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Abstract 

The estimation of test score “gaps” and gap trends plays an important role in monitoring 

educational inequality. Researchers decompose gaps and gap changes into within- and between-

school portions to generate evidence on the role schools play in shaping these inequalities. 

However, existing decomposition methods assume an equal-interval test scale and are a poor fit 

to coarsened data such as proficiency categories. This leaves many potential data sources ill-

suited for decomposition applications. We develop two decomposition approaches that overcome 

these limitations: an extension of V, an ordinal gap statistic, and an extension of ordered probit 

models. Simulations show V decompositions have negligible bias with small within-school 

samples. Ordered probit decompositions have negligible bias with large within-school samples 

but more serious bias with small within-school samples. More broadly, our methods enable 

analysts to (1) decompose the difference between two groups on any ordinal outcome into 

portions within- and between some third categorical variable, and (2) estimate scale-invariant 

between-group differences that adjust for a categorical covariate.          

 

Key words: ordinal decomposition, achievement gap, test score gap, decomposition, ordinal 

methods, simulation study 
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Ordinal Approaches to Decomposing Between-group Test Score Disparities 

The estimation of test score “gaps”1 and gap trends by race/ethnicity and income plays an 

important role in monitoring educational inequality. Researchers decompose gaps and gap 

changes into within- and between-school portions (or within- and between school districts, states, 

etc.) to generate evidence on the role that schools plays in shaping these inequalities (e.g., Fryer 

& Levitt, 2004; Hanushek & Rivkin, 2006; Quinn, 2015; Reardon, 2008). If school quality 

differs by race, we would expect to see racial gaps widen between schools over time, net of out-

of-school factors. If students from different racial/ethnic backgrounds have access to 

differentially effective resources or instruction within the same schools, we would expect to see 

gaps widen within schools over time. By comparing the relative proportion of gap-change that 

occurs within versus between schools, we can generate hypotheses about the most effective way 

to allocate resources in pursuit of educational equity. Of course, patterns observed in gap-change 

decompositions may result from a variety of in- or out-of-school factors. Nonetheless, for 

descriptive research about large-scale trends, these decompositions help to narrow the range of 

plausible hypotheses.   

Existing decomposition methods have two important limitations, however. First, as 

parametric methods, they assume that the test scale has equal-interval properties, an assumption 

that is often questionable and difficult to verify (Domingue, 2014; Lord, 1975; Zwick, 1992). 

Second, these models are a poor fit when only a coarsened version of the test score distribution is 

available. This leaves many potential data sources ineligible for decomposition applications. For 

example, most publicly-available data from state standardized testing – including data from the 

EDFacts Assessment Database (U.S. Department of Education, 2015) - come in the form of 

counts of students scoring within some number of ordered proficiency categories such as “needs 
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improvement,” “proficient,” and “advanced” (Ho & Reardon, 2012; Reardon, Shear, Castellano, 

& Ho, 2017). Similarly, coarsened data such as Advanced Placement scores (1-5) and English 

proficiency exam scores (e.g., performance levels on the English Language Proficiency 

Assessment for California) are not well-suited for existing decomposition methods.     

In the present article, we develop and evaluate methods that overcome these limitations. 

Our methods are invariant to monotonic scale transformations and can be applied when only a 

coarsened version of the test scale is available. This expands the possibilities for decomposition 

applications and provides a means of testing the sensitivity of parametric decompositions to 

assumptions about the interval nature of the test scale.2   

While our motivating examples focus on decomposing racial/ethnic test score gaps into 

within-and-between school portions, our methods can be applied to decompose the difference 

between two groups on any ordinal outcome into portions within and between any third 

categorical variable. In education contexts, this includes decomposing between-group gaps on 

outcomes such as GPA, socioemotional learning, or test scores into portions within- and 

between-district, within- and between-country, and so on. The method applies to decompositions 

of gaps in any psychological or behavioral outcome into between- and within- components, such 

as gender gaps in organizational structures. Finally, in large-sample analyses where continuous 

covariates are treated as categorical variables for explanatory simplicity – such as socioeconomic 

status cut into deciles, parental education into categories, or household income into income 

brackets – these approaches enable scale-invariant estimation of covariate-adjusted gaps.      

We begin by describing parametric frameworks for decomposing test score gaps. We 

then describe the interval scale assumption and its relevance to parametric decompositions. We 

introduce our strategy for exploiting existing ordinal gap-estimation methods to develop ordinal 
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decomposition approaches. We then describe the simulations through which we evaluate the 

viability of these methods before presenting results from simulations and real data applications.          

Parametric Gap Decomposition Frameworks 

When decomposing a racial test score gap across schools, the goal is to estimate the 

proportion of the gap that lies within schools versus the proportion that lies between schools. The 

relative sizes of these proportions provide clues as to how resources might be productively 

allocated. That is, would the overall gap narrow more if we were able to equalize group 

performance within schools, or if we equalized group performance between schools? Yet 

defining and estimating the within versus between-school proportions is not straightforward. 

Here, we describe two contrasting approaches to parametric decomposition and a third approach 

that unifies the two. We begin the article discussing these parametric decompositions because 

our proposed ordinal decompositions are adaptations of these parametric methods.          

Let 𝛿 represent a test score gap; for illustration, consider the Black-White test score gap 

and, for simplicity, consider a population of students who are either Black or White:  

𝑌𝑖 = 𝛼 + 𝛿𝐵𝑙𝑎𝑐𝑘𝑖 + 𝜖𝑖      (1) 

where 𝑌𝑖 is a test score (assumed to represent the latent trait with equal accuracy across groups), 

𝐵𝑙𝑎𝑐𝑘𝑖 is an indicator for whether student i is Black, and 𝜖𝑖  is a random error term. Although in 

reality most of the test score variation lies within, rather than between, groups, we can learn 

about the success of equity-focused policies by tracking the between-group variation. A common 

approach for decomposing 𝛿 into within- and between-school portions is the school fixed effects 

decomposition, also known as the Oaxaca decomposition (Oaxaca, 1973). This decomposition 

can be achieved with the model:  

𝑌𝑖𝑠 = 𝛽1𝐵𝑙𝑎𝑐𝑘𝑖𝑠 + 𝛾𝑠 + 𝜖𝑖𝑠        (2) 
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where 𝛾𝑠 represents a set of school fixed effects (constrained to a zero sum). In this model, 𝛽1 is 

interpreted as the average within-school gap, leaving 𝛿 − 𝛽1 as the between-school gap.   

Hanushek and Rivkin (HR, 2006) argued that it is generally incorrect, or at least 

misleading, to interpret the ratio 𝛽1/𝛿 as the proportion of the total gap that lies within schools. 

Closing the gaps within all schools would sensibly mean that 100% of the remaining gap lies 

between schools. However, reducing 𝛽1 to zero would not necessarily result in a gap equal to 

𝛿 − 𝛽1.3 HR therefore offered an alternative decomposition that weights the contribution of each 

school based on its racial make-up and size: 

𝛿 = (∑
𝑛𝑏𝑠

𝑛𝑏
𝑌̅𝑠 − ∑

𝑛𝑤𝑠

𝑛𝑤
𝑌̅𝑠𝑠𝑠 ) + ((

1

𝑛𝑤
+

1

𝑛𝑏
) ∑ (𝑌̅𝑏𝑠 − 𝑌̅𝑤𝑠)𝛼𝑠(1 − 𝛼𝑠)𝑛𝑠𝑠 )     (3) 

where 
𝑛𝑏𝑠

𝑛𝑏
  and 

𝑛𝑤𝑠

𝑛𝑤
 are, respectively, the share of Black or White students who are in school s, 𝑌̅𝑠 

is the mean test score in school s, 𝑌̅𝑏𝑠  and 𝑌̅𝑤𝑠 are race-specific school means, and 𝛼𝑠 is the 

proportion of students in school s who are Black. The first parenthetical on the right-hand side is 

HR’s between-school gap, and the second parenthetical is HR’s within-school gap. The choice of 

decomposition matters: In the ECLS-K:99, the Oaxaca decomposition led to the conclusion that 

37% of the Black-White math gap lay between schools in the spring of fifth grade, while the HR 

decomposition suggested that 79% lay between schools (Reardon, 2008). Similar discrepancies 

arise when decomposing the gap-widening from kindergarten to fifth grade.  

Reardon (2008) introduced a three-part decomposition showing the mathematical 

relationship between the Oaxaca and HR decompositions. Reardon’s decomposition is 

accomplished by first fitting the model: 

𝑌𝑖𝑠 = 𝛽0 + 𝛽1𝐵𝑙𝑎𝑐𝑘𝑖𝑠 + 𝛽2𝐵𝑙𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
𝑠 + 𝜖𝑖𝑠    (4) 
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where 𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the proportion of students in school s who are Black and other terms are as 

defined above. The adjusted gap in this model, 𝛽1, is equivalent to the within-school gap 

estimated from the school fixed effects (Oaxaca) model in (2). Reardon showed that the overall 

Black-White gap can be expressed as:  

 𝛿 = 𝛽1(1 − 𝑉𝑅) + 𝛽1𝑉𝑅 + 𝛽2𝑉𝑅   (5) 

where 𝛽1and 𝛽2 are from (4). 𝑉𝑅 is the variance ratio index of segregation, which can be 

expressed as the difference in average school proportion Black between Black and White 

students. Reardon called the first term on the RHS of (5) the “unambiguously within school” gap 

(𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝑊𝑖𝑡ℎ𝑖𝑛 ≡ 𝛽1(1 − 𝑉𝑅)), the center term the “ambiguous” gap (Ambig ≡ 𝛽1𝑉𝑅), and 

the last term the “unambiguously between school” gap (𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝐵𝑡𝑤𝑛 ≡ 𝛽2𝑉𝑅). When the 

ambiguous portion is added to the unambiguously within-school portion, the decomposition is 

equivalent to the school fixed effects decomposition. When the ambiguous gap is added to the 

unambiguously between-school gap, the decomposition is equivalent to the HR decomposition.  

Because Reardon’s decomposition provides a useful framework for illustrating our ordinal 

methods, we describe it in more detail here.     

Reardon explains the decomposition through a series of graphs similar to our stylized 

depictions in Figures 1 and 2. In Figure 1, observations are students from a population of 

approximately 500 schools, the y-axis is student test score, and the x-axis is the proportion of the 

student body at the student’s school who are Black. The solid gray line is the fitted line for White 

students, the solid black line is the fitted line for Black students4, and the dashed black line gives 

the predicted overall school mean test score. The x-coordinate for the diamond on the fitted line 

for Black students is the mean school proportion Black for Black students (making the y 

coordinate the overall test score mean for Black students) and the x-coordinate for the circle on 
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the fitted line for White students is the mean school proportion Black for White students. The 

horizontal distance between the two points is 𝑉𝑅.  The vertical distance between them is 𝛿.   

Figures 1 and 2 enable us to describe gap components graphically, in terms of two 

different approaches to closing them. In Reardon’s (2008) three-part decomposition, the Oaxaca 

within-school gap – which we will call the “total within-school gap” (𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 =

𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝑊𝑖𝑡ℎ𝑖𝑛 + 𝐴𝑚𝑏𝑖𝑔 = 𝛽1 ) – would be closed by anchoring the fitted lines for White 

and Black students in Figure 1 to the same y-intercept (without changing their slopes; i.e., 

equalizing Black-White mean performance within school without altering the relationship 

between school proportion Black and test scores). This scenario is depicted in the left panel of 

Figure 2. After overlaying the fitted lines in this way, the remaining vertical distance between the  

circle and the diamond is the unambiguously between school gap. In the right panel of Figure 2, 

we depict the closing of the HR within-school gap (or the unambiguously within school gap), 

which is accomplished by overlaying the White and Black fitted lines on the prediction line for 

school means (i.e., equalizing group mean performance within schools without changing 

schools’ mean performance). The remaining vertical distance between the circle and the diamond 

is the HR between-school gap, which we will call the “total between school gap” 

(𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 = 𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝐵𝑡𝑤𝑛 + 𝐴𝑚𝑏𝑖𝑔 = (𝛽1 + 𝛽2)𝑉𝑅). The Venn diagram in the upper 

right-hand corner of Figure 1 shows that 𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 = 𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝐵𝑡𝑤𝑛 + 𝐴𝑚𝑏𝑖𝑔 (where 

𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝐵𝑡𝑤𝑛 ≡ 𝛽2𝑉𝑅 and 𝐴𝑚𝑏𝑖𝑔 ≡ 𝛽1𝑉𝑅) and 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 = 𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝑊𝑖𝑡ℎ𝑖𝑛 +

𝐴𝑚𝑏𝑖𝑔 (where 𝑈𝑛𝑎𝑚𝑏𝑖𝑔 𝑊𝑖𝑡ℎ𝑖𝑛 ≡  𝛽1(1 − 𝑉𝑅)).      

Again, from the perspective of decomposition, the parameters of interest are these terms 

as proportions of 𝛿 (that is, 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 =
(𝛽1+𝛽2)𝑉𝑅

𝛿
, 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 =

𝛽1

𝛿
). In the 

K-5 rounds of the ECLS-K:99 data, Reardon (2008) found that, for Black-White gaps across 
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math and reading, 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 ranged from .78 to .91, and 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 from 

.27 to .67. These numbers suggest that eliminating the association between school proportion 

Black and test scores would narrow the Black-White gap by 33-73% (i.e., 1 −

𝑃𝑟𝑜𝑝. 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛), while closing gaps within schools without changing schools’ mean test 

scores would narrow the overall gap by 9-22% (i.e., 1- 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛).        

In these decompositions, the estimated total gap – and the ratio of the decomposed 

elements to the total gap – will depend on the scale of Y. That is, estimates of 𝛽1 and 𝛽2  - and 

estimates of 𝑃𝑟𝑜𝑝. 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 and 𝑃𝑟𝑜𝑝  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 - will differ with non-linear 

transformations of Y. Additionally, if only coarsened data are available, 𝛿, 𝑃𝑟𝑜𝑝  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛, 

and 𝑃𝑟𝑜𝑝. 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 cannot be estimated properly from the models above. These facts 

motivate our development of ordinal decomposition methods. Before introducing these methods, 

we discuss the equal-interval scale assumption on which the parametric methods rely.    

