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Abstract

The extent to which intervention effects persist or fade over time is an important
question in the behavioral sciences. In meta-analysis, persistence is typically assessed
by meta-regressing effect sizes at followup on effect sizes at endline. While common,
the standard meta-regression does not adjust for the shared sampling error between
effect sizes across time points. We show that in general, estimated slopes from the stan-
dard meta-regression are inflated under mild assumptions about correlations between
outcomes across time. We show how to adjust for correlated sampling error using a
sensitivity analysis approach with meta-analytic data from a series of social-emotional
learning interventions. Our results suggest that effect fadeout is likely more severe than
current estimates suggest.
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1 Introduction

A critical question in the social and behavioral sciences is the extent to which intervention

effects persist or fade over time (Abenavoli, 2019; Bailey, 2019; Bailey et al., 2017). Meta-

analyses typically examine persistence by meta-regressing effect sizes (ES) at followup on ES

at endline. The slope from this meta-regression provides an interpretable summary of effect

persistence, providing the expected followup ES for a given endline ES (Hart et al., 2024).

One methodological issue with this meta-regression approach is that standard meta-

regression models explicitly account for sampling error in the outcome (here, ES at followup),

but not in the predictor (ES at baseline). When measurement error in the predictor is indepen-

dent of the outcome, adjusting for predictor measurement error disattenuates regression slopes

(Kline, 2023). However, the sampling error of two ES constructed from the same outcome

variables and the same participant samples at two time points is likely to be correlated. That

is, if sampling error yields an estimated ES larger than the true ES at endline, a similar

sampling error is likely at followup to the extent that the outcomes are correlated across

time. Thus, standard measurement error corrections are likely to be counterproductive and

ignoring correlated sampling error will yield bias in estimated meta-regression slopes.

The issue of correlated sampling error in meta-regression is well known in the medical

literature in the analysis of surrogate outcomes, and can be accounted for by modeling the

dependence in sampling errors across time points, an approach denoted “bivariate meta-

regression” (Daniels & Hughes, 1997; Gail, 2000; Van Houwelingen et al., 2002). As of

yet, however, models that account for correlated sampling error are rarely applied in the

social and behavioral sciences when examining questions of effect persistence. In a review

of the literature, Riley (2009) suggests that such models are underused due to tradition,

increased complexity, the need for specialized software, and a lack of understanding of the

consequences of ignoring correlated sampling error. Furthermore, the sources cited above

emphasize estimating pooled effects and improving precision rather than potential bias in
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meta-regression slopes that forms the basis of this study.

As such, the purpose of this study is as follows. First, we provide an accessible overview

of how correlated sampling error creates bias in meta-regression slopes. Second, we describe

how to correct for the bias and apply the proposed correction in a sensitivity analysis style

approach. Third, we apply the correction to a large meta-analysis of persistence in social-

emotional learning (SEL) interventions (Hart et al., 2024) and demonstrate that, under mild

assumptions about correlations between outcomes across time, true persistence is lower than

current estimates suggest. Last, we include R code for researchers interested in applying our

proposed method to their own datasets.

2 Methods

2.1 The Meta-regression Model

Consider the standard meta-regression model:

δk = α+ βXk + uk + ek (1)

uk ∼ N (0, τ 2) (2)

ek ∼ N (0, σ2
ek
), (3)

where δk is the observed effect size in study k, α is the intercept, Xk is the covariate of

interest, β is the meta-regression coefficient, uk is a random effect for study with variance τ 2

and ek is the sampling variation of the effect size, with (assumed known) variance σ2
ek
. The

standard meta-regression framework thus explicitly accounts for sampling variability in the

outcome ES δk. For clarity of exposition, we consider the simple case of one ES per study

(or one pair of ES when examining persistence), but note that our code and analytic models

allow for multiple ES per study in an approach analogous to robust variance estimation
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(RVE) (Pustejovsky & Tipton, 2022).1

The predictor Xk is assumed to be measured without error. Such assumptions are often

reasonable, such as when Xk represents a low-inference study characteristic such as the

reported sample size, whether the study is published in a peer-reviewed journal, or whether

the study used an experimental or quasi-experimental design. Often however, Xk is measured

with error. A common example is studies of effect persistence, where ES at followup is

regressed on ES at endline. In this case, β represents the “conditional persistence” of effects,

where a slope of 1 suggests that effects fully persist and a slope of 0 suggests that effects

fully fade (Hart et al., 2024). We illustrate conditional persistence in Figure 1, which shows

an observed conditional persistence of 50% compared to a theoretical conditional persistence

of 100%.

