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Abstract

Air pollution is one of the most pressing global public health challenges of the 21*
century. This article presents a systematic review and meta-analysis of the best available
evidence of the effect of air pollution on student achievement. A meta-analysis of 28 causal
studies around the world yielding 62 effect sizes estimates that air pollution, across many
contexts and pollutants, decreases student achievement by 0.022 standard deviations (SD). One
pg/m? unit increase and one standard deviation increase in pollutant concentration decrease
student achievement by 0.011 SD and 0.042 SD respectively. The effect of pollution is about
33% larger for males than females. There are, however, direct and cost-effective solutions that
can mitigate pollution’s detrimental effects.
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Air pollution is one of the most pressing global public health challenges of the 21*
century, responsible for millions of premature deaths annually and associated with an extensive
range of chronic diseases, including respiratory, cardiovascular, and neurological disorders
(World Health Organization, 2025a). Over the past thirty years, the scientific community has
documented the physical health consequences of air pollution, particularly for children and
students, resulting in several systematic reviews and meta-analyses (An et al., 2021; Clifford et
al., 2016; Currie et al., 2014; Shah et al., 2013). However, the effects of air pollution on student
achievement have not garnered as much attention. As educational outcomes, particularly student
achievement, are critical to social mobility and long-term economic productivity, it is important
to understand how air pollution may affect student achievement in addition to the physical tolls
that it has on children and students.

Towards this end, I conduct a systematic review and meta-analysis of the causal effects of
air pollution on student achievement, specifically on K-12 students as they are most at risk of the
short and long-term effects of air pollution. Since air pollution is ubiquitous, it is critical that we
use the most rigorous evidence in order to isolate the effects of air pollution on student
achievement and account for a host of factors that may bias the estimates of the effects of air
pollution, such as nonrandom assignment of pollution concentrations or environmental
confounders that may influence both pollution levels and student achievement (e.g., school
locations; district resources). Synthesizing the causal evidence of air pollution and student
achievement in a systematic review and meta-analysis, I am able to answer the following
research question: What are the effects of air pollution on K-12 student achievement?

The rest of the article is structured as follows. I begin by providing a brief discussion on

the composition and sources of air pollution, a summary of the consequences of air pollution on



physical health, particularly for young children, and how air pollution can potentially affect
student achievement. Next, I explain my methodological approach, including eligibility criteria,
literature search, coding of primary studies, and analytical strategy. In discussing the results, I
pay careful attention to heterogeneity effects, how effects may vary by study characteristics, and
publication bias. I end with a discussion of the findings and implications for policy and practice
as well as directions for future research.

To briefly preview the results, I find that air pollution, on average across many contexts
and pollutants, decreases student achievement, broadly measured, by 0.022 standard deviations
(SD). When I examine only the composite test score results, air pollution decreases student test
scores by 0.025 SD. With respect to language and math test scores, pollution decreases language
and math achievement by 0.026 SD and 0.014 SD respectively. The effects of air pollution seem
to be larger for male than female students. Lastly, I also find that the meta-analytic summary
estimates from the high-quality causal studies are slightly larger than the summary estimates
using all available studies. Overall, the results clearly indicate that air pollution has negative
effects on student achievement, and these effects are also practically meaningful.

Background on Air Pollution
Composition and Sources of Air Pollution

Air pollution, broadly defined, is the presence of high concentrations of one or more
contaminants (gas, liquid, or solid) in the atmosphere that would be harmful to human health and
ecosystems (Vallero, 2025; World Health Organization, 2025a). While air pollution is not new,
the scale and global reach of air pollution have expanded quickly over the last several decades
due to rapid industrialization, urbanization, population growth, and increased energy

consumption (Pearson & Derwent, 2022). The major gaseous pollutants include carbon



monoxide (CO), nitrogen oxides (NO and NO», collectively known as NOx), ozone (O3), sulfur
oxide (SO3), and volatile organize compound (VOC). NO: and SO: emitted from vehicles and
power plants contribute to acid rain, smog formation, and secondary particulate matter, while O3
is formed through photochemical reactions between NOx and VOC. Solid and liquid pollutants
are known as particular matter (PM) and are categorized based on the size of the matter. PMi¢ are
particles less than 10 micrometers in diameter, and PM3 s are particles with diameters less than
2.5 micrometers. Major contributors to PM> s include fossil fuel combustion, industrial
processes, residential heating, and open burning of agricultural residues, while major
contributors of PM include traffic-related sources, construction and road dust, industrial
sources, and natural dust and soil (Vallero, 2025). In general, the smaller the particle, the more it
is able to penetrate deeper into the respiratory system, causing more severe health effects
(Pearson & Derwent, 2022; Vallero, 2025).

While exposure to air pollution is universal as over 99 percent of the global population
lives in places where air quality exceeds the recommended WHO guidelines, the higher
concentrations of pollutants are found in rapidly urbanizing regions of Asia, particularly in
megacities such as Delhi and Beijing where the annual PM: 5 levels are often several times above
international guidelines (Cheng et al., 2016; Wang et al., 2020; World Health Organization,
2025b). Marginalized and low-income populations, even within wealthier nations and
economies, are disproportionately affected as they often reside near highways, industrial zones,
or contaminated sites (Bell & Ebisu, 2012; Jbaily et al., 2022). These disparities illustrate how
air pollution is not only an ecological problem but also a profoundly social one.

Physical Health Effects of Air Pollution



The health effects of air pollutions are well-documented. Air pollution affects virtually
every organ in the body, and the severity of the effects depends on the concentration and type of
pollutants, exposure duration, and individual health conditions (e.g., Bates, 1995; Vallero, 2025).
Broadly speaking, air pollution affects respiratory systems and cardiovascular systems, and it has
neurological effects as well as reproductive and developmental effects.

With respect to respiratory systems, air pollution can cause inflammation, reduce lung
function, and damage airways, and children are particularly vulnerable because they spent more
time outside and breathe faster than adults (Bates, 1995). A systematic review and meta-analysis
finds that traffic-related air pollutants around schools, including PMa.s and PMo, have significant
impact on students’ respiratory systems (An et al., 2021). In particular, when concentrations are
high, the risks of respiratory infection, asthma, and tracheitis are elevated, and allergic symptoms
also increase (An et al., 2021). Air pollution also affects the heart and blood vessels causing a
range of cardiovascular diseases including hypertension and atherosclerosis (Vallero, 2025).
Even short-term exposure to high pollution levels can increase risk of hospitalization for
cardiovascular problems.

Additionally, and more importantly with respect to educational outcomes, air pollution
also affects fetal development and neurological development. Pregnant women who are exposed
to high levels of pollutants have higher risks of having preterm birth, low birth weight, and
congenital abnormalities, which can then cause physical disability as well as intellectual and
developmental disorders (Dutheil et al., 2021; Lopuszanska & Samardakiewicz, 2020). Air
pollutants can also affect the brain directly, leading to cognitive decline in adults and
neurodevelopmental delays in children (e.g., Clifford et al., 2016). In particular, Clifford and

colleagues (2016) in their systematic review linking air pollution to cognitive functioning find



that air pollution is significantly associated with impairment of brain development in the young
(and cognitive decline in the elderly).
Mechanisms Linking Air Pollution to Student Achievement

While early research on air pollution has focused mainly on health outcomes (Bates,
1995), a growing body of interdisciplinary research has examined its subtle but detectable effect
on brain development, cognitive processes, and learning outcomes (An et al., 2021; Clifford et
al., 2016; Dutheil et al., 2021). This shift reflects a broader understanding that while air pollution
can affect well-being by inducing health issues that persist over time, but it can also affect
student achievement in multiple ways and through multiple mechanisms. In particular,
researchers have posited that air pollution affects student achievement through two main paths:
1) neurobiological and cognitive mechanisms, and 2) physical and behavioral mechanisms
(Amanzadeh et al., 2020; Austin et al., 2019; Chung et al., 2025).

First, air pollutants directly impair brain development and function. Exposure to air
pollutants, such as PMa.s and ozone, has been associated with inflammation, reduced lung
function, and impaired brain development, all of which can lower cognitive performance and
academic achievement (e.g., Calderon-Garciduenas et al., 2015). For instance, children exposed
to high air pollutants in Poland have reduced non-verbal intelligence by age 5, even after
adjusting for confounders (Edwards et al., 2010). Comparing cohorts of mothers and newborns
before and after a power plant closure in Tongliang, China, Tang et al. (2014) find there are
differences in biological and neurodevelopment for the newborns. Similarly, there are reductions
in developmental milestones and IQ for kids borne to women exposed to higher pollutants in the
United States (Perera et al., 2006; Perera et al., 2009). Distance of residence to the nearest major

roads has also been linked to cognition (Harris et al., 2015). Globally, students who are exposed



to higher concentrations of air pollutants have worse attention and concentration, reduced growth
in working memory, and reduced problem-solving ability (An et al., 2021). In other words,
students who are exposed to higher concentrations of air pollution are systematically at a
disadvantage compared to their peers who are less exposed, even before they set foot in the
classroom.