The Equal-Interval Scale Assumption 

Most commonly-used test score gap statistics are based on a mean difference between 

groups, requiring the assumption that the test metric is interval-scaled (Spencer, 1983). However, 

given that achievement tests measure a latent construct, the question of whether it is possible to 

completely confirm the interval scale assumption is a controversial one (Domingue, 2014; Lord, 

1975; Zwick, 1992). If a test scale is not interval, the interpretation of a gap expressed in terms 

of a mean difference is unclear because units do not correspond to the same “amount” of the 

construct at each point along the scale (Ballou, 2009). Furthermore, if we cannot know whether a 

test scale is interval, we have no basis on which to prefer one scale over another nonlinear 

transformation of the scale (Reardon, 2008). This is troubling because nonlinear transformations 
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of scale may change the magnitude, or even the sign, of a test score gap (Ho, 2009; Spencer, 

1983).  

Rescaling tests can have a particularly dramatic effect on estimates of gap trends (Bond 

& Lang, 2013; Nielsen, 2015). For example, Bond & Lang (2013) found that in the ECLS-K:99, 

Black-White gap-widening from K to grade 3 ranged from .05 SD to .64 SD under monotonic 

scale transformations (compared to .35 SD in the baseline metric). As we show in online 

Appendix A using ECLS-K:2011 data, transformations can change the within-school and 

between-school ratios to the total gap change just as dramatically. Among the transformations 

that yield the most extreme total gap changes, the total-within gap change can be 1.8 times the 

total gap-change or 0.13 times in the opposite direction. The total-between gap change can be 

0.25 times the total gap change or 0.95 times. Converting the scale to percentile ranks can yield 

substantively meaningful (though less extreme) differences. In the original theta scale, 25% of 

math gap-widening over K occurs between schools; this climbs to 40% when using percentile 

ranks. A transformation-invariant approach to decomposing test score gaps avoids such 

confusion.   

Two Ordinal Approaches to Gap Decomposition 

 We propose two primary approaches to scale-invariant gap decompositions that use only 

the ordinal information contained in a test scale. One approach involves assuming a latent 

normal distribution underlying each school-by-race distribution and fitting ordered probit models 

(Reardon et al., 2017). These models estimate school-by-race means on an effectively ordinal 

scale that can then be manipulated to achieve Reardon’s (2008) decomposition. (Lockwood et al. 

[2018] develop a Bayesian extension of Reardon et al.’s [2017] approach that overcomes some 

challenges faced by the latter’s direct MLE estimators; for simplicity, we build on Reardon et 
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al.’s [2017] ordered probit models and reserve investigation of Lockwood et al.’s [2018] 

extensions for future research). We show that this works well under ideal conditions when 

school-by-race sample sizes are large. We introduce a second approach motivated by small-

sample scenarios. This approach involves decomposing V, a scale invariant gap statistic (Ho, 

2009), by applying the ordinal analogues to Reardon’s (2008) parametric decomposition.     

The approaches are conceptually similar. They both identify scale-invariant within- and 

between-school gap components, and they close gaps by relying only on the ordinal information 

contained in test scores. A benefit of the ordered probit approach is that it produces estimates 

equivalent to those from the parametric decomposition (model 5) when school-by-race 

distributions are respectively normal (i.e., a common transformation exists that renders all 

distributions normal). That is, the interpretation of the ordered probit decomposition can be 

mapped onto the parametric decomposition without having to make the same scale assumptions 

required by the parametric decomposition. However, we find that the ordered probit 

decomposition requires large school-by-race sample sizes. This disqualifies many data sources, 

including NCES studies such as the ECLS-K and the ELS. While the V decomposition does not 

have stringent sample size requirements, its parameters do not equal the Model 5 parameters 

under respective normality. As discussed in more detail below, an implication is that the V 

decomposition parameters and ordered probit decomposition parameters will generally differ. 

However, we show that the differences are small in magnitude across a range of scenarios.     

Ordered Probit Decompositions 

Our first decomposition approach builds on work by Reardon and colleagues, who 

showed that ordered probit models can be used to estimate means and standard deviations of test 

scores for groups of students when only coarsened proficiency data are available (Reardon et al., 
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2017). Imagine some test scale y that has been coarsened along some set of cut scores and 

assume that y is respectively normal across groups. Denote the scale in which y is normal for 

each group (with population SD=1) as y*. Given the counts of students falling within each score 

bin, an ordered probit model can be fit to estimate each group’s mean and SD in the y* scale: 

𝜋𝑔𝑏 = Φ (
𝜇𝑔

∗ −𝑐𝑏−1
∗  

𝜎𝑔
∗ ) − Φ (

𝜇𝑔
∗ −𝑐𝑏

∗  

𝜎𝑔
∗ ) (6) 

where 𝜋𝑔𝑏 is the proportion of students from group g whose scores fall in achievement bin b, 𝜇𝑔
∗  

and 𝜎𝑔
∗ are the means and standard deviations in the 𝑦∗ metric for group g, 𝑐∗ is a cut score 

defining a boundary of the bin, and Φ is the standard normal CDF. Because no monotonic scale 

transformation will alter a student’s ranking, estimates of 𝜇𝑔
∗  and 𝜎𝑔

∗ will not differ across 

monotonic transformations of y. Model 6 can be fit using a homoskedastic ordered probit model 

(HOMOP) assuming a common variance across groups, a heteroskedastic model (HETOP) in 

which each group is allowed its own variance, or a partially heteroskedastic model (PHOP) in 

which some groups are assumed to have a common variance and others are not.     

When working with student-level test scores, the first step is to discretize the distribution 

to match Model 6. We coarsen into 10 ordered bins by decile. Next, use these numbered bins to 

estimate school-by-race means with an ordered probit model and store the model-estimated 

school-by-race means in the 𝑦∗ metric – i.e., 𝜇𝐵
∗

𝑠
̂  and 𝜇𝑊

∗
𝑠

̂ (for Black and White sub-groups, 

respectively). The overall population gap is then estimated as: 𝛿̂∗ = ∑ (𝜇𝐵
∗

𝑠
̂

𝑠
𝑛𝑠

𝐵

𝑛𝐵) − ∑ (𝜇𝑊
∗

𝑠
̂

𝑠
𝑛𝑠

𝑊

𝑛𝑊). 

To estimate the total between-school gap, first estimate each school’s overall mean 𝜇𝑠
∗̂ =

(𝜇𝐵
∗

𝑠
̂ 𝑛𝑠

𝐵

𝑛𝑠
+ 𝜇𝑊

∗
𝑠

̂ 𝑛𝑠
𝑊

𝑛𝑠
), and then find: 𝑡𝑜𝑡𝑎𝑙 𝑏𝑡𝑤𝑛̂ = ∑ (𝜇𝑠

∗̂
𝑠

𝑛𝑠
𝐵

𝑛𝐵) − ∑ (𝜇𝑠
∗̂

𝑠
𝑛𝑠

𝑊

𝑛𝑊). Use the equality from 



ORDINAL DECOMPOSITION 

13 

 

(5) to solve for the total within-school gap:  𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑡ℎ𝑖𝑛̂ =
𝛿̂∗−𝑇𝐵̂

1−𝑉𝑅
.  Finally, for interpretation, 

transform 𝑡𝑜𝑡𝑎𝑙 𝑏𝑡𝑤𝑛̂  and 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑡ℎ𝑖𝑛̂  into proportions of the total gap (
𝑡𝑜𝑡𝑎𝑙 𝑏𝑡𝑤𝑛̂

𝛿̂∗ , 
𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑡ℎ𝑖𝑛̂

𝛿̂∗ ).  

V Decomposition   

Our second approach decomposes V, an ordinal gap statistic defined as (Ho, 2009):  

𝑉 = √2Φ−1(𝑃(𝑋𝑎 > 𝑋𝑏)) = √2Φ−1 ∫ 𝐹𝑏(𝑥)𝑓𝑎(𝑥)𝑑𝑥
∞

−∞
        (7) 

where 𝑃(𝑋𝑎 > 𝑋𝑏) is the probability that a randomly chosen student from group a scored higher 

than a randomly chosen student from group b, 𝐹𝑏(𝑥) is the CDF for group b, and 𝑓𝑎(𝑥) is the 

PDF for group a. When the distributions for a and b are normal, V equals Cohen’s d. Because V 

is estimated using only information about students’ ordinal rankings, it is invariant to monotonic 

scale transformations. V can be estimated when students’ individual scores are available, or when 

only coarsened test score data are available (Ho & Reardon, 2012).   

As described next, our strategy for decomposing V is to apply the ordinal analogues to 

Reardon’s (2008) graphical decomposition described earlier.          

Estimating the total between-school V gap (𝑽(𝑻𝑩)). Recall that in Reardon’s parametric 

decomposition, the total between-school gap can be interpreted as the gap that would remain if 

gaps were closed within schools without changing overall school mean achievement. The ordinal 

analogue to this would be to equalize the empirical probability mass functions (PMFs) by race 

within each school without altering the school’s marginal empirical PMF. Conceptually, this 

ordinal analogue can be established by mapping the separate Black and White PMFs within each 

school to the school’s marginal PMF and then estimating V. This V represents the ordinal 

analogue to the total between-school gap, or 𝑉(𝑇𝐵). We map these PMFs through the following 

the procedure (assuming student-level test scores as the starting point):    

1) For computational efficiency, we divide the sample into ten test score bins by decile.  
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2) Within each school s, we find 𝑝𝑠𝑏
(𝑎𝑙𝑙)

, the proportion of all students (regardless of race) 

whose scores fall into each bin b (so that ∑ 𝑝𝑠𝑏
(𝑎𝑙𝑙)

= 1𝑏  for each school). These proportions 

define the school’s marginal empirical PMF.  

3) We give each school-by-race subgroup a new PMF matching the marginal PMF for their 

school. We do this by creating, separately for each school-by-race subgroup, a set of weights for 

the 10 test score bins. Each weight essentially answers the question, “In school s, how many 

students from subgroup g (Black or White) would have a test score falling in bin b (where b is a 

value from 1 to 10) if the PMF for subgroup g in school s matched the marginal PMF for school 

s?” For each school s and each bin b: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑏
𝐵 = 𝑝𝑠𝑏

(𝑎𝑙𝑙)
× 𝑛𝑠

𝐵; 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑏
𝑊 = 𝑝𝑠𝑏

(𝑎𝑙𝑙)
× 𝑛𝑠

𝑊, where B 

and W superscripts represent Black or White students.5 See online Appendix B for illustrative 

examples.   

4) We apply the weights from step 3 while estimating 𝑉: 

𝑉(𝑇𝐵) = √2Φ−1 (𝑃(𝑋𝑏𝑠
(𝐵)

> 𝑋𝑏𝑠
(𝑊)

)) 

where 𝑋 is the integer value for bin b (and each school s has a complete set of bin numbers 1-10 

for each racial group, indexed by the superscripts). This estimates the total between-school V gap 

(𝑉(𝑇𝐵)) because the application of the bin weights closes gaps within schools without altering 

schools’ marginal PMFs. That is, these weights give Black and White students in the same 

school identical PMFs, which are also identical to the school’s original marginal PMF. This is 

the ordinal analogue to Reardon’s (2008) total-between gap, where Black/White mean test score 

differences are eliminated within schools without changing schools’ overall mean scores. For 

interpretability, we focus on the proportion of the total V represented by 𝑉(𝑇𝐵) (i.e., 
𝑉(𝑇𝐵)

𝑉(𝑡𝑜𝑡𝑎𝑙)). 
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Estimating the unambiguously between-school V gap (𝑽𝒃𝒕𝒘𝒏
(𝑩 𝒕𝒐 𝑾)

, 𝑽𝒃𝒕𝒘𝒏
(𝑾 𝒕𝒐 𝑩)

). Recall that 

in Reardon’s (2008) graphical decomposition, the unambiguously between-school gap is the gap 

that remains after closing the total-within gap. As shown in the left panel of Figure 2, the total-

within gap is closed by raising the fitted line for Black students to share the same y-intercept as 

the fitted line for White students. The ordinal analogue to this would be to map the Black PMF in 

each school s to the White PMF in each school s. We do this by creating a new set of bin weights 

in each school for Black students. For bin b in school s, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑏
(𝐵 𝑡𝑜 𝑊)

= 𝑝𝑠𝑏
(𝑤ℎ𝑖𝑡𝑒)

× 𝑛𝑠
𝐵. In other 

words, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑏
(𝐵 𝑡𝑜 𝑊)

answers the question, “If the Black empirical PMF in school s matched the 

White empirical PMF in school s, how many of school s’s Black students would have scores 

falling in bin b?” We then apply these weights (with bins for White students weighted 

proportionately to their empirical PMF) to estimate V. The resulting V estimate, or 𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, 

represents an ordinal analogue to the unambiguously between-school gap (𝑖. 𝑒. , 𝛽2𝑉𝑅).   

In the parametric regression, the location of the y-intercept does not affect the 

unambiguously between-school gap, such that we arrive at the same unambiguously between-

school gap whether we raise the Black fitted line to the White fitted line or lower the White fitted 

line to the Black fitted line. In the V decomposition, however, we will generally obtain different 

ordinal unambiguously between-school gaps depending on which PMF is mapped to which (for 

example, it is possible that mapping the Black to White PMF in School A advances a large 

number of School A’s Black students ahead of a large number of School B’s White students, 

while mapping the White to Black PMF in School A leaves a large number of School A’s Black 

students scoring below the large number of School B’s White students)6. Despite this lack of 

symmetry, the method for PMF-mapping within-school can be chosen for substantive reasons. It 

is preferable to narrow gaps by helping the lower-scoring group achieve the higher-scoring 
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group’s PMF rather than by lowering the scores of the higher-scoring group, and this is the 

approach we recommend. For symmetry, an ad hoc solution is to average the two approaches. 