Figure 1: Conditional Persistence of Effect Sizes Across Time
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Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. The dashed black
line represents a theoretical conditional persistence of 100%. The blue line shows an observed conditional
persistence of 50%.

However, when estimating meta-regressions for conditional persistence, the predictor Xk is

1Specifically, we assume a correlation of .80 for the study-level random effects across time in a multilevel
meta-analysis framework.

3



itself another ES, and thus contains its own sampling error. Performing such meta-regressions

without adjustments for predictor sampling error are common in meta-analysis of social and

behavioral interventions (e.g., Hart et al., 2024; Mindy et al., 2024; Watts et al., 2025).

2.2 Adjusting for Correlated Sampling Error

In simple linear regression, measurement error in predictors attenuates regression coefficients

towards zero, and this bias can be corrected with both errors-in-variables and structural

equation modeling approaches (Gilbert, 2025; Kline, 2023; Lockwood & McCaffrey, 2020).

However, standard measurement error adjustments are not applicable in the persistence

meta-regression case because the measurement error in the outcome and predictor are not

independent; rather, they represent some shared sampling variation. That is, if sampling

error yields a point estimate larger than the true population ES for study k at endline, it is

likely that this same sampling error would affect the point estimate for the ES at followup in

a similar manner.

Figure 2 shows a directed acyclic graph to clarify the issue. β represents the true

relationship between ES across time, but the estimated relationship b will be biased to the

extent that the sampling errors are correlated. In effect, the shared sampling error functions

identically to a confounder in other contexts (Pearl & Mackenzie, 2018).

However, when the correlation between outcomes across time points is known or can

be estimated, we can correct for the resulting bias. We begin by deriving the sampling

correlation in terms of potential outcomes and show that the sampling correlation is equal to

the test-retest reliability of the outcome. We then describe how correlated sampling error

creates bias in meta-regression slopes. We then use these results to propose a model that

appropriately accounts for correlated sampling error (Riley, 2009).
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Figure 2: Directed Acyclic Graph

Notes: Circles represent latent variables and squares represent observed variables. θt is the true ES, δt is the
observed ES, and Vt is the (assumed known) sampling variance of the ES at time t. β is the true relationship
between the ES across time, but we estimate b with the conventional meta-regression, potentially biased by
the unknown sampling covariance across time. τ2t are residual variances.

2.2.1 Derivation of the Sampling Covariance Between Effect Sizes Across Time

Consider an RCT of a binary treatment condition measuring outcomes Ytj at two timepoints,

t ∈ {1, 2}, for participants j, where Y1j is the immediate endline outcome and Y2j is the

long term followup outcome. Under the potential outcomes framework (Rubin, 2005), let

Y (0)tj denote the potential outcome under the control counterfactual and Y (1)tj denote

the potential outcome under treatment. We assume that (a) the number of participants in

each arm, n, is equal and (b) outcomes of different participants are independent. That is,

Ytj ⊥⊥ Yt′k for all j ̸= k.

In the absence of treatment, we observe Y (0)1j and Y (0)2j. Let Var(Y (0)1j) = σ2
1 and

Var(Y (0)2j) = σ2
2. Now assume at each time an additive, constant treatment effect, θt, so

that Y (1)tj = Y (0)tj + θt. Because the treatment effect is an additive constant, the variances

within the treatment condition equal those in the control condition, i.e., Var(Y (1)1j) = σ2
1
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and Var(Y (1)2j) = σ2
2. (We explore the consequences of heterogeneous treatment effects in

Appendix A.)

Now let Cov(Y (0)1j, Y (0)2k) = Cov(Y (1)1j, Y (1)2k) = ρσ1σ2 if j = k, and 0 otherwise.