Second, air pollution can affect student behaviors once they are in school. To start, it can
increase school absenteeism by worsening illnesses like asthma and other chronic respiratory and
cardiovascular illnesses (e.g., Calderén-Garcidueiias et al., 2015). Student attendance is a
significant determinant of academic learning and achievement, so it is worrisome that air
pollution may induce student absences by making them sick. To this point, previous work has
found that an increase in PMo exposure in Utah was associated with increase elementary
absenteeism (Random & Pope, 1992), and more recently, Currie et al. (2009) find that carbon
monoxide exposure was associated with increased student absences in Texas. School
absenteeism was also elevated for Chinese students who were exposed to higher levels of
particular matter and ozone (Zhang et al., 2022). Not only would students miss classes when they
are ill, but potentially they may also need to make up the work whilst they are still sick.

Furthermore, recent work has also demonstrated that air pollution contributes to more
consequential behavioral issues, including disruptive and aggressive behavior (e.g., Berman et
al., 2019; Burkhardt et al., 2020). In particular, air pollution has been linked with a host of
factors, such as cellular inflammation and oxidative stress, contributing to aggressive behaviors
and criminal activities that can lead to school suspension or incarceration (e.g., Calderon-
Garciduenas et al., 2015; Hernstadt et al., 2021; Lu et al., 2018; Rammal et al., 2008). For

instance, students in Minnesota who are exposed to high level of air pollutants, particularly CO,



NOx, and PM2 5, are more likely to have more violent disciplinary incidents (Rau et al., 2024).
Using microdata in Chicago, Illinois, Hernstadt et al. (2021) find that air pollution increases
violent crime on the downwind sides of interstate roads, and using administrative data from
London, Bondy et al. (2020) find that air pollution has a positive relationship with overall crime
and several major crime categories.

Overall, prior works have demonstrated that there are several mechanisms through which
air pollution can affect student achievement before and during their time in school.
Study Contributions

While there is extensive literature on the relationship between air pollution and health
outcomes, including multiple systematic reviews and meta-analyses, there are currently no
systematic reviews or meta-analyses on the relationship between air pollution and student
achievement. This work is intended to address this gap by synthesizing the literature on the link
between air pollution and student achievement. Moreover, by focusing on causal studies, I am
able to more firmly establish the effects of air pollution and not simply how air pollution is
correlated with student achievement. In addition to being the first systematic review and meta-
analysis on this important topic, I am also able conduct several heterogeneity analyses, including
how the effects may differ for male and female students and by different measures of
achievement. In short, I make several notable contributions showing the effects of air pollution
on student achievement across the globe.

Data and Method

This study is designed to examine the causal estimates of pollution on student

achievement by conducting a systematic review and meta-analysis of the literature. To define the

eligibility criteria, literature search, data analysis, and reporting conventions, I followed the



Preferred Reporting Items for Systematic Reviews and Meta-Analysis standards as defined by
Moher et al. (2009) and Alexander (2020). This process outlined in this framework provided us
with a reproducible method to systematically search, assess, and report on the causal evidence of
the effects of pollution on students. Figure 1 provides a PRISMA flow diagram illustrating the
stages of the study selection process.
Eligibility Criteria

Primary studies eligible for inclusion in this meta-analysis need to meet the following
criteria: (a) the sample is comprised of PK-12 students; (b) the study reports quantitative results
of student achievement; and (c) the study provides plausibly causal estimates of the effects of
pollution on student achievement by employing experimental or rigorous quasi-experimental
estimation strategies. Studies that do not provide empirical plausibly causal quantitative results
or summarize existing evidence are not included. Some specific examples of excluded studies are
quantitative reports that did not provide plausibly causal estimates (e.g., Chen et al., 2000),
studies that provided collegiate outcomes (e.g., Xu et al., 2024), studies that provided health
outcomes (e.g., Bergstra et al., 2018), or studies that summarize other studies (e.g., Gartland et
al., 2022).
Literature Search

Given the topic of this systematic review and meta-analysis, I obtained primary studies
from searching commonly used economic and general social science databases, including
JSTOR, ERIC, WorldCat, Google Scholar, ProQuest, NBER and Taylor and Francis. I also
searched for “grey” literature using Dissertation and Thesis Repositories in WorldCat and
ProQuest. I engaged in an iterative process to find an inclusive search string that would capture

the keywords associated with the research questions and provide a reasonable number of records
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that can be screened and analyzed thoroughly. At the end of the process, I employed the
following search string: “pollution AND (achievement OR academic OR student OR child*),”
which returned a little over 21,000 studies using the databases listed above. Appendix Table 1
provides the number of studies found in each database. In addition to searching databases, my
literature search also included ancestral searches where I identified potentially eligible studies
using the reference lists of included studies. The official search ended the first week of August
2025. I did not limit the search on publication date, location, or language. As pollution affects
people and students all over the world, I did not limit my search by country. As such, the
evidence provided below represents the effects of pollution on students globally.

Identifying Studies for Final Inclusion

Starting with the results returned from the search of databases and previous reviews, |
screened for primary studies that meet all eligibility criteria, as illustrated in Figure 1. I retained a
study if the title, abstract, or introduction mentioned that the study contained empirical results
pertaining to pollution and student achievement or academic outcomes. In all, I screened over
21,000 records during the search. This initially large number of studies represents the substantial
literature on pollution and student outcomes. However, the vast majority of these studies are not
estimating the causal effects of pollution on student achievement or academic outcomes.

In phase two, I was left with 103 studies for full text reading. From these fully reviewed
studies, I excluded studies that did not provide causal estimates of pollution on student
achievement. When there are multiple reports or publications from the same study, such as a
working paper and a peer reviewed article for the same evaluation, I kept only the most current

publication, which is most often the published version.
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In phase three, I emailed the authors of these reports to see if there are additional studies
that the search has missed. From this process, I obtained five additional studies. This step
represents additional efforts beyond the standard systematic review process to ensure that I have
the most complete set of causal studies on the effects of pollution on student achievement.

At the end of phase three, I was left with a sample of 28 primary studies, 16 from the
United States and 12 from a broad range of other countries including Brazil, Chile, England,
India, Iran, Israel, and Vietnam. This set of studies serves as the analytic sample for the meta-
analysis.

Coding Reports

I coded relevant information for each of the eligible studies using a coding schema
(Appendix Table 2). For instance, I coded the following information: publication type, whether
the study was peer reviewed, the country of origin, identification strategy, type of pollutant
analyzed, the estimate effect, associated standard error, and sample size. I specifically note that I
reverse coded a handful of studies that estimate the effect of a treatment, such as bus retrofitting,
air filter, or heating-ventilation-and-air-conditioning (HVAC), on student achievement (i.e.,
Austin et al., 2019; Gilraine, 2025; Persico & Fuller, 2025). In these studies, the positive effects
of treatment (treatment to mitigate the detrimental effects of air pollution) are coded as negative
to represent the negative effect of air pollution. To reduce any potential coding error, I recoded
each of the studies two to three weeks after coding them the first time. No discrepancies or
mistakes were made between the two rounds of coding.

Estimating the effects of air pollution. Since air pollution is everywhere, meaning that
we are all exposed to it to some extent, it is not trivial to estimate its effects. Moreover, there are

other factors that make it difficult to provide causal estimates of the effects of air pollution. First,
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where people live are not randomly distributed, leading to nonrandom assignment of pollution
concentrations. Second, environmental confounding is the second source of endogeneity where
the factors that influence pollution may also affect outcomes, such as temperature, humidity, or
proximity to industrial sites. Third, there are measurement errors of the concentrations of air
pollutants that individuals are exposed to since most measures of air pollution consist of an
inverse-distanced weighted average of several monitors that are kilometers or miles away from
an individual, or more recently, using satellite data to estimate the concentrations of air
pollutants. As such, it is difficult to 1) isolate the effects of air pollution, and 2) use a singular
method to provide plausibly causal effects of air pollution. This leads to researchers needing to
use different quasi-experimental approaches to estimate the effects of air pollution. For instance,
Amanzadeh et al. (2020) use student fixed effects in a panel data to estimate the effect of one
standard deviation increase of air pollution on test scores. Austin et al. (2019) use variation in the
timing and location of bus retrofits to estimate the effect of the percent of retrofitted bus on
language and math scores. Balakrishnan and Tsaneva (2021) use thermal inversions as an
instrument to estimate the effect of one unit change in air pollutant concentrations on language
and math scores. Using a spatial regression discontinuity design, Gilraine (2025) estimates the
effect of installing air filter on test scores. The different estimates and interpretations of the
effects of air pollution on student achievement represent an additional complication to
synthesizing the results across the studies. I approach this complication in two different ways.
First, in the main analysis I use the original estimates from these primary studies to provide a
summary estimate of the general effects of air pollution on student achievement. These estimates
represent the authors’ original intent of their work. In auxiliary analysis, I convert the estimates,

whenever possible, so that the interpretation of each estimate is the effect of one pg/m? unit or
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one standard deviation unit change in the independent variable (e.g., one SD change in PMz5) on
a standardized measure of student achievement (e.g., SD change in math or language score). I
note some studies do not provide enough information to make this comparison possible. For
instance, Dang et al. (2025) and Gilraine and Zheng (2024) do not include the standard deviation
measure of PMa s exposure, so I am unable to compare their unit change estimate to a standard
deviation change. Some studies examine the effect of a treatment so it is not possible to estimate
a one standard deviation change in pollution. Stafford (2015) estimates the effects of mold and
ventilation treatment on test scores and Persico and Fuller (2025) estimate the effects of air
filtration, neither of which cannot be converted to a standard deviation interpretation. Using
these two approaches allows me to provide 1) the overall effects of air pollution (answering the
question of does air pollution affect student achievement) and 2) the effect of one unit change or
one standard deviation unit change in the pollutant on a standardized measure of student
achievement (with some loss to sample size but providing a more direct interpretation,
particularly for researchers and policymakers).

