Browse by Topics
- Covid-19 Education Research for Recovery
- Early childhood
- K-12 Education
- Post-secondary education
- Access and admissions
- Education outside of school (after school, summer…)
- Educator labor markets
- Educator preparation, professional development, performance and evaluation
- Finance
- Inequality
- Markets (vouchers, choice, for-profits, vendors)
- Methodology, measurement and data
- Multiple outcomes of education
- Parents and communities
- Politics, governance, philanthropy, and organizations
- Program and policy effects
- Race, ethnicity and culture
- Standards, accountability, assessment, and curriculum
- Students with Learning Differences
Breadcrumb
Search EdWorkingPapers
Cynthia Pollard
In-person tutoring has been shown to improve academic achievement. Though less well-researched, virtual tutoring has also shown a positive effect on achievement but has only been studied in grade five or above. We present findings from the first randomized controlled trial of virtual tutoring for young children (grades K-2). Students were assigned to 1:1 tutoring, 2:1 tutoring, or a control group. Assignment to any virtual tutoring increased early literacy skills by 0.05-0.08 SD with the largest effects for 1:1 tutoring (0.07-0.12 SD). Students initially scoring well below benchmark and first graders experienced the largest gains from 1:1 tutoring (0.15 and 0.20 SD, respectively). Effects are smaller than typically seen from in-person early literacy tutoring programs but still positive and statistically significant, suggesting promise particularly in communities with in-person staffing challenges.
Practice-based teacher education has increasingly been adopted as an alternative to more traditional, conceptually-focused pedagogies, yet the field lacks causal evidence regarding the relative efficacy of these approaches. To address this issue, we randomly assigned 185 college students to one of three experimental conditions reflective of common conceptually-focused and practice-based teacher preparation pedagogies. We find significant and large positive effects of practice-based pedagogies on participants’ skills in eliciting and responding to student thinking as demonstrated through a written assessment and a short teaching episode. Our findings contribute to a developing evidence base that can assist policymakers and teacher educators in designing effective teacher preparation at scale.
The pursuit of multiple educational outcomes makes teaching a complex craft subject to potential conflicts and competing commitments. Using a dataset in which teachers were randomly assigned to students paired with videotapes of instruction, we both document and unpack such a tradeoff. Upper-elementary teachers who excel at raising students’ math test scores often are less successful at improving student-reported engagement in class (and vice versa). Further, the teaching practices that improve math test scores (e.g., cognitively demanding content) can simultaneously decrease engagement. At the same time, paired quantitative and qualitative analyses reveal two areas of practice that support both outcomes: active mathematics with opportunities for hands-on participation; and established routines and procedures to proactively organize the classroom environment. In addition to guiding practice-based teacher education, our mixed-methods analysis can serve as a model for rigorously studying and identifying dimensions of “good” teaching that promote multidimensional student development.
The public narrative surrounding efforts to improve low-performing K-12 schools in the U.S. has been notably gloomy. Observers argue that either nothing works or we don’t know what works. At the same time, the federal government is asking localities to implement evidence-based interventions. But what is known empirically about whether school improvement works, how long it takes, which policies are most effective, and which contexts respond best to intervention? We meta-analyze 141 estimates from 67 studies of turnaround policies implemented post-NCLB. On average, these policies have had a moderate positive effect on math but no effect on ELA achievement as measured by high-stakes exams. We find evidence of positive impacts on low-stakes exams in STEM and humanities subjects and no evidence of harm on non-test outcomes. Some elements of reform, namely extended learning time and teacher replacements, predict greater effects. Contexts serving majority-Latinx populations have seen the largest improvements.
More than half of U.S. children fail to meet proficiency standards in mathematics and science in fourth grade. Teacher professional development and curriculum improvement are two of the primary levers that school leaders and policymakers use to improve children’s science, technology, engineering and mathematics (STEM) learning, yet until recently, the evidence base for understanding their effectiveness was relatively thin. In recent years, a wealth of rigorous new studies using experimental designs have investigated whether and how STEM instructional improvement programs work. This article highlights contemporary research on how to improve classroom instruction and subsequent student learning in STEM. Instructional improvement programs that feature curriculum integration, teacher collaboration, content knowledge, pedagogical content knowledge, and how students learn all link to stronger student achievement outcomes. We discuss implications for policy and practice.
How should teachers spend their STEM-focused professional learning time? To answer this question, we analyzed a recent wave of rigorous new studies of STEM instructional improvement programs. We found that programs work best when focused on building knowledge teachers can use during instruction: knowledge of the curriculum materials they will use, knowledge of content and how content can be represented for learners, and knowledge of how students learn that content. We argue that such learning opportunities improve teachers’ professional knowledge and skill, potentially by supporting teachers in making more informed in-the-moment instructional decisions.
We present results from a meta-analysis of 95 experimental and quasi-experimental preK-12 science, technology, engineering, and mathematics (STEM) professional development and curriculum programs, seeking to understand what content, activities and formats relate to stronger student outcomes. Across rigorously conducted studies, we found an average weighted impact estimate of +0.21 standard deviations. Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers' content knowledge, pedagogical content knowledge and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.