Equivalently, the test-retest reliability of the outcome measure is ρ, i.e. Corr(Y1j, Y2j) = ρ,

within both treatment conditions.

To estimate treatment effects in each time period, we use a difference-in-means estimator,

δ1 = Y 1T − Y 1C , (4)

where Y 1T and Y 1C are, respectively, the treatment and control group sample means at

endline. Similarly,

δ2 = Y 2T − Y 2C . (5)

What is consequential here for the meta-regression is Corr(δ1, δ2) =
Cov(δ1,δ2)√
Var(δ1)Var(δ2)

, which we

now derive.

We first decompose the estimators into the true ES θt and sampling error:

δ1 = θ1 + {Y (0)1T − Y (0)1C} (6)

δ2 = θ2 + {Y (0)2T − Y (0)2C}. (7)

Because constants do not affect variance or covariances,

Var(δ1) = Var(Y (0)1T − Y (0)1C) =
2σ2

1

n
(8)

Var(δ2) = Var(Y (0)2T − Y (0)2C) =
2σ2

2

n
(9)

Cov(δ1, δ2) = Cov(Y (0)1T − Y (0)1C , Y (0)2T − Y (0)2C) =
2ρσ1σ2

n
. (10)
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Plugging Equation 10 into the definition of correlation, we have,

Corr(δ1, δ2) =
2ρσ1σ2

n√
2σ2

1

n

2σ2
2

n

=
2ρσ1σ2

n
2σ1σ2

n

= ρ. (11)

That is, the correlation between the ES estimates (i.e., the correlated sampling error) is equal

to the test-retest reliability of the outcome.

2.2.2 Bias in Meta-regression Slopes

Now consider the consequences of Equation 11 for a “naive” conditional persistence meta-

regression, where δtk indicates an observed ES at time t for study k, fit by ordinary least

squares:

δ2k = α+ βδ1k + εk. (12)

Let studies have true ES related by

θ2k = α+ βθ1k + ηk (13)

Cov(θ1k, ηk) = 0. (14)

The observed ES estimates δtk are functions of the true ES θtk plus sampling error etk:

δ1k = θ1k + e1k (15)

δ2k = θ2k + e2k, (16)

where etk are independent of (θ1k, ηk).

The large-sample bias of the persistence slope from Equation 12 is (Pischke, 2007):

Bias(β̂) =
Cov(e1, e2)− βVar(e1)

Var(θ1) + Var(e1)
. (17)
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Plugging in Equation 10, this yields

Bias(β̂) =
ρ
√

Var(e1)Var(e2)− βVar(e1)

Var(θ1) + Var(e1)
(18)

=
ρ
√

Var(e1)Var(e2)

Var(θ1) + Var(e1)︸ ︷︷ ︸
correlation-driven bias

− βVar(e1)

Var(θ1) + Var(e1)︸ ︷︷ ︸
attenuation bias

. (19)

Setting ρ = 0, we recover the attenuation bias under classical measurement error (Gilbert,

2025; Kline, 2023). When ρ > 0, the bias is more positive.

In our setting, where meta-regression is used to estimate persistence, we assume that

β > 0. Additionally, because within-person measures are correlated across time in behavioral

settings, we assume ρ > 0. Typically these test-retest reliabilities are high, with one individual

participant data meta-analysis of behavioral RCTs showing a mean ρ = .51, SD = .23 across

97 outcomes (Veltri & Gilbert, 2026). Attenuation bias will therefore shrink estimates toward

zero, but the correlation bias will likely overcome it, leading to overestimates of persistence.