Dependent variable. The main outcomes of interest are causal estimates of the effects of
pollution on student achievement as well as the associated standard errors of those estimates
(Lipsey & Wilson, 2001). From all the primary studies, there are three types of outcomes that
have been examined: composite student test scores, language-specific test scores, and Math-
specific test scores. An example composite student test score includes exam scores of student
performance (e.g., Ebenstein et al., 2016), and high-stake high-school matriculation exam or
university entrance exam in Iran and Brazil respectively (Amanzadeh et al., 2020; Carneiro et al.,
2021). I consider composite test scores, language test scores, and Math test scores as student

achievement generally in my analysis, but recognizing that these measures are different, I also
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separate the results by their own category. Some studies also made separate estimates by gender
and/or by particulate size (PMz 5, PM19). Whenever possible, I also conducted separate meta-
analyses using these subgroup estimates.

For ease of interpretations, all estimates have been converted to effect sizes, or changes in
standard deviations of each outcome. Consequently, all the meta-analytic results should be
interpreted as effect size increases or decreases.

Moderating variables. I coded a series of a priori moderators to examine how the effects
of pollution on student achievement may vary by study characteristics. Specifically, I coded for
the publication year, publication type, peer-review status, study quality, and country of origin.
These moderators were selected based on my reading of the literature and prior systematic
reviews and meta-analyses I have conducted. Overall, due to the nature of the retained articles
where the vast majority of the studies were peer-reviewed publications published in the last 10
years, there are limited moderators I can employ to examine how effects vary by study
characteristics. Specifically, [ was able to examine two moderators: 1) study quality, and 2)
country of origin (where the data were collected).

Analytic Strategy

Following best meta-analytic practices, I first describe the decision between fixed-effect
and random-effects models, selecting causal estimates, and assessing risk of bias from
differences in study quality (Borenstein et al., 2021). A fixed-effect meta-analytic approach
assumes a true effect size across all studies whereas a random-effects model allows the real
treatment effect to vary across populations and programs (Riley et al., 2011). Stated differently,
the fixed-effect model assumes all studies estimate the same treatment effect where a random-

effects model assumes there are differences in the treatment effect (Borenstein et al., 2009).
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Mechanically, the fixed-effect model assigns weights (W;) to each study (i) using the inverse of

each within-study variance (V;,,):

1
Wi,Fixed = g (1)

i
In contrast, the random-effects model weights studies using both the within-study variance and

the estimated between-study variance (T ?):

1
2
Vy,+T

)

Wi,Random =

Given the variation across exposure to different pollutants in different countries as well as
variations across studies and study quality, the effects of pollution should not be expected to be
homogenous across different populations of students. As such, conceptually I prefer the random-
effects model in the analysis. Moreover, I also rely on heterogeneity statistics to inform my
decisions to use random-effects models.

In terms of selecting the causal estimates, most modern studies provide several plausibly
causal estimates to show that the results are robust to alternative specifications. However, most
studies state their preferred specification or spend the most time discussing specific estimates. As
such, I use the preferred estimates of the primary authors. If the primary authors did not
explicitly state their preferred estimate or if there is no clear preference based on the discussion,
then I use my professional judgment and select the most rigorous causal estimate based on the
extent to which it is able to addressed internal validity issues.

Study Quality

Following best practices, I choose to use an inclusive approach that included all studies
satisfying the eligibility criteria. This approach is intended to capture the range of available
evidence of the effects of pollution on student achievement and academic outcomes. However, a

potential challenge is that this inclusivity may introduce bias from poorly designed or low-
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quality studies. I address this potential issue by examining study quality specifically (Appendix
Table 3). I assess the quality of each study in the spirit of what Alexander (2020) suggests, using
a modified quality rating suggested by Lipsey and Wilson (2001). Specifically, using my
professional judgment and expertise in quantitative causal analysis, I rated study quality on a
scale of 1 to 5 where 1 has high risk of bias and 5 has low risk of bias. For instance, to assess the
internal validity of studies employing fixed effects, I consider the extent to which the researchers
explain how the fixed effects precisely address which source of bias and the extent to which the
results are robust to different modelling specification. For regression discontinuity studies I
would consider evidence of non-manipulation of the forcing variable, smoothness of the forcing
variable around the threshold, covariate balance checks on either side of the threshold,
robustness of findings across various bandwidths, and falsification tests. See Shadish et al.
(2002) and Murnane and Willett (2010) for more information on issues of causal inference for a
variety of quasi-experimental designs.

I employ this quality rating through two different ways. First, in subgroup analysis, I
limit the analysis to high-quality causal studies, studies that have ranking of four or five out of
five. Second, I use meta-regression to examine whether study quality is associated with the effect
estimate.

Results

Table 1 provides the descriptive information and characteristics of the primary studies
included in systematic review and meta-analysis. Primary study characteristics are provided in
Appendix Table 4. First, my search reveals 28 causal studies examining the effects of pollution
on student academic outcomes. These studies are conducted between 2012 and 2025. Of these 28

studies, 22 are peer reviewed publications and 6 are working papers. The majority of these causal



17

studies, 54 percent, can be considered high-quality, studies with ratings of 4 or 5 out of 5.
Slightly more than half, 16 of these studies, are conducted in the United States. Twelve studies
are conducted in various countries, including Brazil, Chile, England, India, Iran, Israel, and
Vietnam. In terms of the number of treatment estimates, there are a total of 62 total estimates of
student achievement, consisting of 15 composite test score estimates, 22 language estimates, and
25 math estimates. With respect to subgroup estimates, there are two general subgroups, one
based on gender and one on the size of the particulate. Specifically, there are 12 estimates on
female students and 12 estimates on male students. There are 23 estimates of the effects of PMa 5
on student achievement and 4 estimates of the effects of PMo on student achievement.

When I consider only the 15 high-quality causal studies, 93 percent are peer reviewed,
and 60 percent are based in the United States. From these studies, there are 27 estimates on
student achievement, 10 estimates each on gender, and 14 estimates on PM> 5. Overall, Table 1
illustrates that the causal studies examining the effects of pollution on student academic
outcomes are mostly high-quality studies, have gone through the rigorous peer review process,
and have been conducted from all over the world. Next, I provide the meta-analytic results of the
effects of pollution on student academic outcomes.

In Panel A of Table 2, I first provide the meta-analytic results when we consider all
measures of student achievement, then by composite test scores, language, and math scores. In
terms of student achievement, the summary estimate from 62 estimates indicates that pollution
decreases student achievement by 0.022 standard deviation (SD) with a standard error of 0.002,
with a lower bound of -0.025 and an upper bound of -0.018 SD. This result is statistically
significant and clearly indicates that pollution has negative effects on student achievement. When

I consider only the composite test score results, the summary estimate from 15 studies indicates



18

that pollution decreases student test score by 0.025 SD, with a lower bound of -0.034 and an
upper bound of -0.017 SD. The summary estimates for language and math tests scores are
similarly negative, with the estimate for math smaller in magnitude. Specifically, pollution
decreases language and math achievement by 0.026 SD and 0.014 SD respectively. In the
Discussion section, I contextualize these negative effects compare to experimental evidence on
education interventions.

In Panel B of Table 2, I disaggregate the results by gender and size of the particulate. The
summary estimate from twelve studies indicates that pollution decrease female student
achievement by 0.024 SD and male student achievement by 0.032 SD with both results being
statistically significant. These results suggest that pollution may have a more outsize effect on
boys than on girls. The summary estimate on male achievement is about an 33% increase than
the summary estimate on girls. In terms of the size of the particulate, the summary estimates on
PM; 5 and PMjj are -0.011 SD and -0.059 SD, respectively. These results provide weak but
suggestive evidence that PMo may have more negative effects on student achievement than
PMas.

