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Abstract

The extent to which intervention effects persist or fade over time is an important
question in the behavioral sciences. In meta-analysis, persistence is typically assessed
by meta-regressing effect sizes at followup on effect sizes at endline. While common,
the standard meta-regression does not adjust for the shared sampling error between
effect sizes across time points. We show that in general, estimated slopes from the stan-
dard meta-regression are inflated under mild assumptions about correlations between
outcomes across time. We show how to adjust for correlated sampling error using a
sensitivity analysis approach with meta-analytic data from a series of social-emotional
learning interventions. Our results suggest that effect fadeout is likely more severe than
current estimates suggest.
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1 Introduction

A critical question in the social and behavioral sciences is the extent to which intervention
effects persist or fade over time (Abenavoli, 2019; Bailey, 2019; Bailey et al., 2017). Meta-
analyses typically examine persistence by meta-regressing effect sizes (ES) at followup on ES
at endline. The slope from this meta-regression provides an interpretable summary of effect
persistence, providing the expected followup ES for a given endline ES (Hart et al., 2024).

One methodological issue with this meta-regression approach is that standard meta-
regression models explicitly account for sampling error in the outcome (here, ES at followup),
but not in the predictor (ES at baseline). When measurement error in the predictor is indepen-
dent of the outcome, adjusting for predictor measurement error disattenuates regression slopes
(Kline, 2023). However, the sampling error of two ES constructed from the same outcome
variables and the same participant samples at two time points is likely to be correlated. That
is, if sampling error yields an estimated ES larger than the true ES at endline, a similar
sampling error is likely at followup to the extent that the outcomes are correlated across
time. Thus, standard measurement error corrections are likely to be counterproductive and
ignoring correlated sampling error will yield bias in estimated meta-regression slopes.

The issue of correlated sampling error in meta-regression is well known in the medical
literature in the analysis of surrogate outcomes, and can be accounted for by modeling the
dependence in sampling errors across time points, an approach denoted “bivariate meta-
regression” (Daniels & Hughes, 1997; Gail, 2000; Van Houwelingen et al., 2002). As of
yet, however, models that account for correlated sampling error are rarely applied in the
social and behavioral sciences when examining questions of effect persistence. In a review
of the literature, Riley (2009) suggests that such models are underused due to tradition,
increased complexity, the need for specialized software, and a lack of understanding of the
consequences of ignoring correlated sampling error. Furthermore, the sources cited above

emphasize estimating pooled effects and improving precision rather than potential bias in



meta-regression slopes that forms the basis of this study.

As such, the purpose of this study is as follows. First, we provide an accessible overview
of how correlated sampling error creates bias in meta-regression slopes. Second, we describe
how to correct for the bias and apply the proposed correction in a sensitivity analysis style
approach. Third, we apply the correction to a large meta-analysis of persistence in social-
emotional learning (SEL) interventions (Hart et al., 2024) and demonstrate that, under mild
assumptions about correlations between outcomes across time, true persistence is lower than
current estimates suggest. Last, we include R code for researchers interested in applying our

proposed method to their own datasets.

2 Methods

2.1 The Meta-regression Model

Consider the standard meta-regression model:

O = a + BXg + up + ey (1)
u ~ N(0,72) (2)
ex ~ N(0,02), (3)

where J, is the observed effect size in study k, « is the intercept, X is the covariate of
interest, 3 is the meta-regression coefficient, u;, is a random effect for study with variance 72
and ey, is the sampling variation of the effect size, with (assumed known) variance ng' The
standard meta-regression framework thus explicitly accounts for sampling variability in the
outcome ES §;. For clarity of exposition, we consider the simple case of one ES per study
(or one pair of ES when examining persistence), but note that our code and analytic models

allow for multiple ES per study in an approach analogous to robust variance estimation



(RVE) (Pustejovsky & Tipton, 2022).!