For thoroughness, we also estimate the ordinal analogue to the unambiguously between-

school gap by mapping the White PMF within school to the Black PMF (𝑉𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

). The 

procedure is the same as that for estimating 𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, except that we use the weights: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑏
(𝑊 𝑡𝑜 𝐵)

= 𝑝𝑠𝑏
(𝐵𝑙𝑎𝑐𝑘)

× 𝑛𝑠
𝑊. Again, for interpretability, we focus on these parameters 

expressed as proportions of the total V (i.e., 
𝑉𝑏𝑡𝑤𝑛

(𝑊 𝑡𝑜 𝐵)

𝑉(𝑡𝑜𝑡𝑎𝑙) ,
𝑉𝑏𝑡𝑤𝑛

(𝐵 𝑡𝑜 𝑊)

𝑉(𝑡𝑜𝑡𝑎𝑙) ).    

Comparing Parameters across Approaches 

The parameters estimated from the ordered probit models will equal those estimated from 

the Reardon decomposition as long as the data are generated from Model 4 with a normally-

distributed error term (with the trivial difference that ordered probit models linearly scale 𝑦 to a 

population SD of 1). The ordered probit model is more robust than Model 4, in the sense that 

Model 6 will also fit any monotonically transformed data from Model 4.   

The V decomposition parameters are more difficult to map to Model 4 due to the re-

estimation of 𝑉 using weights that effectively close gaps in different ways within each school. 

First, 𝑉 is only equal to a parametric Black-White gap when the Black and White distributions 

are both normal. The overall 𝑉, the denominator of the proportions of interest, will equal 𝛿 when 

the mixture distribution of White students across every school is normal, and the mixture 

distribution of Black students across every school is normal. For the decomposed V elements to 

match their parametric analogues, the mixture distributions of Black and White students across 

schools must also be normal after mapping CDFs within schools as required for any given 

estimate. Strictly speaking, these assumptions cannot all hold at once. However, mixture normal 

distributions are often very close to normal in practice, as evidenced in Table 1 (discussed 
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below). Thus, conceptually, the V decomposition parameters can be thought of as “loose ordinal 

analogues” to Reardon’s parametric decomposition in the sense that we arrive at decomposition 

proportions by mapping empirical PMFs in a manner analogous to Reardon’s graphical 

exposition of the parametric decomposition.           

Study Goals 

We conduct simulations to evaluate the bias and RMSE of these two ordinal 

decomposition methods. We simulate from a range of plausible population parameters to 

evaluate each method’s performance under realistic conditions. In all simulations, our target 

estimands are the overall population gap and the proportions of that overall gap represented by 

the relevant decomposition elements. Again, a primary concern with the ordered probit methods 

is their viability when school-by-race sample sizes are small. We therefore compare ordered 

probit decompositions to V decompositions in small-samples, and compare ordered probit 

models across large- and small-sample scenarios. Given that analysts must often choose their 

models without knowledge of the true data-generating process, we are interested in how well the 

ordered probit model performs when its variance assumptions are incorrect. We therefore fit 

PHOP, HOMOP, and HETOP models to data for which the data-generating process is PHOP. 

For all simulation scenarios, we compare the performance of the methods assuming student-level 

test scores as the starting point, versus proficiency count data as the starting point. Finally, we 

apply these methods in two real data sets: 1) the ECLS-K:99, which has student-level test scores 

and small within-school samples, and 2) population proficiency-count data from Georgia.             

Simulation Plan 

The top panel of Table 1 shows the parameters for our main simulations, followed by 

three additional scenarios designed to test our methods under more extreme conditions (high 
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heteroskedasticity, high segregation, and small overall standardized gap). In all cases, we 

simulate from an imagined population comprised of only Black and White students. Columns 2-5 

of Table 1 show the data-generating parameters we used in the original simulated y scale. For 

simplicity, we make the data-generating model partially heteroskedastic (PHOP), where within-

school SDs differ by race but do not differ across schools for students of the same race (columns 

4 and 5). Subsequent columns show the parameters of interest that we estimated, organized by 

the ordered probit parameters and the V parameters. Recall that the ordered probit models do not 

estimate moments in the y scale, but rather moments in the 𝑦∗ scale (in which the full sample SD 

equals 1). Because we do not constrain the SD in the simulated y scale to equal 1, 𝛿∗ does not 

equal 𝛿 in the populations from which we simulate. However, 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 and 

𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 do not vary with scale changes across y and y*.  

In columns 9-12, we give the relevant population parameters for V decompositions (see 

online Appendix C for derivations of population parameters). As noted, the parameters estimated 

in the V decomposition do not generally equal those estimated in the ordered probit approaches. 

Consequently, in the populations from which we simulate, V equals neither 𝛿 nor 𝛿∗, and the 

decomposition proportions for 𝑉(𝑇𝐵), 𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, and 𝑉𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 do not equal analogous 

decomposition proportions in 𝑦 or 𝑦∗. However, as seen in Table 1, they are similar (compare 

column 9 to 6, 10 to 7, 11 and 12 to 1 −  𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛). In many simulation conditions, 

proportions 𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 are similar, except in cases with high heteroskedasticity. 

Main Simulations 

As seen in the top panel of Table 1, our main simulations assess the decomposition 

methods under four combinations of parameter values that vary the within- and between-school 

contributions to 𝛿 (the overall unstandardized population gap). To achieve this, we fix the level 
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of segregation and the size of 𝛿 across all simulation scenarios before choosing four 

combinations of values for the 𝛽1 and 𝛽2 parameters. Specifically, we fix segregation by 

establishing (for simplicity) a population with equal shares of three types of schools, all of which 

have the same number of students: schools in which 10%, 50%, and 90% of students are Black 

(resulting in a population 𝑉𝑅 of . 426̅). We sample a total of 150 schools from this population, 

with equal representation of each school type in the sample (such that  𝑉𝑅̂ always equals VR). In 

the metric of our simulated test scores (𝑦), we always make 𝛿 = −1, to vary the proportions that 

each decomposition element represents of 𝛿 while holding 𝛿 constant. We give each school-by-

race subgroup a normal distribution with school-by-race means distributed as:    

Μ𝑠
(𝐵)

~𝑁(𝜇 = 𝛽1 + 𝛽2𝑃𝑠(𝐵 = 1),  𝜎 = .026)   (7) 

Μ𝑠
(𝑊)

~𝑁(𝜇 = 𝛽2𝑃𝑠(𝐵 = 1),  𝜎 = .011) 

 

where Μ𝑠
(𝐵)

 is the test score mean for Black students in school s, Μ𝑠
(𝑊)

 is the test score mean for 

White students in school s, and 𝑃𝑠(𝐵 = 1) is the school’s proportion Black (.10, .50, or .90). 

Note that school-by-race means co-vary with school proportion Black, as in Figure 1. As seen in 

column 2 of Table 1, the four values of 𝛽1 (i.e., total within) that we simulate across are -.4, -.6, -

.8, and -1. Given that 𝛿 = −1, these values for 𝛽1 correspond to scenarios in which total-within 

represents 40%, 60%, 80%, and 100% of 𝛿, a reasonable range given empirical findings. For 

example, across the first four rounds of math and reading tests in the ECLS-K:2011, observed 

percentages range from 70% to 106% (see end note 3 for explanation of how total-within can 

exceed 100% of 𝛿). For each scenario with a given 𝛽1, we solve for 𝛽2 using equation (5) (see  

third column of Table 1). This results in scenarios in which total-between represents roughly 

77.1%, 65.6%, 54.1%, or 42.7% of 𝛿 (column 7 of Table 1; compare to a range of 52% to 71% 

across the first four rounds of math and reading scores in the ECLS-K:2011). 



ORDINAL DECOMPOSITION 

20 

 

 After sampling school-by-race means, we draw student scores according to the model:  

𝑌𝑖𝑠 = Μ𝑠
(𝐵)

(𝐵𝑙𝑎𝑐𝑘𝑖𝑠) + Μ𝑠
(𝑊)

(1 − 𝐵𝑙𝑎𝑐𝑘𝑖𝑠) + 𝜖𝑖𝑠
𝐵 (𝐵𝑙𝑎𝑐𝑘𝑖𝑠) + 𝜖𝑖𝑠

𝑊(1 − 𝐵𝑙𝑎𝑐𝑘𝑖𝑠) (8) 

where 𝐵𝑙𝑎𝑐𝑘𝑖𝑠 is an indicator for whether student i is Black, 𝜖𝑖𝑠
𝐵  is the error term for Black 

students, 𝜖𝑖𝑠
𝐵 ~𝑁(0,  . 97), and 𝜖𝑖𝑠

𝑊is the error term for White students, 𝜖𝑖𝑠
𝑊~𝑁(0,  . 89). These 

within-school SDs approximate the observed within-school-by-race SDs in the ECLS-K:2011 

(which range from .79 to .98 across the first 4 rounds when scores are standardized each round).    

To evaluate the performance of the ordered probit models under small sample scenarios, 

we use a within-school sample size of n=30 (approximately the within-school sample size for the 

ECLS-K studies). For large-sample scenarios, we use within-school sample sizes of n=300, 

approximating a situation in which complete school data are available. 

 For each simulated sample, we first apply Reardon’s (2008) parametric decomposition to 

find 𝛿, 𝑃𝑟𝑜𝑝. 𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛, and 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛 in the y metric. We then coarsen the data to 

either 10 bins (as described above, representing a situation in which the analyst begins with 

student-level data) or 4 bins (representing a situation in which the analyst has only coarsened 

data). When coarsening to 4 bins, we use cut scores at the 20th, 50th, and 80th percentiles. These 

cut scores produce lower RMSEs compared to others (Ho & Reardon, 2012); testing regimes 

with different benchmarks may produce larger RMSEs than those reported here. After each 

coarsening, we estimate 𝑉̂𝑡𝑜𝑡𝑎𝑙  (using Stata’s rocfit routine), and follow the procedures described 

above to estimate the proportional decompositions for 𝑉̂(𝑇𝐵), 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

. Finally, for 

each coarsening, we convert the data to a matrix in which rows are school-by-race subgroups and 

columns are test score bins, with cell values indicating the number of students from a school-by-

race subgroup whose score fell in that bin. Using this matrix, we estimate school-by-race 

subgroup means in the y* metric (using the hetop command in Stata [Shear & Reardon, 2017]).  
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As noted, although the data-generating model in our simulations is partially heteroskedastic 

(PHOP), we estimate school-by-race means by fitting HOMOP, HETOP, and PHOP models to 

compare performance when the analyst’s assumptions do and do not match reality.7 After 

estimating these subgroup means, we follow the procedures described above to estimate the 

overall gap and each proportional decomposition element. We use Stata-MP 14. 

More Extreme Conditions  

We also evaluate these methods under more extreme population parameters and sampling 

scenarios. As seen in the second panel of Table 1, we simulate scenarios for high 

heteroskedasticity, high segregation, small standardized gap, and a scenario that allows for 

sampling error in school proportion Black, both at the school level and within school. See online 

Appendix D for additional description.    

Estimates and Reporting  

For each scenario, we run 1,000 simulations and find the estimated bias (mean difference 

across simulations between the estimates and the true value), and test whether the estimated bias 

is significantly different from zero (𝛼 = .05). We also estimate the RMSE (square root of the 

mean squared difference between estimates and the parameter value) for each set of simulations. 

For all decomposition proportions, we report bias and RMSE on the proportion scale; for 

estimates of the overall population gap, we report bias and RMSE based on a metric representing 

the population SD for the given simulation scenario (given that 𝛽1 and 𝛽2 change across 

simulation scenarios, the overall population SD changes while the within-school SDs do not). 

For estimates of the overall V gap, we report bias and RMSE in pooled (across school-by-race 

subgroups) SD units (which are constant across simulation scenarios).       

Simulation Results 
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Parametric Decompositions  

 For the parametric decompositions in our main simulations, no bias estimate for a 

decomposition proportion was more extreme than .0005, and no bias estimate for the overall gap 

was more extreme than .0004 SD (none was significantly different from zero at 𝛼 = .05; note 

that the ratio estimator is approximately unbiased in large samples). In the scenario allowing for 

sampling error in school proportion Black, estimates for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 are biased due to 

error in the estimate of VR (with an estimated bias of .0068 in our simulations). For the sake of 

conserving space, we do not show results for the parametric decompositions.   

V Decompositions 

 In Table 2, we present the bias and RMSE results from the V decompositions, and in 

Figure 3, we present the results for the bias in decomposition proportions graphically. Figure 4 

shows the bias in estimates of the total population gap across all methods, represented in method-

relevant SD units. Across all simulations for the V decompositions, no model failed to converge.   

As seen in Table 2 and Figures 3 and 4, estimated bias for the V approach is generally 

small in magnitude, ranging from -.003 to .005 for proportion 𝑉̂(𝑇𝐵), -.002 to <.001 for 

proportion 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, and <.001 to .002 for proportion 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

. Bias estimates for proportions 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 are never significantly different from zero, but bias estimates for 𝑉̂(𝑇𝐵) 

often are. As expected, estimates of the overall V gap show no evidence of bias, with bias 

magnitudes ranging from -.001 to .001 pooled SD across scenarios.  

RMSE estimates are generally somewhat smaller when data are coarsened to 10 (versus 

4) bins. For proportion 𝑉̂(𝑇𝐵), RMSEs range from .013 to .02 for 10 bins and .015 to .02 for 4 

bins, ranges similar to the precision of the parametric 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 (which ranged from 

.014 to .017 with 30 students per school). The RMSEs were larger for proportions 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 
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𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

. For  𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, RMSEs ranged from .046 to .047 and .044 to .045 for 4 and 10 bins, 

respectively, while RMSEs for 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 were .048 with 4 bins and .045 with 10. These RMSEs 

were also larger than those for their analogous parametric proportion unambiguously-between, 

which was .024 (precision differences for the decomposition proportions likely explain the 

differences in statistical significance of the bias estimates noted above). Because V 

decompositions showed negligible bias with 30 students per school, we did not run simulations 

with 300 students per school due to the computational intensity for large sample sizes (our real 

data applications show that a single large sample run is feasible).   