As discussed previously, conceptually I do not expect the effects of pollution to be
homogenous across different populations of students, and as such, I rely on the random-effects
meta-analysis model. However, I also present empirical evidence that the random-effects models
are more appropriate than the fixed-effect models in the last three columns of Table 2. For each
summary estimate, I present a set of standard heterogeneity statistics. For instance, for the main
student achievement analysis, across these studies the true heterogeneity in effect sizes (/) is
98.5, suggesting that less than 1.5 percent of the total variation in effect sizes can be attributed to

random error. The Cochrane’s Q statistics tests the null hypothesis of homogeneity across
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studies, and Py for student achievement is less than 0.001, indicating that there is strong
evidence to reject the null hypothesis that the true dispersion of effect sizes is zero. These
heterogeneity statistics present empirical evidence of heterogeneity in effect sizes, which justifies
the use of random-effects models. I find similar evidence of heterogeneity across the different
subgroups except for PMjo, but this is due to the small sample size of four estimates. I explore
these differences graphically below with forest plots.
Heterogeneity of Effects

Figure 2 shows the forest plot of the effects of air pollution on student achievement. Each
row represents an effect size from a primary study in the meta-analysis, plotted alphabetically by
author order. For each row, I also provide the specific outcome (i.e., composite test score,
language, or Math) as well as the specific pollutant associated with the outcome. For instance,
the first estimate provides the effect of PM2 s on composite test score from the Amanzadeh
(2020) study, which is that pollution lowers student test score by 0.03 SD. This estimate
contributes to 2 percent of the weight to the summary estimate. Moreover, each figure presents
the 95% confidence interval numerically and as lines extending from the point estimates along
with the weight that each study contributes to the summary estimate. The overall summary
estimate across the studies for that outcome is located at the bottom of the figure. Figure 2
clearly shows that the vast majority of the effect estimates are negative and statistically
significant. The vast majority of estimates are between -0.20 and -0.00 SD with a couple of
estimates that are less than -0.20 SD (more negative). These estimates, however, are imprecisely
estimated, having large standard errors, and they each contribute a very small percent to the
overall summary estimate. I note that dropping these imprecisely estimates does not

substantively change any of the conclusions. Appendix Figures 1-3 present the forest plots for
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composite test scores, language scores, and Math scores. Overall, these forest plots show
substantial heterogeneity.
Study quality

Even though I have limited this systematic review and meta-analysis to just causal
studies, there may still be concerns about the quality of the studies themselves. To address this, I
limit the meta-analysis to only high-quality causal studies, studies that are rated at least 4 out of 5
on the quality rating scale. As noted, using these high-quality studies reduces the overall number
to 15 studies and 27 estimates on student achievement. Replicating the analysis in Table 2, Panel
A of Table 3 shows the summary estimates for student achievement, composite test scores,
language scores, and math scores. The summary estimate from 27 high-quality causal estimates
indicates that pollution decreases student achievement by 0.029 SD with a lower bound of -0.038
and an upper bound of -0.021 SD. Similar to the main estimates, the summary estimates for
composite test scores, language scores, and math scores indicate pollution decrease student
scores by 0.031 SD, 0.033 SD, and 0.022 SD respectively. The summary estimates from these
high-quality studies are slightly larger than the summary estimates from the main analysis. For
instance, the summary estimate changes from -0.022 SD to -0.029 SD for student achievement.
In Panel B of Table 3, the summary estimates from the subgroup analysis remain negative and
are comparable to the summary estimates from Panel B of Table 2. Overall, these high-quality
studies confirm that pollution has negative effects on student achievement.
USA results

As there are substantially more studies examining the effects of air pollution in the
United States, I am able to provide meta-analytic results specifically to the United States. The

summary estimates from Table 4 indicate that, similar to before, pollution negatively affects
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student learning. In particular, the summary estimate from 38 U.S.-specific estimates indicate
that pollution decreases student achievement by 0.018 SD. The summary estimates for composite
test scores, language scores, and math scores indicate pollution decrease student scores by 0.016
SD, 0.030 SD, and 0.013 SD respectively.

Meta-regression results

While the analyses using only high-quality studies and USA-only studies can provide
evidence for how the meta-analytic results may change when I limit the sample, another
approach would be to use meta-regression analysis, a meta-analytic approach that uses regression
analysis to account for available covariates. Using meta-regression will allow me to analyze how
high-quality studies or USA-studies may change the summary estimate. Table 5 shows the meta-
regression results using a high-quality dichotomous variable where a 1 is equal to studies with
ratings of 4 or 5 and a 0 indicates studies of ratings 3 or less (Panel A). Similarly, I use a USA
indicator in Panel B.

The meta-regression results for high-quality studies suggest that high-quality causal
studies do not find more negative effects of pollution on student achievement as the estimates on
high-quality are statistically insignificant except for Math (Panel A of Table 5). Similarly, the
estimates on USA studies are insignificant (Panel B). Panel C similarly shows insignificant
relationships when we consider both high-quality studies and USA studies.Overall, these meta-
regression results are substantively similar to the meta-analytic results using only high-quality
and USA-only studies.

Publication Bias
Another concern in meta-analyses relates to potential primary studies that are not

published because the outcomes of the studies might have biased the decision to publish or
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distribute them. This publication bias threat would then systematically underrepresent the true
populations of the completed studies (Banks et al., 2012). Most often, these studies are not
published or distributed because they have non-significant findings. To explore this possibility, I
include Appendix Figure 4 showing the contoured enhanced funnel plot for student achievement,
which is designed to help detect publication bias. If studies are missing in the areas of non-
significance (the inner most funnel), that would suggest non-significant results are not being
published. Asymmetry to the left or right of the center indicates that studies are systematically
more likely to have found negative or positive results respectively.

I note that there are many non-significant results in the analysis, which reduces the risk of
publication bias. Stated otherwise, the possibility of non-significant findings that are not
published or distributed is minimal. In terms of asymmetry, I observe that there are no studies
with significant positive effect estimates (right side of zero on the x-axis). This is perfectly
reasonable as I would not expect pollution to cause students to learn more. Given these results, I
do not suspect that publication bias is a serious threat to the findings.

Standardizing the Effects of Air Pollution

As noted in the Method section, a different way to synthesize the effects of air pollution
is to have comparable estimates of the changes in the concentration of air pollutants. However,
conversion of overall air pollution effects to pg/m? unit increase or standard deviation increase
comes with a non-trivial loss to sample size as some studies estimate the effect of a treatment
(e.g., Austin et al., 2019) and others do not provide enough information to estimate a one unit
increase or one standard deviation increase (e.g., Lu et al., 2021).

In Table 6, I replicate Table 2 by converting all estimates from primary studies to a

comparable one standard deviation change in the pollutant. Using 37 estimates, the summary
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effect estimate for student achievement is that a one standard deviation change in air pollution
causes a decrease of 0.042 SD in student achievement. Similarly, a one standard deviation
increase in air pollution decreases composite test scores, language scores, and math scores by
0.038 SD, 0.048 SD, and 0.035 SD respectively. In Table 7, I similarly replicate Table 2 but for a
one ug/m? unit increase. I find that a one pg/m? unit increase of pollutant decreases student
achievement by 0.011 SD.
Limitations and Future Research

There are a few main limitations with research in this area. First, since air pollution is
everywhere, the estimates on the effects of air pollution are sometimes measured in different
ways in terms of the concentration of air pollutant exposed to children and students. Specifically,
there are many ways to think about dosage: it could be the amount of air pollutants (ug/m?), by
one Interquartile Range (IQR), above or below a certain threshold (e.g., 200 ug/m?), or by one
standard deviation of the pollutant. Future research should provide multiple estimates (or
interpretations) based on different dosage measurement. It would, for instance, be easiest for
policymakers and the public to understand that a standard deviation increase (or a unit increase)
of a pollutant has a range of effects on student achievement (my approach in Tables 6 and 7).

Relatedly, measurement error is also a threat to validity to many of the primary studies
included in this current work (and in air pollution studies generally). Specifically, there is
difficulty in measuring exposure to air pollution as there are limited monitoring data in many
parts of the world, the difference between indoor and outdoor exposure, and spatial and temporal
variability in short- and long-term exposure to pollutants. Having more indoor and outdoor
pollution monitors would make it more possible to estimate how much people are exposed to

pollutants on a regular basis.
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Another limitation is that there are different components to air pollution, such as CO,
NOx, ozone, and particulate matters. It is not always possible to simultaneously separate out the
differential effects of each pollutant, so it is difficult to determine if there is one type or category
of pollutants that may be more harmful than others, at least for school-age children. While I am
able to conduct some subgroup analysis of PMa.s and PMy, there are not enough studies to
clearly say that one or the other is more harmful for student achievement, and there are definitely
not enough studies of other types of pollutants to suggest if one is worse than another. I would
note, however, that it may not be necessary to fully isolate or tease out the individual effects and
harms to children and students if the policy solutions to fix them are similar (e.g., indoor air
filters are designed to filter out all of these pollutants). In a similar vein, it would be very useful
if more studies provided subgroup estimates, particularly by gender, by socioeconomic status,
and by race/ethnicity. The subgroup analysis that I am able to conduct suggests that air pollution
may have larger effects on boys than on girls, and it would be important to confirm this and
examine the extent to which this type of differential effect may exist by socioeconomic status or
by race/ethnicity.

