Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers to better understand the efficacy of educational interventions. In practice, however, standard statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE that may exist within outcome measures. In this study, we present a novel application of the Explanatory Item Response Model (EIRM) for assessing what we term “item-level” HTE (IL-HTE), in which a unique treatment effect is estimated for each item in an assessment. Results from data simulation reveal that when IL-HTE are present but ignored in the model, standard errors can be underestimated and false positive rates can increase. We then apply the EIRM to assess the impact of a literacy intervention focused on promoting transfer in reading comprehension on a digital formative assessment delivered online to approximately 8,000 third-grade students. We demonstrate that allowing for IL-HTE can reveal treatment effects at the item-level masked by a null average treatment effect, and the EIRM can thus provide fine-grained information for researchers and policymakers on the potentially heterogeneous causal effects of educational interventions.
Keywords
Heterogeneous Treatment Effects, Explanatory Item Response Model, Causal Inference, Simulation, Psychometrics
Education level
Document Object Identifier (DOI)
10.26300/m3jh-kh96