Ordered Probit Decompositions 

In Tables 3 and 4, we present the results for the HOMOP and PHOP models, 

respectively. In Figure 5, we present the bias results for the decomposition proportions across all 

models for simulations with 30 students per school, and in Figure 6, we present the results for 

simulations with 300 students per school. We relegate the HETOP model results to online 

Appendix E because the models predictably encountered convergence issues (and showed 

greater bias in the proportional decompositions compared to HOMOP and PHOP). For HOMOP 

and PHOP, estimated bias is often significantly different from zero, though the magnitudes of the 

bias vary substantially across methods and simulation scenarios. With 300 students per school, 

bias is small in magnitude across all models; with 30 students, bias can reach more substantial 

levels. While the PHOP model is the correct model given our data-generating procedure, the 

PHOP and HOMOP models generally perform quite similarly under our primary simulation 

conditions. 

HOMOP Models. As seen in Table 3 and Figure 5, the estimated bias for the HOMOP 

models with 30 students per school is largest for the total-within proportions with 4 bins (-.033 to 
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.048). Bias decreases with 10 bins (ranging from -.008 to .013), and is generally smaller for 

𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 (-.028 to .019 with 4 bins, -.008 to .004 with 10). Estimates of the overall 

gap show estimated bias ranging from -.021 to .006 SD across bin numbers. With 300 students 

per school, all bias estimates are negligible, never becoming more extreme than -.003 SD for the 

overall gap, or +/- .001 for the decomposition proportions. The HOMOP models converged 

across all simulations.  

PHOP Models.  In Table 4, we present the results for the PHOP models. As is most 

evident in Figures 5 and 6, the magnitudes and patterns of bias for the decomposition proportions 

in the PHOP model are nearly identical to those found with the HOMOP model. For the overall 

gap estimates, however, the PHOP model shows larger bias estimates compared to the HOMOP 

model (see Figure 4). For PHOP, estimates of bias in the overall gap range from -.08 to -.039 SD 

with 30 students per school. Bias is substantially smaller with 300 students per school, never  

getting more extreme than -.008 SD. All of the PHOP models converged when simulations 

included 300 students per school. The vast majority of PHOP models converged with 30 students 

per school, but some scenarios did not have perfect convergence (with the lowest number of 

converged models being 993 out of 1000). 

More Extreme Conditions 

In Table 5, we present results from the ordered probit models under more extreme 

conditions. These simulations use 30 students per school, 10 bins, and 𝛽1 = −.4. Online 

Appendix E includes results with 300 students per school that also show minimal bias.  

Under high heteroskedasticity, the advantage of the PHOP model over the HOMOP 

model for estimating the decomposition proportions is greater than the advantage observed in the 

main simulations, with bias estimates here of .006 (PHOP) vs. .011 (HOMOP) for 
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𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛, and -.011 vs. -.02 for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛. However, the HOMOP model 

still performs better than PHOP when estimating the overall gap (bias of -.012 vs. -.058 SD).  

With high segregation, the PHOP and HOMOP models showed slightly less bias for 

decomposition proportions compared to the simulations with lower levels of segregation; 

however, bias was high for PHOP when estimating the overall gap.  

With sampling error added for school proportion Black, PHOP and HOMOP again 

perform similarly for estimates of the decomposition proportions, with biases of .009 and -.011 

for proportions total-between and total-within, respectively. The bias for the overall gap estimate 

is large for PHOP, at -.062 SD (vs. -.015 for HOMOP). In this scenario, the variance ratio index 

of segregation (VR) is estimated as well (in contrast to the other simulation scenarios, in which 

there is no sampling error in VR). The estimated bias in 𝑉𝑅̂ was .016, with an RMSE of .03.  

With a small standardized gap, the models performed relatively well for estimating the 

overall gap. For the gap proportions, however, bias and RMSE were larger compared to the large 

standardized gap (for both HOMOP and PHOP, bias of .01 for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 and -.018 for 

𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛). RMSEs reached .067 and .117 for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 and 

𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛, respectively.     

In Table 6, we present the results for the V decompositions under the more extreme 

conditions. As before, the V decompositions often show smaller estimated bias compared to 

analogous decomposition proportions from the ordered probit models, and for overall gap 

estimates.  The RMSEs for the decomposition elements were especially large for the small 

standardized gap, reaching .062, .169, and .166 for 𝑉̂(𝑇𝐵), 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

, and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

, respectively. 

Real Data Applications 
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We further tested each decomposition approach using actual data from two sources. To 

compare performance of the methods in real data with small within-school sample sizes and 

student-level test scores, we apply the decompositions to the NCES’s Early Childhood 

Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K:99). To evaluate the methods 

when population data are available as proficiency counts, we apply the decompositions to 

statewide data from Georgia’s state testing program.   

ECLS-K:99 Student-level Data 

The ECLS-K:99 used a three-stage sampling design to obtain a nationally-representative 

sample of students attending kindergarten over the 1998-99 school year. We use math test scores 

from Black and White students collected in the fall of K, spring of K, fall of first grade, and 

spring of first grade. We drop school-switchers and students missing data on race, school, or test 

score. In the fall of first grade, data were collected from a random sub-sample (~30%) of 

students. Predictably given the sample sizes, ordered probit models did not converge.8  

We present the V decompositions results in Table 7. For reference, we include parametric 

results for the total gap, 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛, and proportion unambiguously-between school 

from Reardon’s decomposition (using theta scores standardized to SD=1 at each wave). As seen, 

the total V gaps are similar to the total parametric gaps with wave-standardized theta scores, 

reflecting the near-normal distribution of theta. The 𝑉̂(𝑇𝐵) proportions are also similar to the 

𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛. The proportions for 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 differ from the proportions for 

the parametric unambiguously between-school gaps. Recall that the parametric unambiguously 

between-school gap is 𝛿 − 𝛽1 (i.e., the difference between the total gap and the within-school 

gap estimated from a school fixed effects model), and that only integrated schools contribute to 

the estimate of 𝛽1. In contrast, 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 are estimated with information from all 
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schools, rendering these ordinal decompositions incomparable to their parametric analogues. We 

therefore include proportions for 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 estimated after dropping mono-racial 

schools. As seen in Table 7, these estimates are often closer to the parametric proportions for the 

unambiguously between-school gaps than are the original 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 proportions. 

Furthermore, in the ECLS-K:99, proportions 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 and 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 differed more from each 

other for a given decomposition than they did in the simulations. With and without dropping 

mono-racial schools, differences between the two estimates for a given round reached a 

maximum of .269. 

Georgia Proficiency Count Data 

 We use statewide testing data from Georgia for grades 3-8 from 2011-2014, for which 

Georgia released school-level counts of students from each racial group scoring in each of three 

proficiency categories (we use only data from Black and White students). We describe the results 

in text, and include the tables in online Appendix G.   

 Across grades and years, total V gaps ranged from -.63 to -.80, proportion 𝑉̂(𝑇𝐵) ranged 

from .57 to .69, proportion 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 ranged from .38 to .57, and proportion 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

ranged from 

.48 to .67 (Table G2, online Appendix G). The differences in proportion 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

and proportion 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 for a given decomposition were larger than those in the simulations, but were often 

smaller than in the ECLS-K. In the Georgia data, the maximum difference across decompositions 

was .15.  

HOMOP and PHOP models converged across all grades and years, but HETOP 

converged for only 3 of 24 grade/year combinations. HETOP can fail when subgroups have zero 

counts in one or more score bin (online Appendix G includes results with and without sample 
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restrictions enabling convergence). The HOMOP and PHOP estimates were often similar 

(differing in absolute value by at most .02 sd for the total gap, .005 for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛, and 

.009 for 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑡ℎ𝑖𝑛). The differences in estimates from the ordered probit compared to 

the V decompositions were larger, but recall that V and ordered probit models estimate slightly 

different parameters. Overall gaps from the ordered probit models differed from the overall V by 

up to .06, and proportion 𝑉(𝑇𝐵) differed from ordered probit 𝑃𝑟𝑜𝑝.  𝑇𝑜𝑡𝑎𝑙 𝐵𝑡𝑤𝑛 by up to .03.     

Discussion 

 These results demonstrate the viability of scale-invariant test score gap decompositions 

that can be applied when: 1) the interval nature of a test scale is questionable, and/or 2) only 

ordered proficiency data are available. The V decomposition showed negligible bias across a 

range of scenarios with small within-school sample sizes, though RMSEs were large when the 

overall standardized gap was small and within-school sample sizes were small. With large 

within-school sample sizes, bias for the ordered probit decompositions was also negligible. 

However, bias from the ordered probit approach was larger with small within-school sample 

sizes. In the ECLS-K:99 (small within-school samples), ordered probit models did not converge, 

and HETOP often required sample restrictions in Georgia data (large within-school samples).      

Several factors are relevant when deciding between the V versus ordered probit 

decomposition. When comparing the relative bias and RMSE of each approach, one should recall 

that the population values being estimated are not generally the same for each (though will often 

be similar in practice). One practical consideration concerns within-school sample size. As 

demonstrated in the ECLS-K:99, ordered probit models may not be an option when within-

school samples are small. Even in population data (Georgia data), HETOP model convergence 

often required dropping some school-by-race subgroups (though HOMOP and PHOP 
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converged). In such cases, V decomposition is a viable alternative. As discussed below, Bayesian 

HETOP models may offer an alternative in small-sample scenarios.       

When ordered probit models are an option, there may be reasons to prefer them over V 

decomposition. As noted, one appeal of the ordered probit decomposition is that its components 

provide direct interpretational correspondence to the parametric decomposition. That is, unlike V, 

the ordered probit decomposition proportion values match the parametric decomposition 

proportion parameters when school-by-race distributions are normal. As such, ordered probit 

decomposition estimates can be interpreted as representing a particular underlying latent 

distribution, without having to assume the observed scale expresses that underlying latent 

distribution (as required by the parametric decomposition).  

When opting for an ordered probit decomposition, the analyst must decide among 

HOMOP, PHOP, and HETOP. In practice, it is rarely possible to know which model’s 

assumptions are more appropriate for a given application. Our simulations showed that when 

within-school SDs are constant within but not across racial groups and the differences in SDs by 

racial group are relatively small, the (incorrect) HOMOP model can outperform the (correct) 

PHOP model. When within-school SD differences by race were larger (high heteroskedasticity 

scenario), however, the (correct) PHOP model outperformed the (incorrect) HOMOP model for 

decomposition proportions (but not the overall gap). Prior work (Reardon et al., 2017) has shown 

that when HETOP is the correct model, SD estimates from HOMOP will be biased. However, 

the HOMOP model will generally produce estimates with smaller RMSE compared to the 

HETOP model when group sample sizes are less than 100. The exact sample size at which 

HETOP performs better than HOMOP will depend on factors such as the location of cut scores 

and extent to which group variances differ.  In our application with the Georgia data, the 
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HOMOP model always converged without sample restrictions, but the HETOP model seldom 

converged without sample restrictions.  Even when data are not homoskedastic, then, HOMOP 

may be best in terms of bias and convergence.   

When V and ordered probit decomposition are both viable, one should consider the 

relative bias and RMSE of each approach. Across most of our scenarios, the V approach 

produced decomposition proportions with lower levels of bias compared to the ordered probit 

models. Additionally, estimates of the total V do not show evidence of bias, while estimates of 

the total gap showed bias across ordered probit simulations. Estimates of the overall V gap and 

proportion 𝑉̂(𝑇𝐵) showed smaller RMSEs than their ordered probit counterparts.  

An advantage of the V decomposition is that it does not assume that the relationship 

between school proportion Black and test scores is linear, or that it is the same for Black and 

White students (as in Model 4). The performance of the V decomposition under such interactive 

or nonlinear data-generating models is an area for future research.     

For decomposition applications with small within-school sample sizes, a Bayesian 

approach using the Fay-Herriot HETOP (FH-HETOP) models proposed by Lockwood et al. 

(2018) may offer a viable alternative to the “direct estimates” computed by MLE in Reardon et 

al.’s (2017) HETOP models. FH-HETOP models offer a solution to the convergence challenges 

faced by direct estimates, with the trade-off of introducing conditional bias into the estimation of 

group parameters through shrinkage (Lockwood et al., 2018). Through future research, it will be 

valuable to explore the conditions under which FH-HETOP may allow for viable ordinal 

decompositions when direct estimates are unobtainable.              

We have focused on bias and RMSE and have not addressed uncertainty estimates. We 

recommend this for future research. The possibility of decomposing gaps across multiple levels 
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is also worth exploring; for example, can the between-school gap be partitioned into portions 

within- versus between school districts? We encourage exploration of these decomposition 

methods in other applications, including decompositions of other educational outcomes (e.g., 

GPA, measures of socio-emotional learning), or gap decompositions by an explanatory factor 

variable. Examples include situations in which income categories, parental education levels, or 

free-or-reduced-price lunch status are treated as unordered categories, as is common in large-

scale analyses (e.g., Burkam et al., 2004; Condron, 2009). One can estimate an income-adjusted 

ordinal Black-White gap by following our decomposition methods, with the adaptation of using 

income bins, rather than schools, as the grouping variable. Our methods could also be applied to 

other scales whose equal-interval properties attract scrutiny, including psychological scales for 

constructs like “happiness” (Bond & Lang, 2019). For example, an ordinal “happiness gap” 

between people with and without disabilities can be estimated after adjusting for income. Finally, 

although our motivating example is cross-sectional, the decomposition of gap-changes is an 

important application to isolate the gap dynamics that occur as students advance through school, 

or to isolate dynamics that occur over the school year versus summer.       
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Notes 

1We call attention to recent evidence that the term “achievement gap” may lead people to place less priority on 

educational inequality due to the term’s association with deficit framing (Quinn et al., 2019). In some instances in 

this article we use the term “gap” because of its familiarity, but we encourage a shift in framing to focus on the 

structural inequities that lead to between-group disparities in test scores (Ladson-Billings, 2006). We use the term 

“racial disparity” in test scores as synonymous with the more commonly used “racial test score gap.”     