Discussion

By focusing on studies that provide plausibly causal estimates of the effects of air
pollution on student achievement, I am able to synthesize the most rigorous evidence on this
important issue and examine how the effects of air may differ for male and female students and
by different measures of achievement. The majority of the primary studies include in this
systematic review and meta-analysis can be considered high-quality causal studies, and includes
evidence from a range of countries from Brazil, Iran, Vietnam to the United States. Overall, the

evidence indicates that air pollution, broadly measured, negatively affects student achievement
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globally by about 0.02 standard deviations (SD). Students who are exposed to higher
concentrations of air pollution consistently score lower on a variety of tests than students who
are not, and this difference is caused by air pollutants. Air pollution causes students to do worse
on language and math tests by 0.026 SD and 0.014 SD respectively. On composite tests, the
summary effect is about 0.025 SD. Moreover, the effects of air pollution are about 33% larger for
boys (0.032 SD) than for girls (0.024 SD). Additionally, the summary estimates tend to be even
larger when only the high-quality causal studies are used. Lastly, one unit and one standard
deviation increase in air pollution decrease student achievement by 0.011 SD and 0.042 SD
respectively.

While the evidence clearly indicates that air pollution is detrimental to student
achievement, it is also important to provide some practical interpretation of these results. While a
decrease of 0.02 SD to 0.04 SD in student achievement may seem small, it is actually practically
meaningful and is comparable to a number of education interventions. First, a 0.042 SD decrease
is about a 1.6 percentile point decrease in student achievement (von Hippel, 2025). Second,
across 139 effect sizes from 49 preregistered randomized controlled trials (RCTs) of education
interventions funded by the Department of Education, the median effect size is 0.03 SD (Kraft,
2020). Examining education interventions in low- and middle-income countries, Evans and Yuan
(2022) find that the 25" percentile of effect size is 0.01 SD. Examining interventions in
disadvantaged schools specifically, Boulay et al. (2018) find that the median effect of RCTs is
0.03 SD even when these interventions cost several thousand dollars per student. Huillery et al.
(2025) find that a four-year mindset intervention had a 0.05 SD increase in grade point average.
The average scores for students in districts receiving more than $8,000 per student with the

Elementary and Secondary School Emergency Relief (ESSER) federal grants provided to K-12
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schools in response to the Covid-19 pandemic increased by 0.047 SD and 0.055 SD in language
and math respectively (Dewey et al., 2024). In other words, a decrease of 0.02-0.04 SD in
student achievement represents a non-trivial effect and is on par with a median effect size in
education interventions.

In sum, the negative effects of air pollution on student achievement are significant and
practically meaningful, they may have an outsize effect on male than female students, and they
can be observed all over the world, even in wealthier countries like the United States. After I
discuss the mechanisms through which air pollution may affect student achievement, I further
contextualize these detrimental effects of air pollution and the implications for policy and
practice, particularly with respect to the potential economic lost due to student achievement and
the cost-effectiveness of interventions to mitigate the effects of air pollution.

Potential Mechanisms of Air Pollution on Student Achievement

While this current work clearly establishes that air pollution undoubtedly negative affects
student achievement, it is also important to consider the potential mechanisms through which air
pollutants affect K-12 students. As discussed previously, there are two main mechanisms: 1)
neurobiological and cognitive mechanisms, and 2) physical and behavioral mechanisms.

In terms of neurobiological and cognitive mechanisms, the health literature has
demonstrated over and over again that air pollutants contribute to brain development and
function (An et al., 2021; Bates, 1995; Dutheil et al., 2021; Lopuszanska & Samardakiewicz,
2020; Vallero, 2025). Multiple systematic reviews and meta-analyses have shown that children
and kids who are exposed to higher concentrations of air pollution are systematically affected by
the pollutants and have worse neurobiological and cognitive development. These findings have

direct implications for policy and practice that I will turn to in the next section.
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With regards to physical and behavioral mechanisms, there has also been substantial
evidence that air pollution is associated with increased absenteeism as well as behavioral issues.
While there is not enough causal evidence for a formal meta-analysis, there are a handful of
recent causal studies that examine how air pollution affects attendance and student behavior.
Chen et al. (2018) finds that a one standard deviation increase in pollutant increases the
probability of being absent by 7%. Liu and Salvo (2018) find that the occurrence of severe PMa s
in China increase the probability of being absent by 0.88 percentage point, a 14% increase
relative to the sample mean. Heissel et al. (2022) find that attending a school downwind of a
major highway increases absence rate by 0.54 percentage points and having a behavioral incident
by 4.10 percentage points. Similarly, Persico and Venator (2021) find that, in Florida, United
States, students exposed to air pollution are more likely to be suspended from school and more
likely to be absent. Using daily administrative data in California, United States, Chung et al.
(2025) find that a 10 pg/m? increase in daily PM» s leads to a 5.7% increase in full-day student
absences and a 28% increase in office referrals in a three-day window. Moreover, these effects
are driven by marginalized students, specifically low-income, Black, and Hispanic students in the
California context.

In sum, there is substantial evidence that air pollution can and does negatively impact
students’ neurobiological and cognitive development as well as their attendance and behaviors in
school. Both sets of mechanisms can explain how air pollution ultimately affects student
achievement.

Implications for Policy and Practice
What do we do when the air we breathe is poisoning us? Not only is air pollution an

ecological phenomenon that negatively affects almost all of us, it also affects our youngest and
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most vulnerable populations, children and students. The evidence on student achievement that is
synthesized in this study along with the broader evidence of the effects of air pollution on
physical health and neurobiological development strongly suggests that we need to meet this
challenge head on. With respect to students and student achievement specifically, there are two
main ways that policymakers can take actions to address this problem.

First, policymakers and citizenries need to do more to improve the ambient air pollution
that exists ubiquitously. Air pollution has such detrimental effects on numerous fronts, including
education and economics, that it is difficult to think we are not doing more to reduce air pollution
everywhere. In the Second Global Conference on Air Pollution and Health, the WHO has put
forth the shared objective of reducing health impacts of air pollution by half by 2040 (World
Health Organization, 2025b). Forty-seven million people from the health community have
argued that clean air is a human right and have urgently called for bold evidence-based actions
on air pollution (World Health Organization, 2025c). Similarly, environment ministers
worldwide through the United Nations Environment Programme and the “Beat Pollution”
campaign have reaffirmed political commitment to reduce all forms of pollution, including air
pollution (UNEP, 2025).

While these shared initiatives and commitments at the global level are critical, it is also
important to recognize that regional and national policies can also aim to directly affect air
pollution. For instance, the revised European Union’s Ambient Air Quality Directive (2024), in
alignment with the WHO guidelines, has set stricter standards to ensure Europeans enjoy
healthier air by updating air quality standards and setting target values for the major air
pollutants including NOx, ozone, PM1o, and PM: s (in the case of PM2 s specifically, the goal is to

cut the annual limit by more than half). Their previous goals and standards have resulted in
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substantial improvement in air quality. For instance, the percent of urban population exposed to
PM; 5 and NO; fell between 2000 and 2023, and by 2023, less than 1% was exposed to
concentrations above the annual limit (EEA, 2025).

The United States through the Environmental Protection Agency (EPA) has made similar
efforts in the past to reduce pollution throughout the country, and substantial gains were made.
Specifically, the EPA estimated that the Clean Air Act reduced traffic emissions by 70% between
1970 and 2015 (EPA, 2015). Based on their work and some back of the envelope calculation,
Heissel et al. (2022) estimated that this reduction in traffic pollution has raised test scores by 0.11
SD, which should be considered a medium effect size educational intervention (Kraft, 2020). In
sum, we have evidence that major policy actions can and have made positive impacts on air
pollutions and that policymakers and society at large, particularly in developed and wealthy
nations, should continue to make these investments that would benefit their citizens at home and
the global populations at large.

Second, while country-level and global-level efforts are absolutely needed, policymakers
and educators at more local level can also take actions to mitigate the detrimental effects of air
pollutions for children and students. For instance, education policymakers can retrofit bus
engines to reduce children exposure to high levels of air pollution from diesel emissions and
high-emission engines. Austin et al. (2019) find that, in addition to health benefits, retrofitting
buses (i.e., installing diesel particulate filter, diesel oxidation catalyst, flow-through filter, or a
closed crankcase filter) taking students to school increases language and math scores by 0.009
SD and 0.005 SD respectively, which has an estimated monetary value of $2.57 million for

students’ lifetime earnings and represents more than 25 times the cost of retrofitting.
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Schools can also carry out mold and ventilation improvement projects to improve air
quality for students at school. Stafford (2015) estimated that the average mold remediation
project ($500,000) would improve math and reading scores by 0.15 SD and 0.14 SD respectively,
and the average ventilation improvement ($300,000) would similarly improve math and reading
scores by 0.07 SD and 0.11 SD. These improvements would then be considered to have medium
effect sizes in education interventions (Kraft, 2020), and the costs would be low, particularly
when we consider that the improvements would affect thousands of students each year. For
example, a mold remediation project costing $500,000 for a school serving 1,000 students would
cost $500 per student (this is assuming the cost distributed over just a single year, and the cost is
potentially a lot less if spread out over a longer period of time) and have minimal maintenance
costs on a per student basis.