2.2.3 A Multivariate Meta-Regression Accounting for Correlated Sampling

Error

We now describe a meta-regression model to account for correlated sampling error. We

denote δkt and σ2
kt as the ES and variance of the ES for study k at time t, respectively. We

first specify the sampling covariance matrix for study k, where ρ is the correlation between

outcomes at t = 1 and t = 2 :

Σk =

 σ2
1k ρσ1kσ2k

ρσ1kσ2k σ2
2k

 . (20)

Now consider the true ES, θtk. These determine the joint distribution of observed ES δtk as

follows:
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δ1k
δ2k

 ∼ N


θ1k
θ2k

 ,Σk

 (21)

We then specify a persistence model for the true ES:

θ1k ∼ N (µ, τ 21 ) (22)

θ2k|θ1k = N (α + βθ1k, τ
2
2 ), (23)

where µ is the grand mean of true ES at time 1, α is the mean true ES at time 2 when

θ1k = 0, β is the conditional persistence corrected for correlated sampling error at both time

points, τ 21 is the overall variance in true ES at time 1, and τ 22 is the residual variance in true

ES at time 2 (Riley, 2009).

Because ρ may be inconsistently reported across studies or unknown, we propose a

sensitivity analysis style approach, in which we fix ρ to a range of values (e.g., 0, .1, .2, ..., .9)

to determine to extent to which model results are sensitive to alternative assumptions. We

use Stan to fit the model (Carpenter et al., 2017). We use the following priors and include

example code in Appendix B:

µ ∼ N (0, 1) (24)

α ∼ N (0, 1) (25)

β ∼ N (0, 1) (26)

τ1 ∼ Half-Cauchy(0, .5) (27)

τ2 ∼ Half-Cauchy(0, .5). (28)
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2.3 Simulation Study

Given the derivation above, we conduct a targeted simulation study. The simulation study is

not intended to be exhaustive, but rather to concretely demonstrate the issues at play in

realistic sample sizes. We first simulate θ1 ∼ N (.5, .252) and θ2 = .5θ1, that is, a conditional

persistence of 50% based on endline ES mostly in the (0, 1) interval. We then simulate RCTs

with 100 participants randomly assigned to treatment or control conditions to represent the

small to moderate sample sizes common in behavioral meta-analyses. Within each RCT, we

generate the potential outcomes under control as

Y (0)1j

Y (0)2j

 ∼ N


0
0

 ,

1 ρ

ρ 1


 , (29)

where ρ is the test-retest reliability. We then generate the potential outcomes under treatment

as Y (1)1j = Y (0)1j + θ1 and Y (1)2j = Y (0)2j + θ2. We then create the observed outcomes

by selecting Y (1) for units randomly assigned to treatment and Y (0) for units randomly

assigned to control.

We then generate 500 RCTs with true ES θ1 and θ2, varying ρ from 0 to .9 in increments

of .1. Figure 3 shows the scatterplots of the meta-regression of observed ES (i.e., δ2 on δ1),

faceted by ρ, with the true meta-regression in black and the OLS fit in red. In line with the

results above, when ρ = 0, measurement error attenuates the slope, and as ρ increases, the

slope inflates. A metamodel of these simulation results (Gilbert & Miratrix, 2025) confirms

the pattern, as each .1 increase in ρ causes a .036 increase in the estimated conditional

persistence slope (95% CI = [.031, .041]).

We next fit a model that accounts for the correlated sampling error (here, assuming ρ is

known) to the data (i.e., Equation 22). Figure 4 shows the results. We find that the 95%

CIs for the proposed Bayesian estimator capture the true persistence of 50% in all cases

whereas the OLS estimator systematically under-estimates persistence when ρ is low and
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Figure 3: Simulated Meta-regressions Across Test-Retest Reliabilities
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Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Each dot is a simulated
RCT of 100 participants randomly assigned to treatment or control conditions. The black line is the true
persistence of 50% and the red line shows OLS fits. The plot is faceted by test-retest reliability ρ.

systematically over-estimates persistence when ρ is high. However, the CIs of the Bayesian

estimator are much wider than the OLS estimator. Given that the true value of ρ is either

unknown or inconsistently reported in primary studies, we use a sensitivity analysis approach

in our empirical application to determine how the estimated conditional persistence varies

across a range of plausible values for ρ.