2We have created, and made available online via Open Science, Stata .ado files that perform the parametric and 

ordinal decompositions (https://osf.io/urx6b/). 

3 Hanushek and Rivkin (2006) illustrate with an example. Imagine a sample of 1,000 schools in which only one is 

integrated. 𝛽1 will be estimated using only information from students in that school.  If the gap there is large relative 

to the overall gap, it will appear as though the within-school portion of the overall gap is large, even though closing 

the gap in that school will do little to close the overall gap.  This also illustrates how the within-school gap from a 

school fixed effects model can represent over 100% of 𝛿, if the gap in that single school is greater than 𝛿.  

4To render the model analogous to the school FE model, Black/White fitted lines are constrained to be parallel.    

5The weights created for these methods are often not integer values. Because we estimate V using Stata’s rocfit 

routine, which only allows integer weights, we multiply all weights by 100 and round to the nearest integer. 

6 Imagine School A has 4 Black students scoring at level 5 and 2 White students scoring at level 1.  School B has 2 

Black students scoring at level 4 and 4 White students scoring at level 2. Mapping the Black to White PMFs within 

these schools leaves 4 Black students in School A scoring above the 4 White students in School B, but mapping the 

White to Black PMFs within these schools leaves 2 Black students in School B scoring above the 4 White students 

in School A. These scenarios lead to different probabilities that a Black student will score above a White student. 

7 As written, the PHOP option for hetop allows the user to assume equal SD across groups with sample sizes below 

some minimum. We add constraints that allow us to assert common SD by race within schools.  

8 The models converged when we restricted the sample to school-by-race cells with at least 20 students; however, 

this dropped all integrated schools. 
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Figure 1. Stylized Depiction of Reardon’s (2008) Decomposition. 
 

 

 

 
Note.  Gray solid line is fitted line for White students, black solid line is fitted line for Black students, and black 

dashed line is predicted school means. Vertical distance between fitted lines for Black and White students is 𝛽1, or 

the “total within-school” gap. Black circle on the fitted line for White students has as its x-coordinate the average 

school proportion Black for White students; its y-coordinate is overall mean test score for White students (with x- 

and y-coordinates identified by dotted gray lines). Black diamond on fitted line for Black students has as its x-

coordinate the average school proportion black for Black students; its y-coordinate is overall mean test score for 
Black students (with these x- and y-coordinates identified by dotted gray lines). Vertical distance between these 

points equals overall Black-White test score difference, as indicated by 𝛿. Horizontal distance between these two 

points equals the variance ratio index of segregation (VR).   
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Figure 2. Stylized Depiction of Reardon’s (2008) Decomposition: Closing the “total within-

school gap” (left) vs closing the “unambiguously within-school gap” (right). 

 
Note. VR=variance ratio index of segregation. In each panel, the x-coordinate for the black circle is the average 

school proportion Black for White students; the x-coordinate for the diamond is average school proportion Black for 

Black students.  The y-coordinates for these points represent the average test score for White and Black students, 

respectively, after closing different portions of the overall gap. The left panel closes the total within-school gap, 

such that the remaining gap is the unambiguously between-school gap (𝛽2𝑉𝑅). The right panel closes the 

unambiguously within-school gap, such that the remaining gap is the total between-school gap.   
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Figure 3. Estimated bias in V decomposition proportions by number of bins and 𝜷𝟏 values. 

 
Note. Solid dots represent estimates that are significantly different from zero; hollow dots are not significantly 

different from zero. Estimates are based on 1,000 simulations per scenario, each with 150 schools with 30 students 

per school. With 10 bins, bins are equally-sized; 4 bins use cut scores at the 20th, 50th, and 80th percentiles. 𝛽1= 

within-school gap in the simulated y metric from school fixed effects decomposition (total gap set to -1 in original 

test scale for all simulations).     
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Figure 4. Estimated bias in overall gap (V and 𝜹∗) across bin numbers, values of 𝜷𝟏, and 

number of students per school.   

 
Note. Solid dots represent estimates that are significantly different from zero; hollow dots are not significantly 

different from zero. Estimates are based on 1,000 simulations per scenario, each with 150 schools. With 10 bins, 

bins are equally-sized; 4 bins use cut scores at the 20th, 50th, and 80th percentiles. 𝛽1= within-school gap in the 
simulated y metric from school fixed effects decomposition (total gap set to -1 in original test scale for all 

simulations). 
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Figure 5. Estimated bias in ordered probit decomposition proportions across models, by 

number of bins and values of 𝜷𝟏; 30 students per school.  

 
Note. Solid dots represent estimates that are significantly different from zero; hollow dots are not significantly 

different from zero. Estimates are based on 1,000 simulations per scenario, each with 150 schools. With 10 bins, 

bins are equally-sized; 4 bins use cut scores at the 20th, 50th, and 80th percentiles. Estimates for HETOP models with 

4 bins are excluded from the graphs due to extreme levels of bias and low model convergence rates. 𝛽1= within-

school gap in the simulated y metric from school fixed effects decomposition (total gap set to -1 in all simulations).     
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Figure 6. Estimated bias in ordered probit decomposition proportions across models, by 

number of bins and values of 𝜷𝟏; 300 students per school. 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 
 

 
 

 
 
  

Note. Solid dots represent estimates that are significantly different from zero; hollow dots are not significantly 

different from zero.  Estimates are based on 1,000 simulations per scenario, each with 150 schools. With 10 bins, 

bins are equally-sized; 4 bins use cut scores at the 20th, 50th, and 80th percentiles. 𝛽1= within-school gap in the 

simulated y metric from school fixed effects decomposition (total gap set to -1 in all simulations).   
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Table 1.  

Data-Generating Parameters and Target Parameters for Recovery, across Simulation Scenarios and Decomposition Approaches  

 Data-generating Parameters (y scale) Target Parameters for Recovery 

 

    

Ordered Probit Parameters 

(y* scale) V Parameters 

 

𝛽1 𝛽2 

W/in 

sch SD, 

Black  

W/in 

sch SD,  

White 

 

 

𝛿∗ 
Prop. 

TB 

Prop. 

TW 

Overall 

V 

Prop. 

𝑉(𝑇𝐵) 

Prop. 

𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 

Prop. 

𝑉𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 

Main Simulations  

Ordered probit simulations: 30 or 300 students per school crossed with 4 or 10 coarsened bins 

V simulations: 30 students per school crossed with 4 or 10 coarsened bins 

Small 𝛽1 -0.4 -1.406 .97 .89 -0.899 0.771 0.4 -1.009 0.742 0.628 0.582 

Med. 𝛽1 -0.6 -0.938 .97 .89 -0.924 0.656 0.6 -1.043 0.618 0.419 0.386 

Large 𝛽1 -0.8 -0.469 .97 .89 -0.941 0.541 0.8 -1.066 0.501 0.209 0.192 

Fully 𝛽1 -1 0.000 .97 .89 -0.946 0.427 1.0 -1.074 0.390 0.000 0.000 

Extreme Conditions 

All simulations: 30 students per school and 10 coarsened bins 

High Het.   -0.4 -1.406 1.20 .80 -0.842 0.771 0.4 -0.931 0.748 0.747 0.519 

High Seg.   -0.4 -0.920 .97 .89 -0.926 0.861 0.4 -1.051 0.840 0.758 0.731 

Small Std. Gap  -0.4 -1.406 3.4 3.2 -0.298 0.771 0.4 -0.301 0.768 0.619 0.583 
 Note. Overall gap in the y metric (𝛿) is fixed to equal -1 for all scenarios. Prop.= proportion; TB=total between-school gap; TW=total within-school gap. 

Variance ratio index of segregation (VR) = .427 for all scenarios, except the high segregation scenario, in which VR=.652. High Het.= high heteroskedasticity 

condition; High seg.=high segregation condition; Small Std. Gap = small standardized gap condition. 

 

  



ORDINAL DECOMPOSITION 

41 

 

Table 2. 
Bias and RMSE from Simulated Estimates of V Decomposition Elements. 

      
Overall Gap  

V 

Proportion Between 

Total 

 𝑉̂(𝑇𝐵) 

Prop. Btwn (B to W) 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 

Prop. Btwn (W to B) 

𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

   
Num. 

Sts Bins 𝛽1 Bias RMSE p Bias RMSE p Bias RMSE p Bias RMSE p Converged 

30 4 -0.4 0.000 0.033 0.859 0.001 0.020 0.233 0.000 0.047 0.783 0.002 0.048 0.121 1000 

30 4 -0.6 -0.001 0.034 0.477 0.001 0.018 0.205 0.000 0.046 0.746 0.000 0.048 0.950 1000 

30 4 -0.8 -0.001 0.035 0.439 0.002 0.015 <0.001 0.000 0.046 0.927 0.000 0.048 0.993 1000 

30 4 -1 -0.001 0.035 0.593 0.005 0.015 <0.001 -0.001 0.047 0.608 0.000 0.048 0.757 1000 

30 10 -0.4 0.001 0.032 0.141 -0.003 0.020 <0.001 -0.002 0.045 0.261 0.000 0.045 0.993 1000 

30 10 -0.6 0.000 0.033 0.947 -0.003 0.017 <0.001 -0.001 0.044 0.551 0.001 0.045 0.631 1000 

30 10 -0.8 -0.001 0.034 0.408 -0.002 0.015 <0.001 0.000 0.044 0.773 0.000 0.045 0.860 1000 

30 10 -1 -0.001 0.034 0.428 -0.001 0.013 0.025 -0.001 0.044 0.314 0.000 0.045 0.849 1000 
Note. Bias in overall gap is expressed in pooled SD units; bias in decomposition proportions are expressed in proportion units. Each scenario presents estimated 

bias and RMSE from 1,000 simulations. Converged = number of the 1,000 simulations for which models converged. Num. Sts. = number of students per school 

(in each of 150 schools, with equal representation from schools that are 10%, 50%, and 90% Black [vs. White]). Bins = number of bins that student-level data 

were coarsened to (bins of 10 are equally-sized; bins of 4 have cut scores at 20th, 50th, and 80th percentiles to represent a scenario in which only proficiency count 

data are available). 𝛽1= value of 𝛽1 in data-generating model (see equations 7 and 8). p = p-value for test of null hypothesis that bias=0. For comparison, RMSEs 
in the parametric decompositions ranged from .014-.017 for proportion total between, .024 for proportion unambiguously between, and .027 for total gap. 
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Table 3. 
Bias and RMSE from Simulated Estimates of HOMOP Decomposition Elements. 

   Overall Gap Proportion Total Between Proportion Total Within  
Num. 

Sts Bins 𝛽1 Bias RMSE p Bias RMSE p Bias RMSE p Converged 

30 4 -0.4 0.006 0.028 <0.001 0.019 0.031 <0.001 -0.033 0.053 <0.001 1000 

30 4 -0.6 -0.009 0.026 <0.001 0.003 0.020 <0.001 -0.004 0.034 <0.001 1000 

30 4 -0.8 -0.015 0.026 <0.001 -0.011 0.021 <0.001 0.019 0.037 <0.001 1000 

30 4 -1 -0.010 0.024 <0.001 -0.028 0.035 <0.001 0.048 0.061 <0.001 1000 

30 10 -0.4 -0.013 0.024 <0.001 0.004 0.019 <0.001 -0.008 0.033 <0.001 1000 

30 10 -0.6 -0.018 0.027 <0.001 0.001 0.016 0.156 -0.001 0.028 0.156 1000 

30 10 -0.8 -0.021 0.029 <0.001 -0.003 0.015 <0.001 0.005 0.026 <0.001 1000 

30 10 -1 -0.020 0.029 <0.001 -0.008 0.017 <0.001 0.013 0.030 <0.001 1000 

300 4 -0.4 -0.002 0.007 <0.001 0.001 0.006 <0.001 -0.001 0.010 <0.001 1000 

300 4 -0.6 -0.002 0.007 <0.001 0.000 0.005 0.423 0.000 0.009 0.423 1000 

300 4 -0.8 -0.002 0.008 <0.001 0.000 0.005 0.138 0.000 0.009 0.138 1000 

300 4 -1 -0.003 0.008 <0.001 0.000 0.005 0.004 0.001 0.009 0.004 1000 

300 10 -0.4 -0.002 0.007 <0.001 0.001 0.006 <0.001 -0.001 0.010 <0.001 1000 

300 10 -0.6 -0.002 0.007 <0.001 0.000 0.005 0.410 0.000 0.009 0.410 1000 

300 10 -0.8 -0.003 0.007 <0.001 0.000 0.005 0.566 0.000 0.008 0.566 1000 

300 10 -1 -0.002 0.007 <0.001 0.000 0.005 0.004 0.001 0.008 0.004 1000 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units. Each scenario presents 
estimated bias and RMSE from 1,000 simulations. Converged = number of the 1,000 simulations for which models converged. Num. Sts. = number of students 

per school (in each of 150 schools, with equal representation from schools that are 10%, 50%, and 90% Black [vs. White]). Bins = number of bins that student-

level data were coarsened to (bins of 10 are equally-sized; bins of 4 have cut scores at 20th, 50th, and 80th percentiles to represent a scenario in which only 

proficiency count data are available). 𝛽1= value of 𝛽1 in data-generating model (see equations 7 and 8). p = p-value for test of null hypothesis that bias=0.   
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Table 4. 
Bias and RMSE from Simulated Estimates of PHOP Decomposition Elements.   