In another study that examines the effects of air filters at a school setting, there was a gas
leak that occurred in a wealthy Los Angeles neighborhood (California, U.S), and a gas company
placed air filters in every classroom within five miles of the leak to remediate this problem.
Using a spatial regression discontinuity design, Gilraine (2025) finds that installing air filters
increased math and language scores by about 0.10-0.20 SD. Gilraine (2025) estimates that,
assuming air filters reduce indoor particular matters by ninety percent, each pg/m?® removed was
responsible for 0.02-0.03 SD increase in test score. More importantly, the per-year cost to install
and maintain air filters in schools is around $1,000 per class, which is perhaps one of the most
cost-effective educational interventions available relative to many other well-known
interventions such as high dosage tutoring, class size reduction, and Head Start (Brewer et al.,

1999; Guryan et al., 2023; Ludwig & Phillips, 2007). It should be further noted that air filters can
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mitigate poor indoor air quality even more for the most underprivileged or low-income students
in high pollution areas.

In conclusion, air pollution affects almost all of us from the moment we are born, all
through our formative years, even to our old age. We absolutely need to do more at the local
level, national level, and global level to combat this issue that not only affects our physical health
and our neurobiological development but also our learning and achievement. The evidence
synthesized here clearly indicates that air pollution negatively impacts student achievement, but
more importantly, there are direct and cost-effective actions that can be taken to mitigate these

detrimental effects.
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Tables and Figures

Table 1. Descriptive information on the primary studies by study characteristics

Full sample High-quality
of causal studies causal studies
Study characteristics

Publication year 2012-2025 2016-2025
Publication type 22 articles 12 articles

6 working papers 3 working papers
Peer review 89% 93%
High-quality 54% 100%
USA-based 57% 60%
Other countries Brazil (2), Chile (3), Brazil, England, India,
(# of studies) England, India, Iran (2), Iran, Israel, Vietnam

Israel (2), Vietnam
Number of treatment estimates

Student achievement 62 27
Composite test scores 15 9
Language 22 9
Math 25 9

Subgroup estimates

Female students 12 10

Male students 12 10

PMzs 23 14

PMio 4 2

Number of studies 28 15

Note. High-quality studies include studies with scores of 4 or 5 out of 5 based on my rating. Student achievement
include estimates on any composite test score, language, or Math. PMz .5 and PMio are two pollutants most studied.



Table 2. Meta-analytic results of the effect of air pollution on student achievement

Outcomes Main effect estimates Heterogeneity of study effects
N Effect Standard Lower Upper P (0] Py
Estimate Error Bound Bound
Panel A: Main analysis
Student 62 -0.022 0.002 -0.025 -0.018 98.468 3981.053 <.001
achievement
Composite 15 -0.025 0.004 -0.034 -0.017 99.596 3463.780 <.001
test score
Language 22 -0.026 0.004 -0.034 -0.018 88.210 178.114 <.001
Math 25 -0.014 0.002 -0.017 -0.010 83.913 149.186 <.001
Panel B: Subgroup analysis
Female 12 -0.024 0.004 -0.031 -0.016 98.788  907.783 <.001
achievement
Male 12 -0.032 0.005 -0.042 -0.022 99.131 1265.573 <.001
achievement
PM: s 23 -0.019 0.003 -0.024 -0.014 98.949 2093.627 <.001
PMio 4 -0.059 0.009 -0.078 -0.041 34.698 4.594 0.204

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N
reflects the number of effect sizes.
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Table 3. Meta-analytic results of the effect of air pollution on student achievement with high-quality causal studies

Outcomes Main effect estimates Heterogeneity of study effects
N Effect Standard Lower Upper P (0] Py
Estimate Error Bound Bound
Panel A: Main analysis
Student 27 -0.029 0.004 -0.038 -0.021 96.728  794.548 <.001
achievement
Composite 9 -0.031 0.008 -0.046 -0.016 98.343  482.697 <.001
test score
Language 9 -0.033 0.006 -0.045 -0.020 85.758 56.172 <.001
Math 9 -0.022 0.004 -0.029 -0.015 53.253  17.113 0.029
Panel B: Subgroup analysis
Female 10 -0.025 0.006 -0.038 -0.013 96.279 241.864 <.001
achievement
Male 10 -0.033 0.008 -0.049 -0.017 96.637 267.589 <.001
achievement
PMzs 14 -0.021 0.004 -0.030 -0.013 94.494 236.107 <.001
PMio 2 -0.050 0.009 -0.067 -0.033 13.099  1.151 0.283

Note. Student achievement, composite test score, language, and Math scores are measured in standard deviations

units. N reflects the number of effect sizes. High-quality causal studies have ratings of 4 or 5 out of 5 on the quality

rating scale.



Table 4. Meta-analytic results of the effect of air pollution on student achievement in the United States

Outcomes Main effect estimates Heterogeneity of study effects
N Effect Standard Lower Upper P (0] Py
Estimate Error Bound Bound
Panel A: Main analysis
Student 38 -0.018 0.002 -0.021 -0.014 93.020 530.101 <.001
achievement
Composite 7 -0.016 0.006 -0.028 -0.004 97.444 234.780 <.001
test score
Language 14 -0.030 0.006 -0.042 -0.018 89.649 125.592 <.001
Math 17 -0.013 0.002 -0.017 -0.009 86.317 116.930 <.001
Panel B: Subgroup analysis
Female 4 -0.026 0.002 -0.030 -0.022 5.804 3.185 0.364
achievement
Male 4 -0.033 0.003 -0.039 -0.026 16.197  3.580 0.311
achievement
PMzs 14 -0.018 0.003 -0.024 -0.012 91.894 160.371 <.001
PMio 4 -0.059 0.009 -0.078 -0.041 34.698  4.594 0.204

Note. Student achievement, composite test score, language, and Math scores are measured in standard deviations
units. N reflects the number of effect sizes.



Table 5. Meta-regression results

(1) (2) 3) 4)
Student Composite test Language Math
achievement score
Panel A: High Quality Studies
High quality -0.009 -0.007 -0.010 -0.016™
(0.006) (0.014) (0.013) (0.004)
Constant -0.019™ -0.024" -0.024" -0.007*"
(0.004) (0.010) (0.009) (0.002)
N 62 15 22 25
Panel B: USA Studies
USA 0.006 0.017 -0.006 0.004
(0.006) (0.012) (0.014) (0.008)
Constant -0.027*" -0.036™ -0.025" -0.019™
(0.005) (0.008) (0.011) (0.006)
N 62 15 22 25
Panel C: USA and High Quality Studies
High quality -0.010 -0.008 -0.009 -0.014™
(0.006) (0.013) (0.014) (0.005)
USA 0.007 0.018 -0.004 0.002
(0.006) (0.013) (0.014) (0.005)
Constant -0.023" -0.032" -0.022* -0.010"
(0.005) (0.011) (0.012) (0.005)
N 62 15 22 25

Note. Standard errors in parentheses
" p<0.10," p<0.05," p<0.01
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Table 6. Meta-analytic results of the effect of one standard deviation increase of air pollution on student achievement

Outcomes Main effect estimates Heterogeneity of study effects
N Effect Standard Lower Upper P (0] Py
Estimate Error Bound Bound
Panel A: Main analysis
Student 37 -0.042 0.005 -0.052 -0.032 98.222 2025.144 <.001
achievement
Composite 11 -0.038 0.007 -0.051 -0.026 99.273 1374.632 <.001
test score
Language 13 -0.048 0.009 -0.065 -0.030 84.633  78.088 <.001
Math 13 -0.035 0.008 -0.052 -0.019 72.871  44.233 <.001
Panel B: Subgroup analysis
Female 8 -0.039 0.008 -0.055 -0.023 98.626  509.420 <.001
achievement
Male 8 -0.065 0.006 -0.077 -0.053 96.662 209.689 <.001
achievement
PMzs 18 -0.044 0.006 -0.055 -0.032 97.631 717.639 <.001
PMio 4 -0.067 0.015 -0.096 -0.038 64.252 8.392 0.039

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N

reflects the number of effect sizes.
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Table 7. Meta-analytic results of the effect of one pwg/m? unit increase of air pollution on student achievement
ug p

Outcomes

Main effect estimates

Heterogeneity of study effects

N Effect Standard Lower Upper P (0] Py
Estimate Error Bound Bound
Panel A: Main analysis
Student 39 -0.011 0.002 -0.015 -0.008 99.443 6819.934 <.001
achievement
Composite 11 -0.011 0.003 -0.017 -0.005 99.851 6729.216 <.001
test score
Language 14 -0.010 0.002 -0.014 -0.006 74.165  50.318 <.001
Math 14 -0.009 0.002 -0.013 -0.005 64.740  36.869 <.001
Panel B: Subgroup analysis
Female 8 -0.011 0.002 -0.016 -0.006 99.537 1511.649 <.001
achievement
Male 8 -0.018 0.006 -0.029 -0.006 99.907 7529.294 <.001
achievement
PMzs 20 -0.014 0.003 -0.019 -0.009 99.446 3429.759 <.001
PMio 4 -0.006 0.002 -0.010 -0.002 85916  21.300 <.001