The predictor X}, is assumed to be measured without error. Such assumptions are often
reasonable, such as when X, represents a low-inference study characteristic such as the
reported sample size, whether the study is published in a peer-reviewed journal, or whether
the study used an experimental or quasi-experimental design. Often however, X}, is measured
with error. A common example is studies of effect persistence, where ES at followup is
regressed on ES at endline. In this case, 8 represents the “conditional persistence” of effects,
where a slope of 1 suggests that effects fully persist and a slope of 0 suggests that effects
fully fade (Hart et al., 2024). We illustrate conditional persistence in Figure 1, which shows
an observed conditional persistence of 50% compared to a theoretical conditional persistence
of 100%.

Figure 1: Conditional Persistence of Effect Sizes Across Time

ES at Followup

ES at Endline

Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. The dashed black
line represents a theoretical conditional persistence of 100%. The blue line shows an observed conditional

persistence of 50%.

However, when estimating meta-regressions for conditional persistence, the predictor X} is

1Specifically, we assume a correlation of .80 for the study-level random effects across time in a multilevel
meta-analysis framework.



itself another ES, and thus contains its own sampling error. Performing such meta-regressions
without adjustments for predictor sampling error are common in meta-analysis of social and

behavioral interventions (e.g., Hart et al., 2024; Mindy et al., 2024; Watts et al., 2025).

2.2 Adjusting for Correlated Sampling Error

In simple linear regression, measurement error in predictors attenuates regression coefficients
towards zero, and this bias can be corrected with both errors-in-variables and structural
equation modeling approaches (Gilbert, 2025; Kline, 2023; Lockwood & McCaffrey, 2020).
However, standard measurement error adjustments are not applicable in the persistence
meta-regression case because the measurement error in the outcome and predictor are not
independent; rather, they represent some shared sampling variation. That is, if sampling
error yields a point estimate larger than the true population ES for study £ at endline, it is
likely that this same sampling error would affect the point estimate for the ES at followup in
a similar manner.

Figure 2 shows a directed acyclic graph to clarify the issue. [ represents the true
relationship between ES across time, but the estimated relationship b will be biased to the
extent that the sampling errors are correlated. In effect, the shared sampling error functions
identically to a confounder in other contexts (Pearl & Mackenzie, 2018).

However, when the correlation between outcomes across time points is known or can
be estimated, we can correct for the resulting bias. We begin by deriving the sampling
correlation in terms of potential outcomes and show that the sampling correlation is equal to
the test-retest reliability of the outcome. We then describe how correlated sampling error
creates bias in meta-regression slopes. We then use these results to propose a model that

appropriately accounts for correlated sampling error (Riley, 2009).



Figure 2: Directed Acyclic Graph
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Notes: Circles represent latent variables and squares represent observed variables. 6, is the true ES, ¢; is the
observed ES, and V4 is the (assumed known) sampling variance of the ES at time ¢. /3 is the true relationship

between the ES across time, but we estimate b with the conventional meta-regression, potentially biased by

the unknown sampling covariance across time. 77 are residual variances.

2.2.1 Derivation of the Sampling Covariance Between Effect Sizes Across Time

Consider an RCT of a binary treatment condition measuring outcomes Y;; at two timepoints,
t € {1,2}, for participants j, where Y3, is the immediate endline outcome and Y5; is the
long term followup outcome. Under the potential outcomes framework (Rubin, 2005), let
Y (0):; denote the potential outcome under the control counterfactual and Y (1);; denote
the potential outcome under treatment. We assume that (a) the number of participants in
each arm, n, is equal and (b) outcomes of different participants are independent. That is,
Yy AL Yy for all j # k.

In the absence of treatment, we observe Y (0);; and Y (0)y;. Let Var(Y(0)y;) = 0% and
Var(Y(0)2;) = 03. Now assume at each time an additive, constant treatment effect, 6;, so
that Y'(1),; = Y (0);; + 6;. Because the treatment effect is an additive constant, the variances

within the treatment condition equal those in the control condition, i.e., Var(Y'(1)y;) = o7



and Var(Y(1)y;) = 03. (We explore the consequences of heterogeneous treatment effects in
Appendix A.)