   Overall Gap Proportion Total Between Proportion Total Within  

Num. Sts Bins 𝛽1 Bias RMSE p Bias RMSE p Bias RMSE p Converged 

30 4 -0.4 -0.039 0.048 <0.001 0.018 0.030 <0.001 -0.032 0.052 <0.001 995 

30 4 -0.6 -0.062 0.066 <0.001 0.002 0.019 <0.001 -0.004 0.034 <0.001 1000 

30 4 -0.8 -0.070 0.074 <0.001 -0.011 0.021 <0.001 0.019 0.037 <0.001 1000 

30 4 -1 -0.065 0.069 <0.001 -0.028 0.035 <0.001 0.048 0.061 <0.001 1000 

30 10 -0.4 -0.061 0.064 <0.001 0.004 0.019 <0.001 -0.007 0.033 <0.001 1000 

30 10 -0.6 -0.072 0.075 <0.001 0.000 0.016 0.348 -0.001 0.028 0.348 999 

30 10 -0.8 -0.079 0.082 <0.001 -0.003 0.015 <0.001 0.005 0.026 <0.001 999 

30 10 -1 -0.080 0.082 <0.001 -0.008 0.017 <0.001 0.013 0.030 <0.001 993 

300 4 -0.4 -0.006 0.009 <0.001 0.000 0.006 0.011 -0.001 0.010 0.011 1000 

300 4 -0.6 -0.007 0.010 <0.001 0.000 0.005 0.852 0.000 0.009 0.852 1000 

300 4 -0.8 -0.007 0.010 <0.001 0.000 0.005 0.036 0.001 0.009 0.036 1000 

300 4 -1 -0.008 0.011 <0.001 0.000 0.005 0.005 0.001 0.009 0.005 1000 

300 10 -0.4 -0.006 0.009 <0.001 0.000 0.006 0.018 -0.001 0.010 0.018 1000 

300 10 -0.6 -0.007 0.009 <0.001 0.000 0.005 0.040 0.001 0.009 0.040 1000 

300 10 -0.8 -0.008 0.010 <0.001 0.000 0.005 0.176 0.000 0.008 0.176 1000 

300 10 -1 -0.007 0.010 <0.001 0.000 0.005 0.004 0.001 0.008 0.004 1000 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units. Each scenario presents 

estimated bias and RMSE from 1,000 simulations. Converged = number of the 1,000 simulations for which models converged. Num. Sts. = number of students 
per school (in each of 150 schools, with equal representation from schools that are 10%, 50%, and 90% Black [vs. White]). Bins = number of bins that student-

level data were coarsened to (bins of 10 are equally-sized; bins of 4 have cut scores at 20th, 50th, and 80th percentiles to represent a scenario in which only 

proficiency count data are available). 𝛽1= value of 𝛽1 in data-generating model (see equations 7 and 8). p = p-value for test of null hypothesis that bias=0.  
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Table 5. 
Bias and RMSE from Simulated Estimates of PHOP and HOMOP Decomposition Elements under Extreme Conditions. 

  Overall Gap Proportion Total Between Proportion Total Within  

 Bias RMSE p Bias RMSE p Bias RMSE P Converged 

 High Heteroskedasticity  

PHOP -0.058 0.062 <0.001 0.006 0.022 <0.001 -0.011 0.038 <0.001 999 

HOMOP -0.012 0.025 <0.001 0.011 0.023 <0.001 -0.020 0.041 <0.001 1000 

 High Segregation  

PHOP -0.059 0.063 <0.001 0.003 0.015 <0.001 -0.003 0.043 0.018 1000 

HOMOP -0.016 0.025 <0.001 0.003 0.015 <0.001 -0.004 0.043 0.007 1000 

 Sampling Error for Segregation and School Proportion Black 

PHOP -0.062 0.066 <0.001 0.009 0.023 <0.001 -0.011 0.035 <0.001 1000 

HOMOP -0.015 0.027 <0.001 0.009 0.024 <0.001 -0.011 0.036 <0.001 1000 

 Small Standardized Gap 

PHOP -0.028 0.041 <0.001 0.010 0.067 <0.001 -0.018 0.117 <0.001 1000 

HOMOP -0.005 0.028 <0.001 0.010 0.067 <0.001 -0.018 0.117 <0.001 1000 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units. Each scenario presents 

estimated bias and RMSE from 1,000 simulations. Converged = number of the 1,000 simulations for which models converged. All simulation scenarios use 150 

schools with 30 students per school, data coarsened to 10 equally-sized bins, and 𝛽
1

= −.4  in data-generating model (see equations 7 and 8). p = p-value for test 

of null hypothesis that bias=0. See Table 1 for parameters used in data-generating models. 
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Table 6. 
Bias and RMSE from Simulated Estimates of V Decomposition Elements under Extreme Conditions. 

  

Overall Gap  

V 

Proportion Between Total 

 𝑉̂(𝑇𝐵) 

Prop. Btwn (B to W) 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 

Prop. Btwn (W to B) 

𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

   

  Bias RMSE p Bias RMSE p Bias RMSE p Bias RMSE p Converged 

High heteroskedasticity 0.002 0.032 0.117 0.000 0.021 0.645 -0.003 0.048 0.023 0.002 0.050 0.179 1000 

High segregation 0.004 0.033 <0.001 -0.003 0.017 <0.001 0.000 0.040 0.938 -0.002 0.041 0.170 1000 

Sampling error 0.004 0.035 0.001 0.004 0.024 <0.001 0.007 0.052 <0.001 0.011 0.054 <0.001 1000 

Small std. gap 0.000 0.032 0.939 0.003 0.062 0.198 0.003 0.169 0.638 0.008 0.166 0.141 1000 
Note. Prop.=proportion. Bias in overall gap is expressed in pooled population SD units; bias in decomposition proportions are expressed in proportion units. Each 

scenario presents estimated bias and RMSE from 1,000 simulations. Converged = number of the 1,000 simulations for which models converged. All simulation 

scenarios use 150 schools with 30 students per school, data coarsened to 10 equally-sized bins, and 𝛽1 = −.4  in data-generating model (see equations 7 and 8).  

p = p-value for test of null hypothesis that bias=0. See Table 1 for parameters used in data-generating model. 
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Table 7.  

Parametric and V Decompositions for Black-White Math Test Score Gaps across Waves in the 

ECLS-K:99.   

  Fall K  Spring K  Fall Grade 1  Spring Grade 1  

  Param V Param V Param V Param V 

Total Gap -0.693 -0.753 -0.734 -0.771 -0.663 -0.691 -0.746 -0.811 

Decomp proportions         

TB, 𝑉̂(𝑇𝐵) 0.773 0.756 0.764 0.741 0.753 0.732 0.770 0.730 

Unambig. Btwn 0.326  0.316  0.334  0.331  

𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

  0.741  0.763  0.842  0.756 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

  1.024  0.991  0.948  0.955 

𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 (no seg.)  0.352  0.272  0.628  0.249 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 (no seg.)  0.400  0.254  0.458  0.143 

Mean 𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ (Black, 

White)  0.728  0.066  0.722  0.067 0.705  0.075  0.723  0.066 

N (Black   White) 1838   7601 2015   8395 651   2547 2008   8388 

Sch-level N 838 903 282 900 
Note. Param=parametric estimates. Parametric gaps are in wave-standardized theta scores. Data are coarsened to 10 

bins for V decompositions. Ordered probit models failed to converge. 𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ = school proportion Black. No seg. = 

schools with mono-racial samples dropped. K=kindergarten. Note that Prop. 𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 and Prop. 𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 can be 

greater than Prop. 𝑉̂(𝑇𝐵) if there are enough majority-Black schools whose small number of White students are low-

scoring. 
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Appendix A. Sensitivity of Gap Change Decompositions to Scale Transformations. 

In Table A1, we show the sensitivity to scale transformations of decompositions of the 

standardized Black-White math gap change over kindergarten in the ECLS-K:2011. Our sample 

includes only Black and White students with fall and spring K test scores who did not change 

schools over the K school year.  Across various monotonic transformations, we show the 

minimum and maximum total standardized gap change along with the ratio of total-within gap 

change to total gap change and the ratio of total-between gap change to total gap change that 

were obtained under the respective transformation.  

As a reference, the top row shows these decompositions for the original theta scores, 

which have been standardized to a mean of 0 and SD of 1 at each wave.  The next two rows 

show decomposition results using the theta scores after applying skewness-inducing exponential 

transformations (see Reardon & Ho, 2015) and then re-standardizing the scores. Skewness 

ranges from -2 to 2 were motivated by observable skewness ranges in state test score data (Ho & 

Yu, 2015).  Across transformations, the total gap can vary from shrinking by .11 SDs to 

increasing by .15 SDs. Under the transformation that yields a shrinking of .11 SD, the total-

within:total change ratio is larger than the total-between:total change ratio, at 1.01 and .57, 

respectively.  In contrast, under the transformation that yields a gap-narrowing of .15, these 

decomposition ratios flip.  Here, the total-within:total change ratio is smaller than the total-

between: total change ratio, at .13 and .95, respectively.     

Inspired by Bond and Lang (2013), we apply exponential transformations to the theta 

scores (though unlike Bond and Lang, we apply monomial transformations for simplicity).  We 

first add a constant to the theta scale to ensure positive values for all scores, then transform 

scores as: 𝜃′ = 𝜃 + 𝜃𝑛, with 𝑛 ranging from 2 to 8, and finally re-standardize scores.  Across 
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these transformations, the total gap change ranges from -.28 to -.06 SD.  When total change is -

.28 SD, the total-within:total gap change ratio is .81; this ratio increases to 1.5 when total gap 

change is -.06 SD.  The total-between:total gap change ratio moves in the other direction.  When 

total change is -.28 SD, this ratio is .66; when total gap change is -.06 SD, the ratio is .36. Our 

ordinal decomposition methods produce gap statistics that are constant across all of these scale 

transformations.             
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Table A1. 

Total Black-White Gap Changes and Change Decompositions under Various Scale Transformations, Fall - Spr. 

Kindergarten (ECLS-K:2011). 

  

Total Gap Change 

(fall to spring) 

Ratio of “Total 

Within” Change 

to Total Gap 

Change 

Ratio of “Total 

Between” 

Change to Total 

Gap Change 

Standardized Theta Scores -0.050 (-.589 to -.639) 1.791 0.245 

Percentile Rank of Theta (Std.) -.071 (-.577 to -.648) 1.415 0.404 

Skew Transformations to Theta (Std.)    

Min (c=0.5) -0.114 (-.481 to -.595) 1.016 0.572 

Max (c=-0.5) 0.150 (-.516 to -.366) 0.126 0.947 

Exponential Transformations to Theta (Std.; up to 8th 

power)    

Min (8th power) -0.278 (-.27 to -.548) 0.807 0.660 

Max (2nd power) -0.059 (-.589 to -.639) 1.523 0.358 
Note. For skew and exponential transformations, top row shows total gap change and decomposition ratios in original scale for reference.  Subsequent rows show 

the minimum or maximum total gap change estimated across a range of different scale transformations, along with the decomposition ratios obtained with that 

transformation.  Ranges given in parentheticals in “total gap change” column show gaps in fall and spring of K.  All scores are wave-standardized to mean=0, 

SD=1 after transformations.  Exponential transformations are performed after adding a constant to all theta scores, ensuring positive values and monotonicity; 

transformations take the form 𝜃′ = 𝜃 + 𝜃𝑛, with 𝑛 ranging from 2 to 8 (powers for min and max gap change given in table).  Values for c parameter in skew 
transformations yielding min and max total gap change listed in table (see Reardon & Ho [2015]).  Black n =1894; White n=7193; school n=800.  Sampling 

weight W1C0 applied. 
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Appendix B. Illustration of Weighting Procedure for V Decomposition.  

Table B1. Bin weights for Black and White students for sample school with 50% Black and 50% 

White students when n=30 per school.  

Bin 

Number 

White Sts.  

Number 

Black Sts. 

Total 

number 

sts 

School’s 

Marginal 

PMF 

Bin 

Weight 

Black 

Bin 

Weight 

White 

1 2 1 3 0.10 1.5 1.5 

2 0 3 3 0.10 1.5 1.5 

3 0 2 2 0.07 1 1 

4 3 4 7 0.23 3.5 3.5 

5 3 2 5 0.17 2.5 2.5 

6 0 1 1 0.03 0.5 0.5 

7 0 0 0 0.00 0 0 

8 3 2 5 0.17 2.5 2.5 

9 1 0 1 0.03 0.5 0.5 

10 3 0 3 0.10 1.5 1.5 

Sum 15 15 30 1 15 15 

 

Table B2. Bin weights for Black and White students for sample school with 90% Black and 10% 

White students when n=30 per school. 

Bin 

Number 

White Sts.  

Number 

Black Sts. 

Total 

number 

sts 

School’s 

Marginal 

PMF 

Bin 

Weight 

Black 

Bin 

Weight 

White 

1 0 2 2 0.07 1.8 0.2 

2 1 4 5 0.17 4.5 0.5 

3 0 3 3 0.10 2.7 0.3 

4 0 1 1 0.03 0.9 0.1 

5 0 2 2 0.07 1.8 0.2 

6 0 0 0 0.00 0 0 

7 1 6 7 0.23 6.3 0.7 

8 1 3 4 0.13 3.6 0.4 

9 0 3 3 0.10 2.7 0.3 

10 0 3 3 0.10 2.7 0.3 

Sum 3 27 30 1 27 3 
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Appendix C. Calculating Population Values for V Decomposition 

For each value of school probability Black in our population, school-by-race means are 

normally distributed in the original y metric.  Therefore, assuming equally-sized schools for 

simplicity, the overall (i.e., across schools) White mean at a given school probability Black is  

 𝛽2 (𝐸 (𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑊ℎ𝑖𝑡𝑒)

)) and the overall Black mean is 𝛽2 (𝐸 (𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐵𝑙𝑎𝑐𝑘)

)) + 𝛽1.  By the 

law of total variance, the overall race-specific variances (conditional on school probability 

Black) are sums of the within-school variances and the variance of the means.  After calculating 

the overall race-specific means and variances at each school probability Black (recall that 

school-by-race means are normally distributed, conditional on school proportion Black), we find 

the overall population CDF for White students by applying the formula for the CDF of the 

mixture of normal distributions (we use the R package nor1mix to find all mixture distributions): 

𝐹𝑤ℎ𝑖𝑡𝑒(𝑥) = ∑ 𝑤𝑝
(𝑤)

Φ (
𝑥−𝜇𝑝

(𝑤)

𝜎𝑝
2(𝑤) )𝑝      (B1) 

where p indexes a particular school probability black, Φ is the normal CDF, 𝑤𝑝
(𝑤)

 is a weight 

giving the proportion of the total White population that attends schools with school proportion 

Black p (or 𝑤𝑝
(𝑤)

=   
1−𝑃(𝑏)𝑝

∑ (1−𝑃(𝑏)𝑝)𝑝
), 𝜇𝑝

(𝑤)
 is the true White mean across schools with probability 

Black p, and 𝜎𝑝
2(𝑤)

 is the true White variance across schools with probability Black p.  