Note. Student achievement, test score, language, and Math scores are measured in standard deviations units. N

reflects the number of effect sizes.
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Forest Plot: Effects of alr pollution on student achievement

Effect size Weight

Study with 95% CI (%)
(Adar, 2024) [Language; pm2.5] W -006[-007 -0.05 205
(Adar, 2024) [Math; pm2.5] M 003[-004, -0.01] 205
(Amanzadeh, 2020) [Test score; pm2.5] n -0.03[-0.04, -0.02] 223
(Amanzadeh, 2020) [Test score; pm10] B 005[-005 -004 222
(Austin, 2019) [Language; Pollutant] —®—  .0.09[-0.15, -0.03] 0.55
(Austin, 2019) [Math; Pollutant] —#— -005[-0.11, 0.01] 055
(Avila-Uribe, 2024) [Test score; pollutant] M .009[-0.13, -0.05] 0.95

an, 2021) [L ; pm2.5] M -003[-004, -0.01] 188
(Balakrishnan, 2021) [Math; pm2.5] M -0.02[-0.04, -0.01] 1.93
(Bharadwaj, 2017) [Language; CO] - -0.04[-0.08, -0.00] 0.95
(Bharadwaj, 2017) [Math; CO] M -004[-0.07, 0.00] 1.21
(Camneiro, 2021) [Test score; pm10] —=— -0.08[-0.14, -0.02] 0.55
(Cameiro, 2024) [Language; pm2.5] M -004[-007, -0.01] 136
(Cameiro, 2024) [Math; pm2.5] B -003[-006, -0.01] 148
(Dang, 2025) [Language; pm2.5] M 0.01[-002 -0.000 217
(Dang, 2025) [Math; pm2.5) W -002[-002, -0.01] 217
(Duque, 2022) [Language; coal] M -001[-002, 0.00] 210
(Duque, 2022) [Math; coal] W -0.02[-0.04, -0.00] 1.75
(Ebenstein, 2016) [Test score; pm2.5] M -0.00(-0.00, -0.00] 233
(Gilraine, 2024) [Language; pm2.5] B -003[-0.04, -001] 188
(Gilraine, 2024) [Math; pm2.5] M -000([-002, 0.01] 185
(Gilraine, 2024) [Test score; pm2.5] M -0.02[-0.03, -0.00] 197
(Gilraine, 2025) [Language; Pollutant] -0.14[-0.26, -0.02] 0.15
(Gilraine, 2025) [Math; Pollutant] —=&— .0.08[-0.17, 0.00] 0.27
(Heissel, 2022) [Test score; Pollutant] M -0.04[-0.07, -0.01] 1.16
(Heyes, 2022) [Test score; pollutant] | | -0.04[-0.06, -0.03] 1.98
(Inafuku, 2025) [Test score; SO2] M-0.00[-001, 0.00] 231
(Inafuku, 2025) [Test score; pm2.5] M -0.00[-0.00, -0.00] 2.33
(Lavy, 2014) [Test score; pm2.5] || -0.02[-0.02, -0.02] 2.33
(Lavy, 2014) [Test score; CO) M 004[-004 -0.03) 233
(Lu, 2021) [Math; ozone] M -0.00[-001, -0.00] 233
(Lu, 2021) [Math; NO2] M -0.00(-0.01, -0.00] 233
(Lu, 2021) [Math; pm2.5] M 001[-001, -001] 233
(Marcotte, 2017) [Language; pollen] .-0.00[-0401. 0.00] 228
(Marcotte, 2017) [Language; ozone] M 001 [-0.03, 0.01] 173
(Marcotte, 2017) [Language; pm2.5] | -0.02[-0.03, -0.00] 2.02
(Marcotte, 2017) [Math; ozone] i -0.01[-0.04, 0.02] 1.32
(Marcotte, 2017) [Math; polien] M -001[-0.01, -0.00] 228
(Marcotte, 2017) [Math; pm2.5] M 0.00[-002, 0.02] 172
(Miller, 2013) [Language; pm10] - -0.07[-0.11, -0.03] 0.98
(Miller, 2013) [Math; pm10] - -008[-0.12, -0.04] 0.93
(Persico, 2021) [Language; pollutant] W -0.03[-0.04, -0.01] 2.06
(Persico, 2021) [Math; pollutant] W -002[-0.04, -0.01] 1.89
(Persico, 2025) [Language; pollutant] . -0.02[-0.03, -0.02] 2.26
(Persico, 2025) [Math; pollutant] M -003[-004, 0.03] 226
(Persico, 2025) [Test score; pollutant] - -0.03[-0.04, -0.03] 2.30
(Pham, 2023) [Test score; pm2.5] . -0.01[-0.01, -0.00] 228
(Rojas-Vallejos, 2021) [Language; CO] —_— -0.30[-0.51, -0.09] 0.05
(Rojas-Vallejos, 2021) [Language; NOX] M -001(-001, -0.00] 230
(Rojas-Vallejos, 2021) [Language; NO] .-0A00[-0.01. 0.00] 226
(Rojas-Vallejos, 2021) [Math; NOX] M 0.01[-001, -0.00] 226
(Rojas-Vallejos, 2021) [Math; CO] -0.23[-0.45, -0.01] 0.05
(Rojas-Vallejos, 2021) [Math; NO] M -001[-001, 0.00] 221
(Sanders, 2012) [Test score; TSP] —&—  -0.09[-0.15, -0.03] 0.52
(Stafford, 2015) [Language; mold] —®——  .0.15[-0.25, -0.05] 0.22
(Stafford, 2015) [Language; ventilation] —&—  -0.11[-0.17, -0.04] 047
(Stafford, 2015) [Math; ventilation] —&— 007[-0.15, 0.02] 0.30
(Stafford, 2015) [Math; mold] ——®——  .016[-0.27, -0.06] 0.21
(Wassmer, 2024) [Language; pm2.5] B -003[-005 -0.01] 156
(Wassmer, 2024) [Math; pm2.5] B 002[-004, 0.00] 163
(Wen, 2022) [Language; pm2.5] | -0.04[-0.05, -0.02] 1.80
(Wen, 2022) [Math; pm2.5] W -002[-004, -0.01] 1.80
Overall ‘ -0.02[-0.03, -0.02]

-6 -4 -2 0

Random-effects REML model
Sorted by: leadauth

Figure 2. Forest plot for overall effect estimates of air pollution on student achievement
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Appendix Tables

Appendix Table 1. Results by database
Database Results
JSTOR (abstract) 543
JSTOR (title) 245
ERIC 2674
WorldCat 10372
Google scholar 1000
ProQuest 3878
NBER 2026
Taylor and Francis Online (title) 900

Total

21,095




Appendix Table 2. Coding schema
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Study and Program Characteristics

Variable Description Level of
measurement

Id ID Number assigned to study Continuous

Leadauth Name of lead author Nominal

Title Title of paper Nominal

Yearpub Year paper was published Continuous

Pubtype Type of publication (academic journal, policy Nominal
report, conference paper, etc.)

Peer review Is the study a peer-reviewed publication? Binary

Method Identification strategy (RD, DiD, IV, RCT, fixed = Nominal
effects)

Conditional Are the estimates conditional or unconditional on  Nominal
enrollment?

USA Is the study based in the U.S.? Binary

State Name of state (if U.S.=1) Nominal

Otherctry Name of the country where the study was Nominal
conducted if not the U.S.

Outcome The dependent variable(s) of the study: composite Nominal
test score, language score, math score,

Sensi_robust falsi Does the study provide sensitivity and robust Nominal
estimates? Does it provide falsification test?

Study quality The author’s professional judgment of the study’s  Ordinal
quality from 1-5 (1-poor, 3-average, 5-excellent)

Summary Qualitative note of the study Qualitative

Misc_note Miscellaneous notes Qualitative

Study Outcomes

Variable Description Level of

measurement

Outcometype Test score, language, math Nominal

Pollutant type Pollutant, mold, particulate matter, NOx, CO, O3, Nominal
coal, etc.

Gender Gender indicator (male, female, pooled) Nominal

Main_ana The main estimate (not subgroup) indicator Binary

Beta Regression coefficient of the causal estimate of Continuous
air pollution on outcome

SE The standard error of the beta Continuous

Tstat T-statistics of the beta coefficient estimate Continuous

Samplesize Sample size of the estimate Continuous

Dosage The difference in air pollutant concentration used ~ Continuous
in causal estimate

Note Additional notes about the estimates or study Qualitative
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Appendix Table 3. Quality Criteria for Assessing Risk of Bias
Quality Rating Considerations
Was the study a randomized control trial?
Was implementation fidelity measured and adequately described, and what are the implications
of implementation fidelity on outcomes?
What are the relative strengths of the study design?
Was the analytic approach adequately described, and what are the relative merits of the
approach used?
Was the comparison condition adequately described, and does the comparison group provide a
reasonable counterfactual?
Were threats to internal and external validity considered and addressed?
Were findings robust to different analytical decisions and model specifications?
Was baseline equivalence established between treatment and comparison groups? (This is
unnecessary for some approaches such as the difference-in-difference design.)
What sampling decisions were made by the authors and did the analytic sample present any
concerns to internal or external validity?