Now let Cov(Y(0)1, Y (0)ax) = Cov(Y (1)1, Y (1)or) = poros it j = k, and 0 otherwise.
Equivalently, the test-retest reliability of the outcome measure is p, i.e. Corr(Yy;,Ys;) = p,
within both treatment conditions.

To estimate treatment effects in each time period, we use a difference-in-means estimator,

51 = 71T - ?107 (4>

where Y1 and Y¢ are, respectively, the treatment and control group sample means at

endline. Similarly,

02 =Yor — Yac. (5)
What is consequential here for the meta-regression is Corr(dy, d3) = %, which we
ar(d1)Var(d2
now derive.
We first decompose the estimators into the true ES 6; and sampling error:
01 =01+ {Y(O)lT - Y(O)m} (6)
0y = 0y + {Y(O)zT - Y(O)ZC}' (7)
Because constants do not affect variance or covariances,
202
Var(d;) = Var(Y(0),, — Y (0),o) = - (8)
202
Var(ds) = Var(Y (0)yr — Y(0)y0) = n (9)
2p0109
Cov(d1,d2) = Cov(Y(0),7 — Y(0),6, Y (0)gp — Y(0)ye) = N (10)



Plugging Equation 10 into the definition of correlation, we have,

2p0102 2p0102
o n _ n _
Corr(d1,02) = — = o =/ (11)
201205 T
n n

That is, the correlation between the ES estimates (i.e., the correlated sampling error) is equal
to the test-retest reliability of the outcome.
2.2.2 Bias in Meta-regression Slopes

Now consider the consequences of Equation 11 for a “naive” conditional persistence meta-
regression, where d;, indicates an observed ES at time ¢ for study k, fit by ordinary least

squares:
dok = v+ Bo1x + €. (12)
Let studies have true ES related by

Oor, = o + BO1 + M, (13)

Cov(@lk, 7716) =0. (14)
The observed ES estimates oy, are functions of the true ES 6 plus sampling error ey:

01k = Oh + e (15)

Oor, = Oop, + €24, (16)

where ey, are independent of (615, 7).

The large-sample bias of the persistence slope from Equation 12 is (Pischke, 2007):

.~ Cov(ey,ey) — fVar(ey)
Bias(8) = Var(0) + Var(e;) (17)




Plugging in Equation 10, this yields

_ py/ Var(e;)Var(ey) — BVar(e;)

Bias(3 18
ias(5) Var(6,) + Var(e;) (18)
_ p\/Var(el)Var(eg) B BVar(e;) (19)
Var(6,) + Var(e;)  Var(6,) + Var(e;)
correlatior::lriven bias attenu;;on bias

Setting p = 0, we recover the attenuation bias under classical measurement error (Gilbert,
2025; Kline, 2023). When p > 0, the bias is more positive.

In our setting, where meta-regression is used to estimate persistence, we assume that
B > 0. Additionally, because within-person measures are correlated across time in behavioral
settings, we assume p > 0. Typically these test-retest reliabilities are high, with one individual
participant data meta-analysis of behavioral RCTs showing a mean p = .51, SD = .23 across
97 outcomes (Veltri & Gilbert, 2026). Attenuation bias will therefore shrink estimates toward

zero, but the correlation bias will likely overcome it, leading to overestimates of persistence.