Similarly, we find the overall population PDF for Black students using the formula for 

the PDF of a mixture of normals:  

𝑓𝑏𝑙𝑎𝑐𝑘 (𝑥) = ∑ 𝑤𝑠
(𝑏)

ϕ(𝑥, 𝜇𝑠
(𝑏)

, 𝜎𝑠
2(𝑏)

)𝑝      (B2) 

where 𝜙 is the normal PDF and the weight  𝑤𝑠
(𝑏)

=
𝑃(𝑏)𝑠

∑ 𝑃(𝑏)𝑠𝑠
 .  This gives a total V of:  
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𝑉𝑡𝑜𝑡𝑎𝑙 = √2Φ−1 ∫ (∑ 𝑤𝑠
(𝑤)

Φ (
𝑥−𝜇𝑠

(𝑤)

𝜎𝑠
2(𝑤) )𝑝 ) (∑ 𝑤𝑠

(𝑏)
ϕ(𝑥, 𝜇𝑠

(𝑏)
, 𝜎𝑠

2(𝑏)
)𝑝 ) 𝑑𝑥

∞

−∞
   (B3) 

To solve for the true value of the total between-school V ( i.e., 𝑉̂(𝑇𝐵)), we find the overall 

Black PDF and the overall White CDF when the Black and White CDFs at each school 

probability Black are equal to the school marginal CDF at that school probability Black.  This 

yields, for each racial group, the mixture distribution for the overall population that would result 

if the within-school distributions for each racial group matched the actual marginal 

(Black/White) distribution within school.  We then find V as in B3, using these newly weighted 

overall distributions by race.    

When mapping the Black CDF within school to the White CDF, we keep all White 

parameters unchanged.  For Black students in schools where 𝑝(𝑏)𝑠 ≠ 1, we assign them the 

parameter values of White students in the same school and find the marginal Black CDF that 

would result if Black students’ within-school CDFs matched those of White students in the same 

school.  We then use the new Black PDF to apply B3 and find 𝑉𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

.  Following a similar but 

reversed procedure to map the White distribution to the Black distribution within school, we find 

𝑉𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

. 

We find the overall population gaps and gap proportions in the 𝑦∗ metric by first finding 

𝑆𝐷𝑦 , the overall population SD in the y metric, using the law of total variance (for each 

simulation scenario).  Given that the gap in the y metric is -1, the overall gap in the 𝑦∗ metric is 

−1

𝑆𝐷𝑦
, and the decomposition proportions are equal in both 𝑦 and 𝑦∗ (for the population, we use 

VR=.42666667). 
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Appendix D. Parameters for Extreme Simulation Scenarios. 

We also evaluate these methods under more extreme population parameters and sampling 

scenarios. As seen in the second panel of Table 1 in the main text, we simulate a “high 

heteroskedasticity” scenario to compare the relative performance of HOMOP, PHOP, and 

HETOP models under different levels of true heteroskedasticity. For this scenario, we assign the 

White distribution within schools a SD of .80 (4th column of Table 1 in main text) and the Black 

distribution within schools a SD of 1.20 (3rd column of Table 1 in main text). This represents a 

relatively large coefficient of variation (approximately 0.54, higher than the maximum of .3 used 

in simulations by Reardon et al. [2017] when evaluating HETOP models). Second, to examine 

how the methods perform when mono-racial schools are present, we include a “high segregation” 

scenario, in which schools are either 0%, 10%, 50%, 90%, or 100% Black (sampling 30 schools 

of each type), yielding VR=.652 (compare to a VR range of approximately .5 to .63 across 

different relevant analytic samples in various waves of the ECLS-K:2011). Third, we simulate a 

“small standardized gap” scenario in which we fix the overall population gap to approximately -

.30 SD (similar to the smallest observed standardized Black-White gap across rounds and 

subjects in the ECLS-K:2011). We achieve the small standardized gap by increasing the within-

school SDs while holding other parameters constant (see columns 4 and 5 of the bottom panel of 

Table 1 in main text). Finally, we examine a scenario that allows for sampling error in school 

proportion Black, both at the school level and within school. For these simulations, we randomly 

draw the true school proportion Black for each school, where each proportion (.10, .50, .90) has a 

1/3 chance of being pulled for each sampled school. We then randomly sample students from 

each school, where each student’s probability of being Black is given by the school’s true 
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proportion Black. For all supplementary simulations, we use 𝛽1 = −.4, 150 schools, 30 students 

per school, and 10 achievement bins to keep the number of simulation scenarios manageable. 

 

  



ORDINAL DECOMPOSITION (APPENDICES) 

 

55 

 

Appendix E. Simulation Results for HETOP Models. 

Main Simulations   

In Table E1, we present results from the HETOP model.  With 30 students per school and 

4 bins, the HETOP models had convergence issues (with 12% to 26% of models converging).  

The models that did converge yielded high estimates of bias and large RMSEs across all 

parameters, often driven by a relatively small number of simulations that produced extreme 

estimates.  With 10 bins and 30 students, a greater number of HETOP models converged (56%-

78%), and the bias estimates were substantially smaller.  In fact, bias estimates for the overall 

gap were smaller here than in the PHOP models; however, bias in the proportional 

decompositions were larger than the PHOP and HOMOP models.   

With 300 students per school, the HETOP convergence issues were all but eliminated 

(with only one model across all simulations failing to converge), and bias was dramatically 

reduced.  Across bin sizes, bias in the overall gap estimates was smaller for HETOP than PHOP 

(never more extreme than -.008 SD).  Bias in the proportional decompositions were generally 

larger than for PHOP and HOMOP, but still small, with approximately +/- .002 as the most 

extreme estimates. 

More Extreme Simulations 

In Table E2, we present the simulation results for the HETOP models under the more 

extreme conditions.  With high heteroscedasticity, HETOP again exhibited convergence 

problems (597/1000 converging) and performed worse than HOMOP and PHOP for the 

proportional decompositions.  Bias for estimating the overall gap was small, (-.008 SD), but 

RMSE was large (.135).  With high segregation, bias remained high when estimating 

decomposition proportions (849/1000 HETOP models converged).  With sampling error added 
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for school proportion Black, the estimated bias for the decomposition proportions was small 

(.007 and -.007 for TB and TW, respectively), but only 381 out of 1,000 simulations converged.   

The proportional decompositions showed the largest bias under the small standardized gap 

condition.    
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Table E1.  
Bias and RMSE from Simulated Estimates of HETOP Decomposition Elements. 

   Overall Gap Proportion Total Between Proportion Total Within  

Num. Sts Bins 𝛽1 Bias RMSE p Bias RMSE p Bias RMSE p Converged 

30 4 -0.4 0.530 0.316 <0.001 -2.667 9.559 0.049 4.651 16.673 0.049 223 

30 4 -0.6 0.670 0.388 <0.001 -1.241 2.150 <0.001 2.165 3.750 <0.001 260 

30 4 -0.8 0.715 0.340 <0.001 -0.893 0.584 <0.001 1.558 1.018 <0.001 183 

30 4 -1 0.624 0.256 <0.001 -0.732 0.403 <0.001 1.277 0.703 <0.001 119 

30 10 -0.4 -0.030 0.113 <0.001 -0.043 0.278 <0.001 0.075 0.486 <0.001 750 

30 10 -0.6 -0.036 0.124 <0.001 -0.040 0.244 <0.001 0.070 0.425 <0.001 782 

30 10 -0.8 -0.037 0.136 <0.001 -0.045 0.225 <0.001 0.078 0.392 <0.001 732 

30 10 -1 -0.046 0.107 <0.001 -0.034 0.158 <0.001 0.060 0.275 <0.001 561 

300 4 -0.4 -0.003 0.007 <0.001 0.001 0.006 <0.001 -0.002 0.010 <0.001 1000 

300 4 -0.6 -0.004 0.008 <0.001 0.000 0.005 0.942 0.000 0.009 0.942 1000 

300 4 -0.8 -0.004 0.009 <0.001 -0.001 0.005 <0.001 0.001 0.009 <0.001 999 

300 4 -1 -0.005 0.009 <0.001 -0.001 0.005 <0.001 0.002 0.009 <0.001 1000 

300 10 -0.4 -0.004 0.008 <0.001 0.001 0.006 <0.001 -0.001 0.010 <0.001 1000 

300 10 -0.6 -0.005 0.008 <0.001 0.000 0.005 0.066 0.001 0.009 0.066 1000 

300 10 -0.8 -0.006 0.009 <0.001 0.000 0.005 0.010 0.001 0.008 0.010 1000 

300 10 -1 -0.006 0.009 <0.001 -0.001 0.005 <0.001 0.001 0.008 <0.001 1000 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units.  Each scenario presents 

estimated bias and RMSE from 1,000 simulations.  Converged = number of the 1,000 simulations for which models converged. Num. Sts. = number of 
students per school (in each of 150 schools, with equal representation from schools that are 10%, 50%, and 90% Black [vs. White]).  Bins = number of bins 

that student-level data were coarsened to (bins of 10 are equally-sized; bins of 4 have cut scores at 20th, 50th, and 80th percentiles to represent a scenario in 

which only proficiency count data are available).  𝛽1= value of 𝛽1 in data-generating model (see equations 7 and 8). p = p-value for test of null hypothesis that 

bias=0. 
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Table E2. 
Bias and RMSE from Simulated Estimates of HETOP Decomposition Elements under Alternative Populations and Sampling Scenarios. 

  Overall Gap Between Within  

 Bias RMSE p Bias RMSE p Bias RMSE p Converged 

 High Heteroscedasticity  

HETOP -0.008 0.135 0.243 -0.098 0.361 <0.001 0.171 0.630 <0.001 597 

 High Segregation  

HETOP -0.025 0.131 <0.001 -0.053 0.330 <0.001 0.158 0.961 <0.001 849 

 Sampling Error for Segregation and School Proportion Black 

HETOP -0.044 0.062 <0.001 0.007 0.015 <0.001 <0.001 0.023 <0.001 381 

 Small Standardized Gap 

HETOP 0.002 0.062 0.643 -0.130 0.340 <0.001 0.227 0.593 <0.001 524 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units.  Each scenario presents 

estimated bias and RMSE from 1,000 simulations.  Converged = number of the 1,000 simulations for which models converged.  All simulation scenarios use 150 

schools with 30 students per school, data coarsened to 10 equally-sized bins, and 𝛽
1

= −.4  in data-generating model (see equation 7 and 8).  p = p-value for test 

of null hypothesis that bias=0.    

  



ORDINAL DECOMPOSITION (APPENDICES) 

 

59 

 

Appendix F.  Ordered Probit Simulations for Extreme Conditions with 300 Students per School.  

Table F1.  
Bias and RMSE from Simulated Estimates of HETOP, PHOP and HOMOP Decomposition Elements under Alternative Populations and Sampling 

Scenarios. 

  Overall Between Within  

 Bias RMSE p Bias RMSE p Bias RMSE p Converged 

 High Heteroskedasticity 

HETOP -0.004 0.008 <0.001 0.001 0.006 0.001 -0.001 0.011 0.001 1000 

PHOP -0.006 0.009 <0.001 0.000 0.006 0.022 -0.001 0.011 0.022 1000 

HOMOP -0.003 0.007 <0.001 0.006 0.009 0.000 -0.010 0.015 0.000 1000 

 High Segregation 

HETOP -0.005 0.008 <0.001 0.002 0.005 0.000 -0.001 0.015 0.013 1000 

PHOP -0.006 0.009 <0.001 0.002 0.005 0.000 -0.001 0.015 0.029 1000 

HOMOP -0.002 0.007 <0.001 0.002 0.005 0.000 -0.001 0.015 0.001 1000 

 Sampling Error for Segregation and School Proportion Black 

HETOP -0.004 0.009 <0.001 0.000 0.011 0.234 0.000 0.010 0.135 1000 

PHOP -0.005 0.010 <0.001 -0.001 0.011 0.069 0.000 0.010 0.798 1000 

HOMOP -0.001 0.008 <0.001 0.000 0.011 0.249 0.000 0.010 0.117 1000 

 Small Standardized Gap 

HETOP -0.002 0.009 <0.001 0.002 0.020 0.005 -0.003 0.035 0.005 1000 

PHOP -0.003 0.009 <0.001 0.001 0.020 0.018 -0.003 0.035 0.018 1000 

HOMOP -0.001 0.009 0.004 0.002 0.020 0.012 -0.003 0.035 0.012 1000 
Note. Bias in overall gap is expressed in population SD units; bias in decomposition proportions are expressed in proportion units.  Each scenario presents 

estimated bias and RMSE from 1,000 simulations.  Converged = number of the 1,000 simulations for which models converged.  All simulation scenarios use 150 

schools with 300 students per school, data coarsened to 10 equally-sized bins, and 𝛽
1

= −.4  in data-generating model (see equation 7 and 8).  p = p-value for 

test of null hypothesis that bias=0.
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Appendix G. Georgia State Proficiency Data Applications.  

 In Table G1, we present school-level sample sizes for the Georgia proficiency count data.  

