Browse by Topics
- Covid-19 Education Research for Recovery
- Early childhood
- K-12 Education
- Post-secondary education
- Access and admissions
- Education outside of school (after school, summer…)
- Educator labor markets
- Educator preparation, professional development, performance and evaluation
- Finance
- Inequality
- Markets (vouchers, choice, for-profits, vendors)
- Methodology, measurement and data
- Multiple outcomes of education
- Parents and communities
- Politics, governance, philanthropy, and organizations
- Program and policy effects
- Race, ethnicity and culture
- Standards, accountability, assessment, and curriculum
- Students with Learning Differences
Breadcrumb
Search EdWorkingPapers
Kathryn E. Gonzalez
Despite evidence that teacher professional development interventions in mathematics and science can increase student achievement, our understanding of the mechanisms by which this occurs – particularly how these interventions affect teachers themselves, and whether teacher-level changes predict student learning – remains limited. The current meta-analysis synthesizes 46 experimental studies of preK-12 mathematics and science professional development interventions to investigate how these interventions affect teachers’ knowledge and classroom instruction, and how these impacts relate to intervention effects on student achievement. Compared with controls, treatment group teachers had stronger performance on measures of knowledge and classroom instruction (pooled average impact estimate: +0.53 SD). Programs with larger impacts on teacher practice had significantly larger mean effects on student achievement. However, mean effects on student achievement were not significantly related to impacts on teacher knowledge. We discuss implications for future research and practice.
Despite considerable evidence on the links between average classroom quality and children’s learning, the importance of variation in quality is not well understood. We examined whether three measures of variation in observed classroom quality over the school year – overall variation in quality, teacher-specific trends in quality, and instability in quality – were associated with children’s language, literacy, and regulatory outcomes. We also examined whether variation in quality was associated with teachers’ participation in coaching. Overall variation and instability in emotional support and classroom organization over the year were negatively associated with children’s regulatory and literacy outcomes. Participation in coaching was linked to increased variation only in instructional support. We discuss implications for policies focused on improving classroom quality.
Despite growing evidence that classroom interventions in science, technology, engineering, and mathematics (STEM) can increase student achievement, there is little evidence regarding how these interventions affect teachers themselves and whether these changes predict student learning. We present results from a meta-analysis of 37 experimental studies of preK-12 STEM professional learning and curricular interventions, seeking to understand how STEM classroom interventions affect teacher knowledge and classroom instruction, and how these impacts relate to intervention impacts on student achievement. Compared with control group teachers, teachers who participated in STEM classroom interventions experienced improvements in content and pedagogical content knowledge and classroom instruction, with a pooled average impact estimate of +0.56 standard deviations. Programs with larger impacts on teacher practice yielded larger effects on student achievement, on average. Findings highlight the positive effects of STEM instructional interventions on teachers, and shed light on potential teacher-level mechanisms via which these programs influence student learning.
More than half of U.S. children fail to meet proficiency standards in mathematics and science in fourth grade. Teacher professional development and curriculum improvement are two of the primary levers that school leaders and policymakers use to improve children’s science, technology, engineering and mathematics (STEM) learning, yet until recently, the evidence base for understanding their effectiveness was relatively thin. In recent years, a wealth of rigorous new studies using experimental designs have investigated whether and how STEM instructional improvement programs work. This article highlights contemporary research on how to improve classroom instruction and subsequent student learning in STEM. Instructional improvement programs that feature curriculum integration, teacher collaboration, content knowledge, pedagogical content knowledge, and how students learn all link to stronger student achievement outcomes. We discuss implications for policy and practice.
How should teachers spend their STEM-focused professional learning time? To answer this question, we analyzed a recent wave of rigorous new studies of STEM instructional improvement programs. We found that programs work best when focused on building knowledge teachers can use during instruction: knowledge of the curriculum materials they will use, knowledge of content and how content can be represented for learners, and knowledge of how students learn that content. We argue that such learning opportunities improve teachers’ professional knowledge and skill, potentially by supporting teachers in making more informed in-the-moment instructional decisions.
We present results from a meta-analysis of 95 experimental and quasi-experimental preK-12 science, technology, engineering, and mathematics (STEM) professional development and curriculum programs, seeking to understand what content, activities and formats relate to stronger student outcomes. Across rigorously conducted studies, we found an average weighted impact estimate of +0.21 standard deviations. Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers' content knowledge, pedagogical content knowledge and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.