2.2.3 A Multivariate Meta-Regression Accounting for Correlated Sampling

Error

We now describe a meta-regression model to account for correlated sampling error. We
denote dx; and o7, as the ES and variance of the ES for study k at time ¢, respectively. We
first specify the sampling covariance matrix for study k, where p is the correlation between
outcomes at t =1 and t = 2 :

2
Ok PO1E0 2k

S = : (20)

2
PO1L02k O

Now consider the true ES, 6;,. These determine the joint distribution of observed ES é; as

follows:



We then specify a persistence model for the true ES:

Or ~ N (p, 77) (22)

QQk’lelk :N(a+591k‘77-22)a (23)

where g is the grand mean of true ES at time 1, « is the mean true ES at time 2 when
01, = 0, [ is the conditional persistence corrected for correlated sampling error at both time
points, 77 is the overall variance in true ES at time 1, and 7 is the residual variance in true
ES at time 2 (Riley, 2009).

Because p may be inconsistently reported across studies or unknown, we propose a
sensitivity analysis style approach, in which we fix p to a range of values (e.g., 0, .1, .2, ..., .9)
to determine to extent to which model results are sensitive to alternative assumptions. We
use Stan to fit the model (Carpenter et al., 2017). We use the following priors and include

example code in Appendix B:

i~ N(0,1) (24)
o~ N(0,1) (25)
B~ N(0,1) (26)
71 ~ Half-Cauchy(0, .5) (27)
75 ~ Half-Cauchy(0, .5). (28)



2.3 Simulation Study

Given the derivation above, we conduct a targeted simulation study. The simulation study is
not intended to be exhaustive, but rather to concretely demonstrate the issues at play in
realistic sample sizes. We first simulate 0; ~ N'(.5,.25%) and 6, = .50, that is, a conditional
persistence of 50% based on endline ES mostly in the (0, 1) interval. We then simulate RCTs
with 100 participants randomly assigned to treatment or control conditions to represent the
small to moderate sample sizes common in behavioral meta-analyses. Within each RCT, we
generate the potential outcomes under control as
Y (0)q; 0 L p

~N : : (29)
Y(0)2; 0 [p 1

where p is the test-retest reliability. We then generate the potential outcomes under treatment
as Y(1)1; = Y(0)1;, + 01 and Y (1)2; = Y (0)g; + 62. We then create the observed outcomes
by selecting Y (1) for units randomly assigned to treatment and Y (0) for units randomly
assigned to control.

We then generate 500 RCTs with true ES 6, and 6y, varying p from 0 to .9 in increments
of .1. Figure 3 shows the scatterplots of the meta-regression of observed ES (i.e., d5 on ¢;),
faceted by p, with the true meta-regression in black and the OLS fit in red. In line with the
results above, when p = 0, measurement error attenuates the slope, and as p increases, the
slope inflates. A metamodel of these simulation results (Gilbert & Miratrix, 2025) confirms
the pattern, as each .1 increase in p causes a .036 increase in the estimated conditional
persistence slope (95% CI = [.031, .041]).

We next fit a model that accounts for the correlated sampling error (here, assuming p is
known) to the data (i.e., Equation 22). Figure 4 shows the results. We find that the 95%
CIs for the proposed Bayesian estimator capture the true persistence of 50% in all cases

whereas the OLS estimator systematically under-estimates persistence when p is low and
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Figure 3: Simulated Meta-regressions Across Test-Retest Reliabilities
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Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Each dot is a simulated
RCT of 100 participants randomly assigned to treatment or control conditions. The black line is the true
persistence of 50% and the red line shows OLS fits. The plot is faceted by test-retest reliability p.

systematically over-estimates persistence when p is high. However, the Cls of the Bayesian
estimator are much wider than the OLS estimator. Given that the true value of p is either
unknown or inconsistently reported in primary studies, we use a sensitivity analysis approach
in our empirical application to determine how the estimated conditional persistence varies

across a range of plausible values for p.