3 Results

3.1 Data Source

We use data from Hart et al. (2024), who examine conditional persistence of social-emotional

learning (SEL) interventions across a wide range of studies. In total, they include 420 ES

estimates (Glass’s ∆ based on descriptive statistics) from 60 studies at endline and at 6-12

month followup. In the original analysis, the authors use a robust variance estimation (RVE)
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Figure 4: Estimated Conditional Persistence Accounting for and Ignoring Correlated
Sampling Error

0.3

0.4

0.5

0.6

0.00 0.25 0.50 0.75
Test−Retest Reliability

E
st

im
at

ed
 P

er
si

st
en

ce

Estimator Bayesian OLS

Notes: The y-axis shows the estimated conditional persistence and the x-axis shows the test-retest reliability
ρ. Points and lines represent point estimates and 95% CIs (credible intervals for the Bayesian estimator and
confidence intervals for the OLS estimator).

approach to account for the multiple ES within studies (Pustejovsky & Tipton, 2022), but

do not account for potential correlated sampling error across time.

3.2 Standard Meta-regression Model Results

Figure 5 essentially replicates the original analysis (Hart et al., 2024, Figure 5), showing

the followup ES on the y-axis and the endline ES on the x-axis.2 We find a conditional

persistence of 43% (SE = .026). Substantively this means that interventions that show an

ES of 1SD at endline are predicted to show an ES of .43 at followup. The I2 (proportion of

variance in observed ES that reflects true underlying heterogeneity) is 89% at endline and

81% at followup, suggesting that the observed ES are quite reliable at both time points.

2To maintain comparability between our models, we use a three-level meta-regression model for our
baseline analysis. The original study uses RVE.
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Figure 5: Conditional Persistence based on RVE Meta-regression Model
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Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Thin lines represent ±1
standard error from the point estimate. The dashed black line represents a theoretical conditional persistence
of 100%. The blue line shows the estimated slope using the standard meta-regression approach.

3.3 Sensitivity Analysis

Table 1 shows the adjusted model results, where ρ indicates the assumed outcome correlation

across time points. When ρ = 0, we find an estimated conditional persistence of 45%, which is

slightly larger in magnitude than the initial result of 43% due to disattenuation. As ρ increases,

we see the estimated conditional persistence decrease, in line with the arguments presented in

Section 2. For example, assuming ρ = .5, we estimate 33% conditional persistence. Assuming

ρ = .9, we estimate 20% conditional persistence. We illustrate the results graphically in

Figure 6, in which each of the colored lines represents a different assumed ρ value. Thus,

the initial conditional persistence estimate of 43% is likely to be too high under even mild

assumptions about outcome correlation across time.
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Table 1: Results of Meta-regression Models

ρ Term Coef. (SE) 95% CI

0.00 Intercept 0.097 (0.026) [0.04, 0.15]
0.00 Slope 0.447 (0.03) [0.39, 0.51]
0.10 Intercept 0.102 (0.028) [0.05, 0.16]
0.10 Slope 0.429 (0.032) [0.37, 0.49]
0.20 Intercept 0.107 (0.029) [0.05, 0.16]
0.20 Slope 0.409 (0.032) [0.35, 0.47]
0.30 Intercept 0.112 (0.029) [0.05, 0.17]
0.30 Slope 0.384 (0.032) [0.32, 0.45]
0.40 Intercept 0.12 (0.031) [0.06, 0.18]
0.40 Slope 0.36 (0.032) [0.3, 0.42]
0.50 Intercept 0.126 (0.032) [0.06, 0.19]
0.50 Slope 0.334 (0.033) [0.27, 0.4]
0.60 Intercept 0.131 (0.033) [0.07, 0.2]
0.60 Slope 0.306 (0.033) [0.24, 0.37]
0.70 Intercept 0.139 (0.035) [0.07, 0.21]
0.70 Slope 0.273 (0.033) [0.21, 0.34]
0.80 Intercept 0.154 (0.036) [0.08, 0.22]
0.80 Slope 0.239 (0.033) [0.17, 0.3]
0.90 Intercept 0.159 (0.036) [0.09, 0.23]
0.90 Slope 0.2 (0.035) [0.13, 0.27]

Notes: ρ indicates the assumed correlation between outcomes across time points. 95% credible intervals are
calculated as the point estimate ±1.96 times the posterior SD.