These data are reported as school-by-race-by-score-bin counts for each grade level and year.  In 

other words, the state reports the number of Black and White students in each grade at each 

school who scored in each of the three possible proficiency categories (we use data from 2011-

2014).  As discussed in the main text, HETOP can encounter convergence issues when cell 

counts are sparse.  As seen in Table G1, it is relatively rare for a school-by-race-by-grade level 

group to have non-zero counts in only one of the three score bins.  However, it is more common 

for a school-by-race-by-grade level group to have non-zero counts in only two of the three score 

bins.   

In Table G2, we present the results from the V decompositions applied to the Georgia 

state proficiency data (described in main text).   

In Table G3, we present the results from the ordered probit decomposition models.  As 

described in the main text, few of the HETOP models converged, due to subgroups with empty 

proficiency count cells.  We therefore conducted supplementary analyses dropping offending 

school-by-race subgroups in order to achieve model convergence, and present these results in 

Table G4.  We did this in two steps.  First, we identified school-by-race subgroups with at least 

one empty proficiency count cell and pooled them together into race-by-school-percent-Black-

tercile groups.  If a given race-by-school-percent-Black bin still had at least one empty 

proficiency count cell, we dropped that set of observations from the data set.  We then fit the 

ordered probit models to obtain the school-by-race estimates as described in the main text.         
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Table G1. Counts for schools and school-by-grade-race-by-bin cells from Georgia proficiency count data.   

    Black students White students 

Year Grade 

Total 

sch N 

N Schs 

with at 

least 1 

Black st. 

N schs 

with 1 

empty 

cell 

 N schs 

with 2 

empty 

cells 

N schs 

no 
Black 

students 

in lower 

third 

N schs 

no 

Black 
students 

in 

middle 

third 

N schs 

no 
Black 

students 

in top 

third 

N Schs 
with at 

least 1 

White 

st. 

N schs 

with 1 

empty 

cell 

 N schs 

with 2 

empty 

cells 

N schs 

no 
White 

students 

in lower 

third 

N schs 

no 

White 
students 

in 

middle 

third 

N schs 

no 
White 

students 

in top 

third 

2011 3 1247 970 20 0 17 0 3 911 53 0 52 0 1 

 4 1238 976 41 0 21 0 20 892 70 0 67 0 3 

 5 1231 979 169 3 159 0 13 887 234 1 231 1 3 

 6 550 479 42 1 4 1 38 443 16 0 6 0 10 

 7 520 464 30 1 23 1 7 418 21 0 20 0 1 

 8 524 464 43 1 19 1 24 424 24 1 19 0 6 

2012 3 1244 962 31 0 24 1 6 906 61 0 59 1 1 

 4 1235 957 42 0 22 0 20 887 51 0 50 0 1 

 5 1225 972 133 1 113 0 21 873 202 0 197 0 5 

 6 559 488 51 1 11 0 41 444 10 0 7 0 3 

 7 532 475 40 1 32 1 8 426 35 0 34 0 1 

 8 523 464 48 0 21 0 27 425 31 0 21 0 10 

2013 3 1231 942 21 0 15 0 6 898 38 1 37 2 0 

 4 1224 952 56 0 40 0 16 875 94 0 93 0 1 

 5 1216 945 191 1 189 1 2 865 303 2 303 2 0 

 6 553 483 30 0 9 0 21 445 16 0 14 0 2 

 7 530 476 34 1 28 1 6 425 36 1 35 1 1 

 8 526 466 43 0 28 0 15 426 32 0 28 0 4 

2014 3 1224 953 36 2 33 2 3 894 45 0 44 1 0 

 4 1217 954 53 2 32 0 23 874 56 0 55 0 1 

 5 1211 948 183 1 175 0 9 858 284 2 284 2 0 

 6 551 479 40 0 16 0 24 448 18 0 15 0 3 

 7 532 474 33 1 22 1 11 425 30 0 30 0 0 
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  8 530 471 34 0 24 0 10 428 29 0 25 1 3 
Note. Data are reported by state as number of students by race in each school who scored within each of three proficiency score bins.   
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Table G2  

V Decompositions for Black-White Math Gaps, Georgia State Testing Data. 

Year Grade Total V 

Prop. 

𝑉̂(𝑇𝐵) 

Prop. 

𝑉̂𝑏𝑡𝑤𝑛
(𝑊 𝑡𝑜 𝐵)

 

Prop. 

𝑉̂𝑏𝑡𝑤𝑛
(𝐵 𝑡𝑜 𝑊)

 Black N 

White 

N Sch N 

Mean 

𝐵𝑙𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
𝑠
(𝑏𝑙𝑎𝑐𝑘)

 

Mean 

𝐵𝑙𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
𝑠
(𝑤ℎ𝑖𝑡𝑒)

 

2011 3 -0.75 0.65 0.51 0.61 44224 53749 1247 0.753 0.204 

 4 -0.73 0.64 0.48 0.61 45659 54310 1238 0.752 0.208 

 5 -0.67 0.66 0.51 0.63 45604 54574 1231 0.751 0.208 

 6 -0.73 0.57 0.38 0.48 45530 54891 550 0.709 0.241 

 7 -0.65 0.60 0.39 0.54 45246 54304 520 0.705 0.246 

 8 -0.63 0.60 0.44 0.53 44524 53266 524 0.703 0.248 

2012 3 -0.79 0.65 0.51 0.61 43063 53182 1244 0.751 0.202 

 4 -0.75 0.65 0.51 0.61 42984 52846 1235 0.753 0.201 

 5 -0.65 0.67 0.52 0.65 44990 53405 1225 0.753 0.208 

 6 -0.70 0.58 0.38 0.49 46386 54205 559 0.712 0.246 

 7 -0.69 0.58 0.39 0.50 44916 54222 532 0.706 0.244 

 8 -0.64 0.61 0.42 0.55 45451 54112 523 0.706 0.247 

2013 3 -0.74 0.67 0.54 0.64 42939 53016 1231 0.753 0.200 

 4 -0.80 0.65 0.52 0.61 42566 52237 1224 0.753 0.202 

 5 -0.68 0.69 0.55 0.67 42810 52239 1216 0.754 0.202 

 6 -0.76 0.58 0.39 0.49 45913 53188 553 0.713 0.248 

 7 -0.75 0.58 0.38 0.49 46231 53977 530 0.710 0.248 

 8 -0.69 0.61 0.44 0.55 45256 54145 526 0.708 0.244 

2014 3 -0.69 0.69 0.57 0.65 44295 52382 1224 0.754 0.208 

 4 -0.78 0.67 0.53 0.63 42837 52268 1217 0.752 0.203 

 5 -0.73 0.69 0.56 0.67 42574 51728 1211 0.752 0.204 

 6 -0.77 0.59 0.38 0.52 44765 52547 551 0.708 0.249 

 7 -0.80 0.58 0.37 0.50 46684 53397 532 0.712 0.251 

 8 -0.74 0.61 0.43 0.54 46715 53956 530 0.711 0.251 

Note. Data were reported by the state as school-by-race counts in three proficiency categories.  𝐵𝑙𝑎𝑐𝑘𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ = school proportion Black.   

 

 



ORDINAL DECOMPOSITION (APPENDICES) 

 

64 

 

Table G3. 

Ordered Probit Decompositions for Black-White Math Gaps, Georgia State Testing Data. 

    
Overall  

  
Proportion TB  

  
Proportion TW  

  
N   
  

Mean Sch. 
Proportion Black  

Year Grade HOMOP HETOP PHOP HOMOP HETOP PHOP HOMOP HETOP PHOP Black White Schools Black Sts 

White 

Sts 

2011 3 -0.699  -0.714 0.673  0.670 0.726  0.732 44224 53749 1247 0.753 0.204 

 4 -0.692  -0.701 0.657  0.656 0.753  0.754 45659 54310 1238 0.752 0.208 

 5 -0.630  -0.644 0.682  0.679 0.695  0.701 45604 54574 1231 0.751 0.208 

 6 -0.692  -0.696 0.586  0.586 0.777  0.778 45530 54891 550 0.709 0.241 

 7 -0.617  -0.624 0.618  0.616 0.707  0.710 45246 54304 520 0.705 0.246 

 8 -0.601  -0.607 0.617  0.616 0.703  0.704 44524 53266 524 0.703 0.248 

2012 3 -0.733  -0.750 0.676  0.672 0.718  0.726 43063 53182 1244 0.751 0.202 

 4 -0.703  -0.713 0.670  0.668 0.738  0.741 42984 52846 1235 0.753 0.201 

 5 -0.622  -0.632 0.686  0.685 0.690  0.693 44990 53405 1225 0.753 0.208 

 6 -0.660 -0.664 -0.664 0.599 0.593 0.598 0.752 0.762 0.753 46386 54205 559 0.712 0.246 

 7 -0.637  -0.653 0.606  0.601 0.733  0.742 44916 54222 532 0.706 0.244 

 8 -0.606  -0.611 0.625  0.624 0.693  0.694 45451 54112 523 0.706 0.247 

2013 3 -0.685  -0.701 0.692  0.688 0.689  0.697 42939 53016 1231 0.753 0.200 

 4 -0.739  -0.753 0.674  0.672 0.726  0.731 42566 52237 1224 0.753 0.202 

 5 -0.636  -0.651 0.714  0.711 0.639  0.646 42810 52239 1216 0.754 0.202 

 6 -0.709 -0.714 -0.715 0.603 0.599 0.602 0.742 0.750 0.745 45913 53188 553 0.713 0.248 

 7 -0.697  -0.707 0.602  0.600 0.739  0.743 46231 53977 530 0.710 0.248 

 8 -0.651  -0.657 0.637  0.637 0.676  0.677 45256 54145 526 0.708 0.244 

2014 3 -0.650  -0.665 0.718  0.714 0.620  0.629 44295 52382 1224 0.754 0.208 

 4 -0.720  -0.735 0.690  0.687 0.687  0.695 42837 52268 1217 0.752 0.203 

 5 -0.679  -0.693 0.713  0.710 0.636  0.643 42574 51728 1211 0.752 0.204 

 6 -0.714 -0.718 -0.722 0.611 0.603 0.609 0.719 0.734 0.723 44765 52547 551 0.708 0.249 

 7 -0.738  -0.752 0.599  0.595 0.744  0.751 46684 53397 532 0.712 0.251 

  8 -0.693  -0.701 0.632  0.630 0.681  0.686 46715 53956 530 0.711 0.251 

Note. Data were reported by the state as school-by-race counts in three proficiency categories.  Blank HETOP cells indicate that the HETOP model would not 

converge. 
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Table G4. 

Ordered Probit Decompositions for Black-White Math Gaps, Georgia State Testing Data (altered sample to achieve HETOP 

convergence). 

    Overall  Proportion TB  Proportion TW  N  

Year grade HOMOP HETOP PHOP HOMOP HETOP PHOP HOMOP HETOP PHOP Black White Schools 

2011 3 -0.688 -0.682 -0.703 0.676 0.668 0.673 0.705 0.725 0.710 43798 51905 1234 

 4 -0.666 -0.664 -0.675 0.652 0.646 0.652 0.748 0.763 0.749 44867 51178 1212 

 5 -0.567 -0.585 -0.581 0.660 0.657 0.658 0.664 0.675 0.667 42040 42839 1095 

 6 -0.683 -0.684 -0.687 0.581 0.578 0.581 0.788 0.796 0.789 44172 54482 534 

 7 -0.607 -0.610 -0.613 0.609 0.600 0.607 0.711 0.726 0.713 44420 52613 506 

 8 -0.580 -0.582 -0.585 0.598 0.593 0.597 0.718 0.728 0.719 43267 51533 502 

2012 3 -0.711 -0.709 -0.727 0.675 0.662 0.672 0.709 0.732 0.715 42500 50540 1224 

 4 -0.685 -0.675 -0.694 0.679 0.666 0.678 0.721 0.752 0.722 42202 50855 1220 

 5 -0.557 -0.574 -0.565 0.675 0.667 0.674 0.666 0.680 0.667 41919 43544 1115 

 6 -0.652 -0.652 -0.656 0.604 0.600 0.604 0.743 0.753 0.745 44650 53812 543 

 7 -0.625 -0.637 -0.639 0.597 0.584 0.593 0.747 0.774 0.752 43731 51357 515 

 8 -0.594 -0.593 -0.598 0.614 0.609 0.613 0.698 0.709 0.699 43949 52308 496 

2013 3 -0.679 -0.671 -0.695 0.696 0.685 0.692 0.671 0.692 0.679 42572 51789 1217 

 4 -0.718 -0.716 -0.732 0.678 0.670 0.675 0.702 0.725 0.706 41367 48495 1186 

 5 -0.578 -0.600 -0.601 0.672 0.664 0.668 0.569 0.587 0.574 38112 36268 1017 

 6 -0.702 -0.707 -0.709 0.610 0.605 0.609 0.725 0.735 0.728 45088 52543 540 

 7 -0.698 -0.705 -0.707 0.605 0.598 0.603 0.722 0.733 0.725 44875 51782 514 

 8 -0.645 -0.647 -0.650 0.625 0.619 0.624 0.667 0.680 0.668 43873 51675 506 

2014 3 -0.642 -0.633 -0.657 0.703 0.699 0.700 0.623 0.627 0.630 43647 50442 1204 

 4 -0.705 -0.702 -0.719 0.689 0.681 0.686 0.676 0.689 0.682 41791 50097 1190 

 5 -0.603 -0.605 -0.622 0.661 0.641 0.657 0.572 0.624 0.578 38438 35865 1033 

 6 -0.697 -0.699 -0.704 0.611 0.603 0.608 0.719 0.734 0.722 43394 51142 535 

 7 -0.736 -0.746 -0.749 0.603 0.597 0.600 0.735 0.746 0.741 45732 52125 515 

  8 -0.689 -0.689 -0.697 0.629 0.620 0.627 0.672 0.689 0.676 45474 52387 508 
Note. Data were reported by the state as school-by-race counts in three proficiency categories.  To achieve HETOP convergence, school-by-race subgroups with 

at least one empty proficiency count cell were combined into race-by-terciles of school percent black.  Race-by-terciles of school percent black with at least one 
empty proficiency count cell were then dropped (same samples across all estimation approaches). 
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