3 Results

3.1 Data Source

We use data from Hart et al. (2024), who examine conditional persistence of social-emotional
learning (SEL) interventions across a wide range of studies. In total, they include 420 ES
estimates (Glass’s A based on descriptive statistics) from 60 studies at endline and at 6-12

month followup. In the original analysis, the authors use a robust variance estimation (RVE)
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Figure 4: Estimated Conditional Persistence Accounting for and Ignoring Correlated
Sampling Error
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Notes: The y-axis shows the estimated conditional persistence and the x-axis shows the test-retest reliability
p. Points and lines represent point estimates and 95% Cls (credible intervals for the Bayesian estimator and
confidence intervals for the OLS estimator).

approach to account for the multiple ES within studies (Pustejovsky & Tipton, 2022), but

do not account for potential correlated sampling error across time.

3.2 Standard Meta-regression Model Results

Figure 5 essentially replicates the original analysis (Hart et al., 2024, Figure 5), showing
the followup ES on the y-axis and the endline ES on the x-axis.? We find a conditional
persistence of 43% (SE = .026). Substantively this means that interventions that show an
ES of 1SD at endline are predicted to show an ES of .43 at followup. The I? (proportion of
variance in observed ES that reflects true underlying heterogeneity) is 89% at endline and

81% at followup, suggesting that the observed ES are quite reliable at both time points.

2To maintain comparability between our models, we use a three-level meta-regression model for our
baseline analysis. The original study uses RVE.
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Figure 5: Conditional Persistence based on RVE Meta-regression Model

ES at Followup
-

ES at Endline

Slope = 0.427

Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Thin lines represent +1
standard error from the point estimate. The dashed black line represents a theoretical conditional persistence
of 100%. The blue line shows the estimated slope using the standard meta-regression approach.

3.3 Sensitivity Analysis

Table 1 shows the adjusted model results, where p indicates the assumed outcome correlation
across time points. When p = 0, we find an estimated conditional persistence of 45%, which is
slightly larger in magnitude than the initial result of 43% due to disattenuation. As p increases,
we see the estimated conditional persistence decrease, in line with the arguments presented in
Section 2. For example, assuming p = .5, we estimate 33% conditional persistence. Assuming
p = .9, we estimate 20% conditional persistence. We illustrate the results graphically in
Figure 6, in which each of the colored lines represents a different assumed p value. Thus,
the initial conditional persistence estimate of 43% is likely to be too high under even mild

assumptions about outcome correlation across time.
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Table 1: Results of Meta-regression Models

p Term Coef. (SE) 95% CI
0.00 Intercept 0.097 (0.026) [0.04, 0.15]
0.00 Slope 0.447 (0.03) [0.39, 0.51]
0.10 Intercept 0.102 (0.028) [0.05, 0.16]
0.10  Slope 0.429 (0.032) [0.37, 0.49]
0.20 Intercept 0.107 (0.029) [0.05, 0.16]
0.20 Slope 0.409 (0.032) [0.35, 0.47]
0.30 Intercept 0.112 (0.029) [0.05, 0.17]
0.30 Slope 0.384 (0.032) [0.32, 0.45]
0.40 Intercept 0.12 (0.031)  [0.06, 0.18]
0.40 Slope 0.36 (0.032) [0.3, 0.42]
0.50 Intercept 0.126 (0.032) [0.06, 0.19]
0.50 Slope  0.334 (0.033) [0.27, 0.4]
0.60 Intercept 0.131 (0.033) [0.07, 0.2]
0.60 Slope  0.306 (0.033) [0.24, 0.37]
0.70 Intercept 0.139 (0.035) [0.07, 0.21]
0.70 Slope  0.273 (0.033) [0.21, 0.34]
0.80 Intercept 0.154 (0.036) [0.08, 0.22]
0.80 Slope  0.239 (0.033) [0.17, 0.3]
0.90 Intercept 0.159 (0.036) [0.09, 0.23]
0.90 Slope 0.2 (0.035)  [0.13, 0.27]

Notes: p indicates the assumed correlation between outcomes across time points. 95% credible intervals are
calculated as the point estimate +1.96 times the posterior SD.