4 Discussion

Fadeout and persistence of intervention effects are critical issues in the social and behavioral

sciences. The standard approach to estimating persistence is to fit a meta-regression model of

followup ES on endline ES. However, this common practice ignores the correlated sampling

error across time points, resulting in biased conditional persistence estimates. While models

to correct for this issue have a long history in fields such as medicine (Daniels & Hughes,

1997; Riley, 2009), extant treatments emphasize precision rather than bias and applications

in the social sciences are rare.

In this study, we propose a simple sensitivity check to address this issue, illustrated with

empirical meta-analysis data from SEL interventions (Hart et al., 2024). We find that while

the standard approach provides an estimated conditional persistence of 43%, even a mild
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Figure 6: Conditional Persistence Corrected for Correlated Sampling Error
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Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Thin lines represent ±1
standard error from the point estimate. The dashed black line represents a theoretical conditional persistence
of 100%. The multicolored lines represent estimated conditional persistence assuming varying correlations
between outcomes across time points.

assumption of an outcome correlation of ρ = .5 attenuates this estimate to 33%. Given

that outcomes across time are almost certainly positively correlated, current estimates of

persistence are likely too optimistic. In educational interventions, for example, correlations

exceeding ρ = .7 are likely to obtain for standardized tests of math or reading.

We highlight two extensions to our approach. First, using covariate-adjusted ES rather

than standardized mean differences such as Cohen’s d may be desirable when examining

persistence, because covariate adjustment may reduce the correlated sampling error and

therefore lessen the bias. Second, rather than assuming a constant ρ in a sensitivity analysis,

we could set a prior for the correlation itself, for example, from the Beta distribution (given

that test-retest correlations are almost certain to be positive), in cases where prior evidence

suggests plausible values for ρ (e.g., Veltri and Gilbert, 2026).
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Appendices

A Heterogeneous Treatment Effects

Suppose that, instead of a constant additive effect at time t, θt, treatment effects vary also

across individuals j:

Y (1)tj = Y (0)tj + τtj (30)

θt = E(τtj). (31)

Here, τtj denotes the treatment effect for individual j at time t. Continuing with the previous

assumptions of equal group sizes and independence across participants, the difference-in-means

estimators satisfy

δt = θt + {Y (0)tT − Y (0)tC}+ {τ tT − E(τtj)}. (32)

The covariance of the two estimators is then

Cov(δ1, δ2) =
1

n

[
Cov

(
Y (0)1j, Y (0)2j

)
(33)

+ Cov
(
Y (0)1j, τ2j

)
(34)

+ Cov
(
τ1j, Y (0)2j

)
(35)

+ Cov
(
τ1j, τ2j

)]
. (36)

Consequently, the correlation between the two estimated effects becomes

Corr(δ1, δ2) =
Cov

(
Y (0)1j, Y (0)2j

)
+ Cov

(
Y (0)1j, τ2j

)
+ Cov

(
τ1j, Y (0)2j

)
+ Cov

(
τ1j, τ2j

)
√

Var(δ1)Var(δ2)

n

.

(37)
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In this case, the correlation of the estimators is no longer determined solely by the test-retest

reliability of the outcome ρ. It now also depends on the joint distribution of individual

treatment effects across time and on their covariance with baseline potential outcomes. If

individual treatment effects vary and those effects persist across time, so that Cov(τ1j, τ2j) > 0,

the correlation between δ1 and δ2 may exceed ρ. Conversely, if treatment effects tend to

reverse over time, Cov(τ1j, τ2j) < 0, the correlation may be attenuated or even negative.

