Jing Liu

Institution: University of Maryland College Park


Dorottya Demszky, Jing Liu, Zid Mancenido, Julie Cohen, Heather C. Hill, Dan Jurafsky, Tatsunori Hashimoto.

In conversation, uptake happens when a speaker builds on the contribution of their interlocutor by, for example, acknowledging, repeating or reformulating what they have said. In education, teachers' uptake of student contributions has been linked to higher student achievement. Yet measuring and improving teachers' uptake at scale is challenging, as existing methods require expensive annotation by experts. We propose a framework for computationally measuring uptake, by (1) releasing a dataset of student-teacher exchanges extracted from US math classroom transcripts annotated for uptake by experts; (2) formalizing uptake as pointwise Jensen-Shannon Divergence (pJSD), estimated via next utterance classification; (3) conducting a linguistically-motivated comparison of different unsupervised measures and (4) correlating these measures with educational outcomes. We find that although repetition captures a significant part of uptake, pJSD outperforms repetition-based baselines, as it is capable of identifying a wider range of uptake phenomena like question answering and reformulation. We apply our uptake measure to three different educational datasets with outcome indicators. Unlike baseline measures, pJSD correlates significantly with instruction quality in all three, providing evidence for its generalizability and for its potential to serve as an automated professional development tool for teachers.

More →

Jing Liu, Monica Lee, Seth Gershenson.

We provide novel evidence on the causal impacts of student absences in middle and high school on state test scores, course grades, and educational attainment using a rich administrative dataset that tracks the date and class period of each absence. We use two similar but distinct identification strategies that address potential endogeneity due to time-varying student-level shocks by exploiting within-student, between-subject variation in class-specific absences. We also leverage information on the timing of absences to show that absences that occur after the annual window for state standardized testing do not affect test scores, providing a further check of our identification strategy. Both approaches yield similar results. We nd that absences in middle and high school harm contemporaneous student achievement and longer-term educational attainment: On average, missing 10 classes reduces math or English Language Arts test scores by 3-4% of a standard deviation and course grades by 17-18% of a standard deviation. 10 total absences across all subjects in 9th grade reduce both the probability of on-time graduation and ever enrolling in college by 2%. Learning loss due to school absences can have profound economic and social consequences.

More →

Jing Liu, Susanna Loeb, Ying Shi.

Classroom teachers in the US are absent on average approximately six percent of a school year. Despite the prevalence of teacher absences, surprisingly little research has assessed the key source of replacement instruction: substitute teachers. Using detailed administrative and survey data from a large urban school district, we document the prevalence, predictors, and variation of substitute coverage across schools. Less advantaged schools systematically exhibit lower rates of substitute coverage compared with peer institutions. Observed school, teacher, and absence characteristics account for only part of this school variation. In contrast, substitute teachers’ preferences for specific schools, mainly driven by student behavior and support from teachers and school administrators, explain a sizable share of the unequal distribution of coverage rates above and beyond standard measures in administrative data.

More →

Jing Liu, Julie Cohen.

Valid and reliable measurements of teaching quality facilitate school-level decision-making and policies pertaining to teachers, but conventional classroom observations are costly, prone to rater bias, and hard to implement at scale. Using nearly 1,000 word-to-word transcriptions of 4th- and 5th-grade English language arts classes, we apply novel text-as-data methods to develop automated, objective measures of teaching to complement classroom observations. This approach is free of rater bias and enables the detection of three instructional factors that are well aligned with commonly used observation protocols: classroom management, interactive instruction, and teacher-centered instruction. The teacher-centered instruction factor is a consistent negative predictor of value-added scores, even after controlling for teachers’ average classroom observation scores. The interactive instruction factor predicts positive value-added scores.

More →