4 Discussion

Fadeout and persistence of intervention effects are critical issues in the social and behavioral
sciences. The standard approach to estimating persistence is to fit a meta-regression model of
followup ES on endline ES. However, this common practice ignores the correlated sampling
error across time points, resulting in biased conditional persistence estimates. While models
to correct for this issue have a long history in fields such as medicine (Daniels & Hughes,
1997; Riley, 2009), extant treatments emphasize precision rather than bias and applications
in the social sciences are rare.

In this study, we propose a simple sensitivity check to address this issue, illustrated with
empirical meta-analysis data from SEL interventions (Hart et al., 2024). We find that while

the standard approach provides an estimated conditional persistence of 43%, even a mild
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Figure 6: Conditional Persistence Corrected for Correlated Sampling Error

ES at Followup

ES at Endline

r(Endline, Followup)
0.00 0.25 0.50 0.75

Notes: The y-axis shows the ES at followup and the x-axis shows the ES at endline. Thin lines represent +1
standard error from the point estimate. The dashed black line represents a theoretical conditional persistence
of 100%. The multicolored lines represent estimated conditional persistence assuming varying correlations
between outcomes across time points.

assumption of an outcome correlation of p = .5 attenuates this estimate to 33%. Given
that outcomes across time are almost certainly positively correlated, current estimates of
persistence are likely too optimistic. In educational interventions, for example, correlations
exceeding p = .7 are likely to obtain for standardized tests of math or reading.

We highlight two extensions to our approach. First, using covariate-adjusted ES rather
than standardized mean differences such as Cohen’s d may be desirable when examining
persistence, because covariate adjustment may reduce the correlated sampling error and
therefore lessen the bias. Second, rather than assuming a constant p in a sensitivity analysis,
we could set a prior for the correlation itself, for example, from the Beta distribution (given
that test-retest correlations are almost certain to be positive), in cases where prior evidence

suggests plausible values for p (e.g., Veltri and Gilbert, 2026).
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Appendices

A Heterogeneous Treatment Effects

Suppose that, instead of a constant additive effect at time t, 6;, treatment effects vary also

across individuals j:

Y (1) =Y (0)i; + 75 (30)

0, = E(rj). (31)

Here, 7;; denotes the treatment effect for individual j at time ¢. Continuing with the previous
assumptions of equal group sizes and independence across participants, the difference-in-means

estimators satisfy

0r =0 +{Y(0),p = Y(0)yo } + {Tex — E(75) }- (32)

The covariance of the two estimators is then

Cov(dh,62) = [ Con(¥ (0)15, Y (0)2) (33)
+ Cov(Y(0)1, ;) (34)
+ Cov(1;, Y (0)2) (35)
+ Covfriy 735)] - (36)

Consequently, the correlation between the two estimated effects becomes

Cov(Y(0)15, Y (0)2;) + Cov(Y (0)15, 72;) + Cov(71;, Y (0)2;) + Cov(71;, T25)
Corr(51, 52) = Var(d1)Var(d2) '

n

(37)
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In this case, the correlation of the estimators is no longer determined solely by the test-retest
reliability of the outcome p. It now also depends on the joint distribution of individual
treatment effects across time and on their covariance with baseline potential outcomes. If
individual treatment effects vary and those effects persist across time, so that Cov(7y;, 79;) > 0,
the correlation between 9; and d; may exceed p. Conversely, if treatment effects tend to

reverse over time, Cov(7y;, 7o) < 0, the correlation may be attenuated or even negative.