B Example Stan Code

## --------------------------------------------------------------------------------------
stan_code <- "

data {

int<lower=1> K; // Total number of ES pairs (rows)

int<lower=1> J; // Number of unique studies (clusters)

array[K] int<lower=1, upper=J> study_id;

array[K] vector[2] y; // [es_endline, es_followup]

vector<lower=0>[K] se1; // SE at endline

vector<lower=0>[K] se2; // SE at followup

vector<lower=-1, upper=1>[K] r; // Sampling correlation (from sensitivity analysis)

real<lower=-1, upper=1> rho; // RVE Correlation (study-level dependency, e.g., 0.8)

}

transformed data {

matrix[2,2] L_S[K];

matrix[2,2] L_Rho;

// 1. Build the RVE Study-level Correlation Matrix (fixed rho)

{

matrix[2,2] Rho;

Rho[1,1] = 1.0;

Rho[2,2] = 1.0;

Rho[1,2] = rho;

Rho[2,1] = rho;

L_Rho = cholesky_decompose(Rho);

}

// 2. Build the Sampling Error Cholesky factors (observation level)

for (i in 1:K) {

matrix[2,2] S;

S[1,1] = square(se1[i]);

S[2,2] = square(se2[i]);

S[1,2] = r[i] * se1[i] * se2[i];

S[2,1] = S[1,2];

L_S[i] = cholesky_decompose(S);

}
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}

parameters {

// Global Intercepts and Persistence Slope

real mu1; // Average endline ES

real alpha; // Persistence intercept

real beta; // Persistence slope (The corrected parameter)

// Hierarchical Variances

real<lower=0> sigma_u1; // Study-level SD (Endline)

real<lower=0> sigma_u2; // Study-level SD (Followup)

real<lower=0> tau1; // Residual SD (Endline)

real<lower=0> tau2; // Residual SD (Followup)

// Standardized random effects for non-centered parameterization

matrix[2, J] u_raw; // Study-level shifts

vector[K] eps1_raw; // Row-level residual for endline

vector[K] eps2_raw; // Row-level residual for followup

}

transformed parameters {

vector[K] theta1;

vector[K] theta2;

matrix[2, J] u;

// Apply the RVE correlation (rho) to the study-level random effects

for (j in 1:J) {

u[, j] = diag_pre_multiply([sigma_u1, sigma_u2]', L_Rho) * u_raw[, j];

}

for (i in 1:K) {

// 1. Latent True ES at Endline (Study shift + residual)

theta1[i] = mu1 + u[1, study_id[i]] + (eps1_raw[i] * tau1);

// 2. Latent True ES at Followup (Regression on theta1 + study shift + residual)

theta2[i] = alpha + (beta * theta1[i]) + u[2, study_id[i]] + (eps2_raw[i] * tau2);

}

}

model {

// Priors

mu1 ~ normal(0, 1);

alpha ~ normal(0, 1);

beta ~ normal(0, 1);

[sigma_u1, sigma_u2, tau1, tau2] ~ cauchy(0, 0.5);

to_vector(u_raw) ~ std_normal();

eps1_raw ~ std_normal();

eps2_raw ~ std_normal();

// Likelihood: Observed ES given the Latent True ES and Correlated Sampling Error

for (i in 1:K) {

y[i] ~ multi_normal_cholesky([theta1[i], theta2[i]]', L_S[i]);

}

}
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"

## --------------------------------------------------------------------------------------

K <- nrow(sel)

J <- sel |> distinct(study_id) |> nrow()

study_counts <- as.numeric(table(sel$study_id))

# create a function to do this for a specified correlation

fit_mod <- function(r){

# get the data for stan in a list format

stan_data <- list(

K = K,

J = J,

study_id = as.numeric(as.factor(sel$study_id)),

study_sizes = study_counts,

y = as.matrix(sel[, c("es1", "es2")]),

se1 = sel$se1,

se2 = sel$se2,

# test retest

r = rep(r, nrow(sel)),

# RVE rho

rho = .8

)

# fit model - this takes about 90 seconds each

fit <- stan(

model_code = stan_code,

data = stan_data,

iter = 1000,

warmup = 500,

chains = 4,

seed = 2026

)

}

## --------------------------------------------------------------------------------------

# get a sequence of correlations

rs <- seq(0, .9, .1)

# map across the inputs

if(fit_mods){

# map across the inputs

stan_mods <- map(rs, fit_mod, .progress = TRUE)

# save the fitted models

save(stan_mods, file = "data/mods/stan_mods.Rdata")

}

# load the fitted models
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load("data/mods/stan_mods.Rdata")
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