Search EdWorkingPapers

Sophie Litschwartz

In multisite experiments, we can quantify treatment effect variation with the cross-site treatment effect variance. However, there is no standard method for estimating cross-site treatment effect variance in multisite regression discontinuity designs (RDD). This research rectifies this gap in the literature by systematically exploring and evaluating methods for estimating the cross-site treatment effect variance in multisite RDDs. Specifically, we formalize a fixed intercepts/random coefficients (FIRC) RDD model and develop a random effects meta-analysis (Meta) RDD model for estimating cross-site treatment effect variance. We find that a restricted FIRC model works best when the running variables' relationship to the outcome is stable across sites but can be biased otherwise. In those instances, we recommend using either the unrestricted FIRC model or the meta-analysis model; with the unrestricted FIRC model generally performing better when the average number of in-bandwidth observations is less than 120 and the meta-analysis model performing better when the average number of in-bandwidth observations is above 120. We apply our models to a high school exit exam policy in Massachusetts that required students who passed the high school exit exam but were still determined to be nonproficient to complete an ``Education Proficiency Plan" (EPP). We find the EPP policy had a positive local average treatment effect on whether students completed a math course their senior year on average across sites, but that the impact varied enough such that a third of schools could have had a negative impact.

More →