055 -0.032  97.631 717.639 <.001 
PM10 4 -0.067 0.015 -0.096 -0.038  64.252 8.392 0.039 

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N 
reflects the number of effect sizes.  
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Table 7. Meta-analytic results of the effect of one µg/m3 unit increase of air pollution on student achievement 
Outcomes Main effect estimates  Heterogeneity of study effects 
 N Effect 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound 

 I2 Q PQ 

Panel A: Main analysis 
Student 
achievement 

39 -0.011 0.002 -0.015 -0.008  99.443 6819.934 <.001 

Composite 
test score 

11 -0.011 0.003 -0.017 -0.005  99.851 6729.216 <.001 

Language 14 -0.010 0.002 -0.014 -0.006  74.165 50.318 <.001 
Math 14 -0.009 0.002 -0.013 -0.005  64.740 36.869 <.001 

Panel B: Subgroup analysis 
Female 
achievement 

8 -0.011 0.002 -0.016 -0.006  99.537 1511.649 <.001 

Male 
achievement 

8 -0.018 0.006 -0.029 -0.006  99.907 7529.294 <.001 

PM2.5 20 -0.014 0.003 -0.019 -0.009  99.446 3429.759 <.001 
PM10 4 -0.006 0.002 -0.010 -0.002  85.916 21.300 <.001 

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N 
reflects the number of effect sizes.  
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Figures 
 

 
Figure 1. Flow diagram of the literature screening process. Adapted from Moher et al. (2009).  
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Figure 2. Forest plot for overall effect estimates of air pollution on student achievement 
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Appendix Tables 
 
Appendix Table 1. Results by database 

Database Results 
JSTOR (abstract) 543 
JSTOR (title) 245 
ERIC 2674 
WorldCat 10372 
Google scholar 1000 
ProQuest 3878 
NBER 2026 
Taylor and Francis Online (title) 900 
Total 21,095 
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Appendix Table 2. Coding schema 
Study and Program Characteristics 
Variable Description Level of 

measurement 
Id ID Number assigned to study Continuous 
Leadauth Name of lead author Nominal 
Title Title of paper Nominal 
Yearpub Year paper was published Continuous 
Pubtype Type of publication (academic journal, policy 

report, conference paper, etc.) 
Nominal 

Peer review Is the study a peer-reviewed publication? Binary 
Method Identification strategy (RD, DiD, IV, RCT, fixed 

effects) 
Nominal 

Conditional Are the estimates conditional or unconditional on 
enrollment? 

Nominal 

USA Is the study based in the U.S.? Binary 
State Name of state (if U.S.=1) Nominal 
Otherctry Name of the country where the study was 

conducted if not the U.S. 
Nominal 

Outcome The dependent variable(s) of the study: composite 
test score, language score, math score,  

Nominal 

Sensi_robust_falsi Does the study provide sensitivity and robust 
estimates? Does it provide falsification test? 

Nominal 

Study_quality The author’s professional judgment of the study’s 
quality from 1-5 (1-poor, 3-average, 5-excellent) 

Ordinal 

Summary Qualitative note of the study  Qualitative 
Misc_note Miscellaneous notes  Qualitative 
Study Outcomes   
Variable Description Level of 

measurement 
Outcometype Test score, language, math Nominal 
Pollutant type Pollutant, mold, particulate matter, NOx, CO, O3, 

coal, etc. 
Nominal 

Gender Gender indicator (male, female, pooled) Nominal 
Main_ana The main estimate (not subgroup) indicator Binary 
Beta Regression coefficient of the causal estimate of 

air pollution on outcome 
Continuous 

SE The standard error of the beta Continuous 
Tstat T-statistics of the beta coefficient estimate Continuous 
Samplesize Sample size of the estimate Continuous 
Dosage The difference in air pollutant concentration used 

in causal estimate 
Continuous 

Note Additional notes about the estimates or study Qualitative 
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Appendix Table 3. Quality Criteria for Assessing Risk of Bias 
Quality Rating Considerations 
Was the study a randomized control trial?  
Was implementation fidelity measured and adequately described, and what are the implications 
of implementation fidelity on outcomes? 
What are the relative strengths of the study design?  
Was the analytic approach adequately described, and what are the relative merits of the 
approach used?  
Was the comparison condition adequately described, and does the comparison group provide a 
reasonable counterfactual? 
Were threats to internal and external validity considered and addressed?  
Were findings robust to different analytical decisions and model specifications? 
Was baseline equivalence established between treatment and comparison groups? (This is 
unnecessary for some approaches such as the difference-in-difference design.) 
What sampling decisions were made by the authors and did the analytic sample present any 
concerns to internal or external validity? 

Note: Studies with a rating of four or five out of five were considered high quality studies.  
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Appendix Table 4. Primary study’s characteristics 
Lead author Year Pub type Peer 

review 
USA State Other 

country 
Adar 2024 Working paper Yes Yes National  

Amanzadeh 2020 Article Yes No  Iran 
Austin 2019 Article Yes Yes Georgia  

Avila-Uribe 2024 Working paper Yes No  England 
Balakrishnan 2021 Article Yes No  India 
Bharadwaj 2017 Article Yes No  Chile 
Carneiro 2021 Article Yes No  Brazil 
Carneiro 2024 Article Yes No  Brazil 

Dang 2025 Article Yes No  Vietnam 
Duque 2022 Article Yes Yes North Carolina  

Ebenstein 2016 Article Yes No  Israel 
Gilraine 2024 Article Yes Yes National  
Gilraine 2025 Article Yes Yes California  
Heissel 2022 Article Yes Yes Florida  
Heyes 2022 Working paper No No  Iran 

Inafuku 2025 Article Yes Yes Hawaii  
Lavy 2014 Working paper Yes No  Israel 
Lu 2021 Article Yes Yes National  

Marcotte 2017 Article Yes Yes National  
Miller 2013 Working paper No No  Chile 
Persico 2021 Article Yes Yes Florida  
Persico 2025 Working paper No Yes North Carolina  
Pham 2023 Article Yes Yes National  

Rojas-Vallejos 2021 Article Yes No  Chile 
Sanders 2012 Article Yes Yes Texas  
Stafford 2015 Article Yes Yes Texas  
Wassmer 2024 Article Yes Yes National  

Wen 2022 Article Yes Yes National  
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Appendix Figures 
 

 
 
Appendix Figure 1. Forest plot for overall effect estimates of air pollution on test score 
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Appendix Figure 2. Forest plot for overall effect estimates of air pollution on language 
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Appendix Figure 3. Forest plot for overall effect estimates of air pollution on Math 
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Appendix Figure 4. Contoured enhanced funnel plots of air pollution on student achievement 