B Example Stan Code

B =
stan_code <- "
data {

int<lower=1> K; // Total number of ES pairs (rows)

int<lower=1> J; // Number of unique studies (clusters)

array[K] int<lower=1, upper=J> study_id;

array[K] vector[2] y; // les_endline, es_followup]
vector<lower=0>[K] sel; // SE at endline
vector<lower=0>[K] se2; // SE at followup

vector<lower=-1, upper=1>[K] r; // Sampling correlation (from sensitivity analysis)
real<lower=-1, upper=1> rho; // RVE Correlation (study-level dependency, e.g., 0.8)
}

transformed data {
matrix[2,2] L_S[K];
matrix[2,2] L_Rho;

// 1. Build the RVE Study-level Correlation Matrix (fixed rho)
{

matrix[2,2] Rho;

Rho[1,1] = 1.0;

Rho[2,2] = 1.0;

Rho[1,2] = rho;

Rho[2,1] = rho;

L_Rho = cholesky_decompose (Rho);
}

// 2. Build the Sampling Error Cholesky factors (observation level)
for (i in 1:K) {

matrix[2,2] S;

S[1,1] = square(sell[il);

S[2,2] = square(se2[il]);

S[1,2] = r[i] * sel[i] * se2[il;
S[2,1] = s[1,2];
L_S[i] = cholesky_decompose(S);
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}

parameters {

// Global Intercepts and Persistence Slope

real mul; // Average endline ES
real alpha; // Persistence intercept
real beta; // Persistence slope (The corrected parameter)

// Hierarchical Variances

real<lower=0> sigma_ul; // Study-level SD (Endline)
real<lower=0> sigma_u2; // Study-level SD (Followup)
real<lower=0> taul; // Residual SD (Endline)
real<lower=0> tau2; // Residual SD (Followup)

// Standardized random effects for non-centered parameterization

matrix[2, J] u_raw; // Study-level shifts
vector [K] epsl_raw; // Row-level residual for endline
vector [K] eps2_raw; // Row-level residual for followup

transformed parameters {

vector [K] thetal;
vector [K] theta2;
matrix[2, J] u;

// Apply the RVE correlation (rho) to the study-level random effects
for (j in 1:J) {

ul, j] = diag_pre_multiply([sigma_ul, sigma_u2]', L_Rho) * u_raw[, jJl;
}

for (i in 1:K) {
// 1. Latent True ES at Endline (Study shift + residual)
thetal[i] = mul + ul[l, study_id[i]] + (epsi_raw[i] * taul);

// 2. Latent True ES at Followup (Regression on thetal + study shift + residual)
theta2[i] = alpha + (beta * thetall[i]) + u[2, study_id[i]] + (eps2_raw[i] * tau2);

}
}
model {
// Priors

}

mul ~ normal(0, 1);

alpha ~ normal(0, 1);

beta ~ normal(0, 1);

[sigma_ul, sigma_u2, taul, tau2] ~ cauchy(0, 0.5);

to_vector(u_raw) ~ std_normal();
epsl_raw ~ std_normal();
eps2_raw ~ std_normal();

// Likelihood: Observed ES given the Latent True ES and Correlated Sampling Error
for (i in 1:K) {

y[i] ~ multi_normal_cholesky([thetal[i], theta2[il]', L_S[il);
}
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B =
K <- nrow(sel)

J <- sel |> distinct(study_id) [> nrow()

study_counts <- as.numeric(table(sel$study_id))

# create a function to do this for a specified correlation
fit_mod <- function(r){

# get the data for stan in a list format
stan_data <- list(

K = K,

J =17,

study_id = as.numeric(as.factor(sel$study_id)),
study_sizes = study_counts,

y = as.matrix(sel[, c("esl", "es2")]),
sel = sel$sel,

se2 = sel$se?2,

# test retest

r = rep(r, nrow(sel)),

# RVE rho

rho = .8

# fit model - this takes about 90 seconds each
fit <- stan(

model_code = stan_code,

data stan_data,

iter 1000,

warmup = 500,

chains = 4,

seed = 2026

R R
# get a sequence of correlations
rs <- seq(0, .9, .1)

# map across the inputs
if (fit_mods){

# map across the inputs
stan_mods <- map(rs, fit_mod, .progress = TRUE)

# save the fitted models
save(stan_mods, file = "data/mods/stan_mods.Rdata")

}

# load the fitted models
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load("data/mods/stan_mods.Rdata")
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