Note: Studies with a rating of four or five out of five were considered high quality studies.




Appendix Table 4. Primary study’s characteristics
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Lead author Year Pub type Peer USA State Other
review country
Adar 2024 Working paper Yes Yes National
Amanzadeh 2020 Article Yes No Iran
Austin 2019 Article Yes Yes Georgia
Avila-Uribe 2024 Working paper Yes No England
Balakrishnan 2021 Article Yes No India
Bharadwaj 2017 Article Yes No Chile
Carneiro 2021 Article Yes No Brazil
Carneiro 2024 Article Yes No Brazil
Dang 2025 Article Yes No Vietnam
Duque 2022 Article Yes Yes North Carolina
Ebenstein 2016 Article Yes No Israel
Gilraine 2024 Article Yes Yes National
Gilraine 2025 Article Yes Yes California
Heissel 2022 Article Yes Yes Florida
Heyes 2022 Working paper No No Iran
Inafuku 2025 Article Yes Yes Hawaii
Lavy 2014 Working paper Yes No Israel
Lu 2021 Article Yes Yes National
Marcotte 2017 Article Yes Yes National
Miller 2013 Working paper No No Chile
Persico 2021 Article Yes Yes Florida
Persico 2025 Working paper No Yes North Carolina
Pham 2023 Article Yes Yes National
Rojas-Vallejos 2021 Article Yes No Chile
Sanders 2012 Article Yes Yes Texas
Stafford 2015 Article Yes Yes Texas
Wassmer 2024 Article Yes Yes National
Wen 2022 Article Yes Yes National
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Appendix Figures
Forest Plot: Effects of air pollution on test score
Effect size Weight
Study with 95% Cl (%)
(Amanzadeh, 2020) [Test score; pm2.5] ' 3 -0.03[-0.04, -0.02] 7.80
(Amanzadeh, 2020) [Test score; pm10] B -0.05[-0.05, -0.04] 7.78
(Avila-Uribe, 2024) [Test score; pollutant] L -0.09[-0.13, -0.05] 4.17
(Carneiro, 2021) [Test score; pm10] l -0.08[-0.14, -0.02] 2.60
(Ebenstein, 2016) [Test score; pm2.5] --0.00[-0.00, -0.00] 8.02
(Gilraine, 2024) [Test score; pm2.5] —l— -0.02[-0.03, -0.00] 7.19
(Heissel, 2022) [Test score; Pollutant] ——— -0.04[-0.07, -0.01] 4.88
(Heyes, 2022) [Test score; pollutant] —- -0.04[-0.06, -0.03] 7.21
(Inafuku, 2025) [Test score; SO2] -0.00[-0.01, 0.00] 7.96
(Inafuku, 2025) [Test score; pm2.5] -0.00[-0.00, -0.00] 8.02
(Lavy, 2014) [Test score; pm2.5] B -002[-002 -002] 8.02
(Lavy, 2014) [Test score; CO] [ | -0.04[-0.04, -0.03] 8.02
(Persico, 2025) [Test score; pollutant] [ | -0.03[-0.04, -0.03] 7.95
(Pham, 2023) [Test score; pm2.5] B -o.01 [-0.01, -0.00] 7.91
(Sanders, 2012) [Test score; TSP] L -0.09[-0.15, -0.03] 2.48
Overall <€  -0.03[-0.04, -0.02]
-15 -1 -.05 0

Random-effects REML model
Sorted by: leadauth

Appendix Figure 1. Forest plot for overall effect estimates of air pollution on test score
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Forest Plot: Effects of air pollution on language

Effect size Weight

Study with 95% CI (%)
(Adar, 2024) [Language; pm2.5] B -0.06[-007 -0.05 6.04
(Austin, 2019) [Language; Pollutant] —&— -0.09[-0.15, -0.03] 2.00
(Balakrishnan, 2021) [Language; pm2.5] M -0.03[-0.04, -0.01] 5.66
(Bharadwaj, 2017) [Language; CO] —- -0.04[-0.08, -0.00] 3.27
(Carneiro, 2024) [Language; pm2.5] & -0.04[-0.07, -0.01] 4.41
(Dang, 2025) [Language; pm2.5] B -0.01[-0.02, -0.00] 6.29
(Duque, 2022) [Language; coal] M -0.01[-0.02, 0.00] 6.14
(Gilraine, 2024) [Language; pm2.5] B -003[-0.04, -0.01] 567
(Gilraine, 2025) [Language; Pollutant] -0.14[ -0.26, -0.02] 0.59
(Marcotte, 2017) [Language; pollen] -0.00[-0.01, 0.00] 6.51
(Marcotte, 2017) [Language; ozone] M -001[-0.03, 0.01] 5.32
(Marcotte, 2017) [Language; pm2.5] B -0.02[-0.03, -0.00] 5.96
(Miller, 2013) [Language; pm10] - -0.07[-0.11, -0.03] 3.35
(Persico, 2021) [Language; pollutant] B -0.03[-0.04, -0.01] 6.07
(Persico, 2025) [Language; pollutant] B -002[-0.03, -002] 6.48
(Rojas-Vallejos, 2021) [Language; CO] = -0.30[-0.51, -0.09] 0.22
(Rojas-Vallejos, 2021) [Language; NOX] l-o.01 [-0.01, -0.00] 6.56
(Rojas-Vallejos, 2021) [Language; NO] -0.00[-0.01, 0.00] 6.48
(Stafford, 2015) [Language; mold] —&——  -0.15[-0.25, -0.05] 0.86
(Stafford, 2015) [Language; ventilation] —#— -0.11[-0.17, -0.04] 1.74
(Wassmer, 2024) [Language; pm2.5] B -0.03[-0.05, -0.01] 4.91
(Wen, 2022) [Language; pm2.5] B -0.04[-0.05 -0.02] 5.49
Overall ¢ -0.03[-0.04, -0.02]
-.6 -4 -2 0

Random-effects REML model
Sorted by: leadauth

Appendix Figure 2. Forest plot for overall effect estimates of air pollution on language



Forest Plot: Effects of air pollution on Math
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Effect size Weight
Study with 95% CI (%)
(Adar, 2024) [Math; pm2.5] B -0.03[-0.04, -0.01] 5.40
(Austin, 2019) [Math; Pollutant] —=—— -0.05[ -0.11, 0.01] 0.72
(Balakrishnan, 2021) [Math; pm2.5] B -0.02[-0.04, -0.01] 4.72
(Bharadwaj, 2017) [Math; CO] —— -0.04[-0.07, -0.00] 2.04
(Carneiro, 2024) [Math; pm2.5] - -0.03[-0.06, -0.01] 2.83
(Dang, 2025) [Math; pm2.5] B -002[-002 -0.01] 6.16
(Duque, 2022) [Math; coal] 4 -0.02[-0.04, -0.00] 3.82
(Gilraine, 2024) [Math; pm2.5] & -0.00[-0.02, 0.01] 4.28
(Gilraine, 2025) [Math; Pollutant] -0.08 [-0.17, 0.00] 0.33
(Lu, 2021) [Math; ozone] B -0.00[-0.01, -0.00] 7.50
(Lu, 2021) [Math; NO2] B -0.00[-0.01, -0.00] 7.44
(Lu, 2021) [Math; pm2.5] B -0.01[-0.01, -0.01] 7.44
(Marcotte, 2017) [Math; ozone] —--0.01[-0.04, 0.02] 2.35
(Marcotte, 2017) [Math; pollen] B -o.01 [-0.01, -0.00] 7.06
(Marcotte, 2017) [Math; pm2.5] % 0.00[-0.02, 0.02] 3.71
(Miller, 2013) [Math; pm10] —— -0.08 [-0.12, -0.04] 1.40
(Persico, 2021) [Math; pollutant] B -0.02[-0.04, -0.01] 4.50
(Persico, 2025) [Math; pollutant] B -003[-0.04 -0.03] 6.87
(Rojas-Vallejos, 2021) [Math; NOX] B -0.01[-0.01, -0.00] 6.87
(Rojas-Vallejos, 2021) [Math; CO] -0.23[-0.45, -0.01] 0.06
(Rojas-Vallejos, 2021) [Math; NO] B -0.01[-0.01, 0.00] 6.44
(Stafford, 2015) [Math; ventilation] -0.07[-0.15, 0.02] 0.37
(Stafford, 2015) [Math; mold] —_— -0.16 [ -0.27, -0.06] 0.25
(Wassmer, 2024) [Math; pm2.5] -0.02[-0.04, 0.00] 3.35
(Wen, 2022) [Math; pm2.5] 4.07

Overall

Random-effects REML model
Sorted by: leadauth

. »
| -0.02[-0.04, -0.01]
{ -0.02[-0.02, -0.01]

Appendix Figure 3. Forest plot for overall effect estimates of air pollution on Math
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Appendix Figure 4. Contoured enhanced funnel plots of air pollution on student achievement



